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Chapter 1

Introduction

omniORBpy is an Object Request Broker (ORB) that implements the CORBA 2.3
Python mapping [OMG00b]. It is designed for use with omniORB 3, but it can also
be used with omniORB 2.8. If you use omniORB 3.0, the full POA functionality is
available; with omniORB 2.8 many POA functions are not supported.

This user guide tells you how to use omniORBpy to develop CORBA appli-
cations using Python. It assumes a basic understanding of CORBA, and of the
Python mapping. Unlike most CORBA standards, the Python mapping document
is small, and quite easy to follow.

This manual contains all you need to know about omniORB in order to use
omniORBpy. Some sections are repeated from the omniORB manual.

In this chapter, we give an overview of the main features of omniORBpy and
what you need to do to setup your environment to run it.

1.1 Features

1.1.1 CORBA 2.3 compliant

omniORB implements the Internet Inter-ORB Protocol (IIOP). This protocol pro-
vides omniORB the means of achieving interoperability with the ORBs imple-
mented by other vendors. In fact, this is the native protocol used by omniORB
for the communication amongst its objects residing in different address spaces.

Moreover, the IDL to Python language mapping provided by omniORBpy con-
forms to the 2.3 Python mapping specification1.

1.1.2 Multithreading

omniORBpy is fully multithreaded2. To achieve low IIOP call overhead, unneces-
sary call-multiplexing is eliminated. At any time, there is at most one call in-flight

1As detailed in section 1.1.3, a number of features are missing.
2This means that your Python interpreter must have been built with thread support.

1



2 CHAPTER 1. INTRODUCTION

in each communication channel between two address spaces. To do so without lim-
iting the level of concurrency, new channels connecting the two address spaces are
created on demand and cached when there are more concurrent calls in progress.
Each channel is served by a dedicated thread. This arrangement provides maximal
concurrency and eliminates any thread switching in either of the address spaces to
process a call. Furthermore, to maximise the throughput in processing large call
arguments, large data elements are sent as soon as they are processed while the
other arguments are being marshalled.

1.1.3 Missing features

omniORBpy is not a complete implementation of the CORBA 2.3 core. The follow-
ing is a list of the missing features.

• omniORB does not have its own Interface Repository. However, it can act as
a client to an IR3.

• The IDL types wchar, wstring, fixed, and valuetype are not supported in this
release.

• The PortableServer.Current interface is not yet supported.

• DII and DSI are not supported. However, since both Python code and IDL
can be generated and used at run-time, this is not a significant restriction.

These features may be implemented in the short to medium term. It is best
to check out the latest status on the omniORB home page (http://www.uk.
research.att.com/omniORB/ ).

1.2 Setting up your environment

omniORBpy relies on the omniORB C++ libraries. If you are building from source,
you must first build omniORB itself, as detailed in the omniORB documentation.
After that, you can build the omniORBpy distribution, according to the instruc-
tions in the release notes.

1.2.1 Paths

For Python to find omniORBpy, you must add two directories to the PYTHONPATH
environment variable. The lib/python directory contains platform-independent
Python code; the lib/$FARCH directory contains platform-specific binaries, where
FARCHis the name of your platform, such as i586_linux_glibc or x86_win32 .

On Unix platforms, set PYTHONPATHwith a command like:
3See section 3.3 for a note about using an interface repository.

http://www.uk.research.att.com/omniORB/
http://www.uk.research.att.com/omniORB/
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export PYTHONPATH=$PYTHONPATH:$TOP/lib/python:$TOP/lib/$FARCH

On Windows, use

set PYTHONPATH=%PYTHONPATH%;%TOP%\lib\python;%TOP%\lib\x86_win32

(Where the TOPenvironment variable is the root of your omniORB tree.)
You should also add the bin/$FARCH directory to your PATH, so you can

run the IDL compiler, omniidl. Finally, add the lib/$FARCH directory to LD_
LIBRARY_PATH, so the omniORB core library can be found.

1.2.2 Configuration file

• On Unix platforms, the omniORB runtime looks for the environment variable
OMNIORB_CONFIG. If this variable is defined, it contains the pathname of the
omniORB configuration file. If the variable is not set, omniORB will use the
compiled-in pathname to locate the file.

• On Win32 platforms (Windows NT, 2000, 95, 98), omniORB first checks the
environment variable OMNIORB_CONFIGto obtain the pathname of the con-
figuration file. If this is not set, it then attempts to obtain configuration data
in the system registry. It searches for the data under the key HKEY_LOCAL_
MACHINE\SOFTWARE\ORL\omniORB\2.0.

The configuration file is used to obtain an object reference for the Naming Ser-
vice, via either a stringified IOR or an Interoperable Naming Service URI. When
using omniORB 3, the entry in the configuration file should be specified in the
form:

ORBInitRef NameService=<URI for the Naming Service>

The easiest way of specifying the Naming Service is with a corbaname: URI,
as described in section 4.1.2.

Comments in the configuration file should be prefixed with a ‘#’ character.
On Win32 platforms, the naming service reference can be placed in the system

registry, in the (string) value ORBInitRef , under the key HKEY_LOCAL_MACHINE\
SOFTWARE\ORL\omniORB\2.0 .

1.2.2.1 omniORB 2.8 configuration file entries

ORBInitRef is new with omniORB 3. Under omniORB 2.8, you must use the
older format (which is still supported by omniORB 3):

NAMESERVICE <IOR for the Naming Service>

Two other entries are also supported, but with omniORB 3 are made obsolete
by the Interoperable Naming Service URIs:
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ORBInitialHost <hostname string>
ORBInitialPort <port number (1-65535)>

The corresponding entries under the Win32 system registry are the keys named
ORBInitialHost and ORBInitialPort .

The two entries provide information to the ORB to locate a (proprietary) boot-
strap service at runtime. The bootstrap service is able to return the initial object
reference for the Naming Service and others.



Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps to
use omniORBpy. By going through the source code of each example, the essential
concepts and APIs are introduced. If you have no previous experience with us-
ing CORBA, you should study this chapter in detail. There are pointers to other
essential documents you should be familiar with.

If you have experience with using other ORBs, you should still go through this
chapter because it provides important information about the features and APIs
that are necessarily omniORB specific.

2.1 The Echo example

We use an example which is similar to the one used in the omniORB manual. We
define an interface, called Example::Echo , as follows:

// echo_example.idl
module Example {

interface Echo {
string echoString(in string mesg);

};
};

The important difference from the omniORB Echo example is that our Echo
interface is declared within an IDL module named Example . The reason for this
will become clear in a moment.

If you are new to IDL, you can learn about its syntax in Chapter 3 of the CORBA
specification 2.3 [OMG99]. For the moment, you only need to know that the in-
terface consists of a single operation, echoString() , which takes a string as an
argument and returns a copy of the same string.

The interface is written in a file, called echo_example.idl . It is part of the
CORBA standard that all IDL files should have the extension ‘.idl ’, although
omniORB does not enforce this.

5
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2.2 Generating the Python stubs

From the IDL file, we use the IDL compiler, omniidl, to produce the Python stubs
for that IDL. The stubs contain Python declarations for all the interfaces and types
declared in the IDL, as required by the Python mapping. It is possible to generate
stubs dynamically at run-time, as described in section 6.12, but it is more efficient
to generate them statically.

To generate the stubs, we use a command line like

omniidl -bpython echo_example.idl

As required by the standard, that produces two Python packages derived from the
module name Example . Directory Example contains the client-side definitions
(and also the type declarations if there were any); directory Example__POA con-
tains the server-side skeletons. This explains the difficulty with declarations at IDL
global scope; section 2.7 explains how to access global declarations.

If you look at the Python code in the two packages, you will see that they are al-
most empty. They simply import the echo_example_idl.py file, which is where
both the client and server side declarations actually live. This arrangement is so
that omniidl can easily extend the packages if other IDL files add declarations to
the same IDL modules.

2.3 Object References and Servants

We contact a CORBA object through an object reference. The actual implementation
of a CORBA object is termed a servant.

Object references and servants are quite separate entities, and it is important
not to confuse the two. Client code deals purely with object references, so there can
be no confusion; object implementation code must deal with both object references
and servants. You will get a run-time error if you use a servant where an object
reference is expected, or vice-versa.

2.4 Example 1 — Colocated client and servant

In the first example, both the client and servant are in the same address space.
The next sections show how the client and servant can be split between different
address spaces.

First, the code:

1 #!/usr/bin/env python
2

3 import sys
4 from omniORB import CORBA, PortableServer
5 import Example, Example__POA
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6

7 class Echo_i (Example__POA.Echo):
8 def echoString(self, mesg):
9 print "echoString() called with message:", mesg

10 return mesg
11

12 orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
13 poa = orb.resolve_initial_references("RootPOA")
14

15 ei = Echo_i()
16 eo = ei._this()
17

18 poaManager = poa._get_the_POAManager()
19 poaManager.activate()
20

21 message = "Hello"
22 result = eo.echoString(message)
23

24 print "I said ’%s’. The object said ’%s’." % (message,result)

The example illustrates several important interactions among the ORB, the
POA, the servant, and the client. Here are the details:

2.4.1 Imports

Line 3
Import the sys module to access sys.argv .

Line 4
Import omniORB’s implementations of the CORBAand PortableServer
modules. The standard requires that these modules are available outside of
any package, so you can also do

import CORBA, PortableServer

Explicitly specifying omniORB is useful if you have more than one Python
ORB installed.

Line 5
Import the client-side stubs and server-side skeletons generated for IDL mod-
ule Example .

2.4.2 Servant class definition

Lines 7–10
For interface Example::Echo , omniidl produces a skeleton class named
Example__POA.Echo . Here we define an implementation class, Echo_i ,
which derives from the skeleton class.
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There is little constraint on how you design your implementation class, ex-
cept that it has to inherit from the skeleton class and must implement all of
the operations declared in the IDL. Note that since Python is a dynamic lan-
guage, errors due to missing operations and operations with incorrect type
signatures are only reported when someone tries to call those operations.

2.4.3 ORB initialisation

Line 12
The ORB is initialised by calling the CORBA.ORB_init() function. ORB_
init() is passed a list of command-line arguments, and an ORB identi-
fier. The ORB identifier should be ‘omniORB3’ or ‘omniORB2’, depend-
ing on which version of omniORB you are using. It is usually best to use
CORBA.ORB_ID, which is initialised to a suitable string.

ORB_init() processes any command-line arguments which begin with the
string ‘-ORB’, and removes them from the argument list. See section 6.1
for details. If any arguments are invalid, or other initialisation errors occur
(such as errors in the configuration file), the CORBA.INITIALIZE exception
is raised.

2.4.4 Obtaining the Root POA

Line 13
To activate our servant object and make it available to clients, we must regis-
ter it with a POA. In this example, we use the Root POA, rather than creating
any child POAs. The Root POA is found with orb.resolve_initial_
references() .

A POA’s behaviour is governed by its policies. The Root POA has suitable
policies for many simple servers. Chapter 11 of the CORBA 2.3 specification
[OMG99] has details of all the POA policies which are available.

When omniORBpy is used with omniORB 2.8, only the Root POA is available
(and is mapped to the omniORB BOA). You cannot create child POAs or alter
policies.

2.4.5 Object initialisation

Line 15
An instance of the Echo servant object is created.

Line 16
The object is implicitly activated in the Root POA, and an object reference is
returned, using the _this() method.

One of the important characteristics of an object reference is that it is com-
pletely location transparent. A client can invoke on the object using its object
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reference without any need to know whether the servant object is colocated
in the same address space or is in a different address space.

In the case of colocated client and servant, omniORB is able to short-circuit
the client calls so they do not involve IIOP. The calls still go through the
POA, however, so the various POA policies affect local calls in the same way
as remote ones. This optimisation is applicable not only to object references
returned by _this() , but to any object references that are passed around
within the same address space or received from other address spaces via IIOP
calls.

2.4.6 Activating the POA

Lines 18–19
POAs are initially in the holding state, meaning that incoming requests are
blocked. Lines 18 and 19 acquire a reference to the POA’s POA manager, and
use it to put the POA into the active state. Incoming requests are now served.

2.4.7 Performing a call

Line 22
At long last, we can call the object’s echoString() operation. Even though
the object is local, the operation goes through the ORB and POA, so the
types of the arguments can be checked, and any mutable arguments can be
copied. This ensures that the semantics of local and remote calls are iden-
tical. If any of the arguments (or return values) are of the wrong type, a
CORBA.BAD_PARAMexception is raised.

2.5 Example 2 — Different Address Spaces

In this example, the client and the object implementation reside in two different
address spaces. The code of this example is almost the same as the previous exam-
ple. The only difference is the extra work which needs to be done to pass the object
reference from the object implementation to the client.

The simplest (and quite primitive) way to pass an object reference between two
address spaces is to produce a stringified version of the object reference and to pass
this string to the client as a command-line argument. The string is then converted
by the client into a proper object reference. This method is used in this example. In
the next example, we shall introduce a better way of passing the object reference
using the CORBA Naming Service.

2.5.1 Object Implementation: Generating a Stringified Object Reference
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1 #!/usr/bin/env python
2

3 import sys
4 from omniORB import CORBA, PortableServer
5 import Example, Example__POA
6

7 class Echo_i (Example__POA.Echo):
8 def echoString(self, mesg):
9 print "echoString() called with message:", mesg

10 return mesg
11

12 orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
13 poa = orb.resolve_initial_references("RootPOA")
14

15 ei = Echo_i()
16 eo = ei._this()
17

18 print orb.object_to_string(eo)
19

20 poaManager = poa._get_the_POAManager()
21 poaManager.activate()
22

23 orb.run()

Up until line 18, this example is identical to the colocated case. On line 18, the
ORB’s object_to_string() operation is called. This results in a string starting
with the signature ‘IOR:’ and followed by some hexadecimal digits. All CORBA
2 compliant ORBs are able to convert the string into its internal representation of
a so-called Interoperable Object Reference (IOR). The IOR contains the location
information and a key to uniquely identify the object implementation in its own
address space1. From the IOR, an object reference can be constructed.

After the POA has been activated, orb.run() is called. Since omniORB is
fully multi-threaded, it is not actually necessary to call orb.run() for operation
dispatch to happen—if the main program had some other work to do, it could do
so, and remote invocations would be dispatched in separate threads. However,
in the absence of anything else to do, orb.run() is called so the thread blocks
rather than exiting immediately when the end-of-file is reached. orb.run() stays
blocked until the ORB is shut down.

2.5.2 Client: Using a Stringified Object Reference

1 #!/usr/bin/env python
2

3 import sys
4 from omniORB import CORBA
5 import Example

1Notice that the object key is not globally unique across address spaces.
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6

7 orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
8

9 ior = sys.argv[1]
10 obj = orb.string_to_object(ior)
11

12 eo = obj._narrow(Example.Echo)
13

14 if eo is None:
15 print "Object reference is not an Example::Echo"
16 sys.exit(1)
17

18 message = "Hello from Python"
19 result = eo.echoString(message)
20

21 print "I said ’%s’. The object said ’%s’." % (message,result)

The stringified object reference is passed to the client as a command-line argu-
ment2. The client uses the ORB’s string_to_object() function to convert the
string into a generic object reference (CORBA.Object ).

On line 12, the object’s _narrow() function is called to convert the CORBA.
Object reference into an Example.Echo reference. If the IOR was not actually of
type Example.Echo , or something derived from it, _narrow() returns None.

In fact, since Python is a dynamically-typed language, string_to_object()
is often able to return an object reference of a more derived type than CORBA.
Object . See section 3.1 for details.

2.5.3 System exceptions

The keep it short, the client code shown above performs no exception handling. A
robust client (and server) should do, since there are a number of system exceptions
which can arise.

As already mentioned, ORB_init() can raise the CORBA.INITIALIZE excep-
tion if the command line arguments or configuration file are invalid. string_to_
object() can raise two exceptions: if the string is not an IOR (or a valid URI
with omniORB 3), it raises CORBA.BAD_PARAM; if the string looks like an IOR, but
contains invalid data, is raises CORBA.MARSHAL.

The call to echoString() can result in any of the CORBA system exceptions,
since any exceptions not caught on the server side are propagated back to the
client. Even if the implementation of echoString() does not raise any system
exceptions itself, failures in invoking the operation can cause a number of excep-
tions. First, if the server process cannot be contacted, a CORBA.COMM_FAILURE
exception is raised. Second, if the server process can be contacted, but the ob-
ject in question does not exist there, a CORBA.OBJECT_NOT_EXISTexception is
raised. Various events can also cause CORBA.TRANSIENTto be raised. If that oc-

2The code does not check that there is actually an IOR on the command line!
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curs, omniORB’s default behaviour is to automatically retry the invocation, with
exponential back-off.

As explained later in section 3.1, the call to _narrow() may also involve a
call to the object to confirm its type. This means that _narrow() can also raise
CORBA.COMM_FAILURE, CORBA.OBJECT_NOT_EXIST, and CORBA.TRANSIENT.

Section 6.10 describes how exception handlers can be installed for all the vari-
ous system exceptions, to avoid surrounding all code with try . . . except blocks.

2.5.4 Lifetime of a CORBA object

CORBA objects are either transient or persistent. The majority are transient, mean-
ing that the lifetime of the CORBA object (as contacted through an object reference)
is the same as the lifetime of its servant object. Persistent objects can live beyond
the destruction of their servant object, the POA they were created in, and even
their process. Persistent objects are, of course, only contactable when their associ-
ated servants are active, or can be activated by their POA with a servant manager3.
A reference to a persistent object can be published, and will remain valid even if
the server process is restarted.

A POA’s Lifespan Policy determines whether objects created within it are tran-
sient or persistent. The Root POA has the TRANSIENTpolicy. (Note that since only
the Root POA is available when using omniORBpy with omniORB 2.8, it is not
possible to create persistent objects in that environment.)

An alternative to creating persistent objects is to register object references in
a naming service and bind them to fixed pathnames. Clients can bind to the object
implementations at runtime by asking the naming service to resolve the pathnames
to the object references. CORBA defines a standard naming service, which is a
component of the Common Object Services (COS) [OMG98], that can be used for
this purpose. The next section describes an example of how to use the COS Naming
Service.

2.6 Example 3 — Using the Naming Service

In this example, the object implementation uses the Naming Service [OMG98] to
pass on the object reference to the client. This method is far more practical than
using stringified object references. The full listings of the server and client are
below.

The names used by the Naming service consist of a sequence of name compo-
nents. Each name component has an id and a kind field, both of which are strings.
All name components except the last one are bound to naming contexts. A naming
context is analogous to a directory in a filing system: it can contain names of ob-
ject references or other naming contexts. The last name component is bound to an
object reference.

3The POA itself can be activated on demand with an adapter activator.
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Sequences of name components can be represented as a flat string, using ‘.’ to
separate the id and kind fields, and ‘/’ to separate name components from each
other4. In our example, the Echo object reference is bound to the stringified name
‘test.my_context/ExampleEcho.Object ’.

The kind field is intended to describe the name in a syntax-independent way.
The naming service does not interpret, assign, or manage these values. However,
both the name and the kind attribute must match for a name lookup to succeed.
In this example, the kind values for test and ExampleEcho are chosen to be
‘my_context ’ and ‘Object ’ respectively. This is an arbitrary choice as there is no
standardised set of kind values.

2.6.1 Obtaining the Root Context object reference

The initial contact with the Naming Service can be established via the root context.
The object reference to the root context is provided by the ORB and can be ob-
tained by calling resolve_initial_references() . The following code frag-
ment shows how it is used:

import CosNaming
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
obj = orb.resolve_initial_references("NameService");
cxt = obj._narrow(CosNaming.NamingContext)

Remember, omniORB constructs its internal list of initial references at initial-
isation time using the information provided in the configuration file omniORB.
cfg , or given on the command line. If this file is not present, the internal list
will be empty and resolve_initial_references() will raise a CORBA.ORB.
InvalidName exception.

Note that, like string_to_object() , resolve_initial_references()
returns base CORBA.Object , so we should narrow it to the interface we want. In
this case, we want CosNaming.NamingContext 5.

2.6.2 The Naming Service interface

It is beyond the scope of this chapter to describe in detail the Naming Service in-
terface. You should consult the CORBA services specification [OMG98] (chapter
3).

2.6.3 Server code

Hopefully, the server code is self-explanatory:
4There are escaping rules to cope with id and kind fields which contain ‘.’ and ‘/’ characters.

See chapter 4 of this manual, and chapter 3 of the CORBA services specification, as updated for the
Interoperable Naming Service [OMG00a].

5If you are on-the-ball, you will have noticed that we didn’t call _narrow() when resolving the
Root POA. The reason it is safe to miss it out is given in section 3.1.
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#!/usr/bin/env python
import sys
from omniORB import CORBA, PortableServer
import CosNaming, Example, Example__POA

# Define an implementation of the Echo interface
class Echo_i (Example__POA.Echo):

def echoString(self, mesg):
print "echoString() called with message:", mesg
return mesg

# Initialise the ORB and find the root POA
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
poa = orb.resolve_initial_references("RootPOA")

# Create an instance of Echo_i and an Echo object reference
ei = Echo_i()
eo = ei._this()

# Obtain a reference to the root naming context
obj = orb.resolve_initial_references("NameService")
rootContext = obj._narrow(CosNaming.NamingContext)

if rootContext is None:
print "Failed to narrow the root naming context"
sys.exit(1)

# Bind a context named "test.my_context" to the root context
name = [CosNaming.NameComponent("test", "my_context")]
try:

testContext = rootContext.bind_new_context(name)
print "New test context bound"

except CosNaming.NamingContext.AlreadyBound, ex:
print "Test context already exists"
obj = rootContext.resolve(name)
testContext = obj._narrow(CosNaming.NamingContext)
if testContext is None:

print "test.mycontext exists but is not a NamingContext"
sys.exit(1)

# Bind the Echo object to the test context
name = [CosNaming.NameComponent("ExampleEcho", "Object")]
try:

testContext.bind(name, eo)
print "New ExampleEcho object bound"

except CosNaming.NamingContext.AlreadyBound:
testContext.rebind(name, eo)
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print "ExampleEcho binding already existed -- rebound"

# Activate the POA
poaManager = poa._get_the_POAManager()
poaManager.activate()

# Block for ever (or until the ORB is shut down)
orb.run()

2.6.4 Client code

Hopefully the client code is self-explanatory too:

#!/usr/bin/env python
import sys
from omniORB import CORBA
import CosNaming, Example

# Initialise the ORB
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)

# Obtain a reference to the root naming context
obj = orb.resolve_initial_references("NameService")
rootContext = obj._narrow(CosNaming.NamingContext)

if rootContext is None:
print "Failed to narrow the root naming context"
sys.exit(1)

# Resolve the name "test.my_context/ExampleEcho.Object"
name = [CosNaming.NameComponent("test", "my_context"),

CosNaming.NameComponent("ExampleEcho", "Object")]
try:

obj = rootContext.resolve(name)

except CosNaming.NamingContext.NotFound, ex:
print "Name not found"
sys.exit(1)

# Narrow the object to an Example::Echo
eo = obj._narrow(Example.Echo)

if (eo is None):
print "Object reference is not an Example::Echo"
sys.exit(1)

# Invoke the echoString operation
message = "Hello from Python"
result = eo.echoString(message)
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print "I said ’%s’. The object said ’%s’." % (message,result)

2.7 Global IDL definitions

As we have seen, the Python mapping maps IDL modules to Python packages with
the same name. This poses a problem for IDL declarations at global scope. Global
declarations are generally a bad idea since they make name clashes more likely,
but they must be supported.

Since Python does not have a concept of a global scope (only a per-module
global scope, which is dangerous to modify), global declarations are mapped to a
specially named Python package. By default, this package is named _GlobalIDL ,
with skeletons in _GlobalIDL__POA . The package name may be changed with
omniidl’s -Wbglobal option, described in section 5.2. The omniORB C++ Echo
example, with IDL:

interface Echo {
string echoString(in string mesg);

};

can therefore be supported with code like

#!/usr/bin/env python

import sys
from omniORB import CORBA
import _GlobalIDL

orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)

ior = sys.argv[1]
obj = orb.string_to_object(ior)
eo = obj._narrow(_GlobalIDL.Echo)

message = "Hello from Python"
result = eo.echoString(message)
print "I said ’%s’. The object said ’%s’" % (message,result)



Chapter 3

Python language mapping issues

omniORBpy adheres to the standard Python mapping [OMG00b], so there is no
need to describe the mapping here. This chapter outlines a number of issues which
are not addressed by the standard (or are optional), and how they are resolved in
omniORBpy.

3.1 Narrowing object references

As explained in chapter 2, whenever you receive an object reference declared to be
base CORBA::Object , such as from NamingContext::resolve() or ORB::
string_to_object() , you should narrow the reference to the type you require.
You might think that since Python is a dynamically typed language, narrowing
should never be necessary. Unfortunately, although omniORBpy often generates
object references with the right types, it cannot do so in all circumstances.

The rules which govern when narrowing is required are quite complex. To be
totally safe, you can always narrow object references to the type you are expecting.
The advantages of this approach are that it is simple and that it is guaranteed to
work with all Python ORBs.

The disadvantage with calling narrow for all received object references is that
much of the time it is guaranteed not to be necessary. If you understand the situa-
tions in which narrowing is necessary, you can avoid spurious narrowing.

3.1.1 The gory details

When object references are transmitted (or stored in stringified IORs), they contain
a single type identifier string, termed the repository id. Normally, the repository id
represents the most derived interface of the object. However, it is also permitted to
be the empty string, or to refer to an interface higher up the inheritance hierarchy.
To give a concrete example, suppose there are two IDL files:

// a.idl
module M1 {

17
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interface A {
void opA();

};
};

// b.idl
#include "a.idl"
module M2 {

interface B : M1::A {
void opB();

};
};

A reference to an object with interface B will normally contain the repository id
‘IDL:M2/B:1.0 ’1. It is also permitted to have an empty repository id, or the id
‘IDL:M1/A:1.0 ’. ‘IDL:M1/A:1.0 ’ is unlikely unless the server is being deliber-
ately obtuse.

Whenever omniORBpy receives an object reference from somewhere—either
as a return value or as an operation argument—it has a particular target interface
in mind, which it compares with the repository id it has received. A target of base
CORBA::Object is just one (common) case. For example, in the following IDL:

// c.idl
#include "a.idl"
module M3 {

interface C {
Object getObj();
M1::A getA();

};
};

the target interface for getObj ’s return value is CORBA::Object ; the target inter-
face for getA ’s return value is M1::A .

omniORBpy uses the result of comparing the received and target repository
ids to determine the type of the object reference it creates. The object reference has
either the type of the received reference, or the target type, according to this table:

Case Objref Type
1. The received id is the same as the target id received
2. The received id is not the same as the target id, but

the ORB knows that the received interface is derived
from the target interface

received

3. The received id is unknown to the ORB target
4. The received id is not the same as the target id, and

the ORB knows that the received interface is not de-
rived from the target interface

target

1It is possible to change the repository id strings associated with particular interfaces using the
ID , version and prefix pragmas.
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Cases 1 and 2 are the most common. Case 2 explains why it is not necessary
to narrow the result of calling resolve_initial_references("RootPOA") :
the return is always of the known type PortableServer.POA , which is derived
from the target type of CORBA.Object .

Case 3 is also quite common. Suppose a client knows about IDL modules M1
and M3 from above, but not module M2. When it calls getA() on an instance of
M3::C , the return value may validly be of type M2::B , which it does not know. By
creating an object reference of type M1::A in this case, the client is still able to call
the object’s opA() operation. On the other hand, if getObj() returns an object of
type M2::B , the ORB will create a reference to base CORBA::Object , since that is
the target type.

Note that the ORB never rejects an object reference due to it having the wrong
type. Even if it knows that the received id is not derived from the target interface
(case 4), it might be the case that the object actually has a more derived interface,
which is derived from both the type it is claiming to be and the target type. That is,
of course, extremely unlikely.

In cases 3 and 4, the ORB confirms the type of the object by calling _is_a() just
before the first invocation on the object. If it turns out that the object is not of the
right type after all, the CORBA.INV_OBJREFexception is raised. The alternative
to this approach would be to check the types of object references when they were
received, rather than waiting until the first invocation. That would be inefficient,
however, since it is quite possible that a received object reference will never be
used. It may also cause objects to be activated earlier than expected.

In summary, whenever your code receives an object reference, you should bear
in mind what omniORBpy’s idea of the target type is. You must not assume that
the ORB will always correctly figure out a more derived type than the target. One
consequence of this is that you must always narrow a plain CORBA::Object to a
more specific type before invoking on it2. You can assume that the object reference
you receive is of the target type, or something derived from it, although the object
it refers to may turn out to be invalid. The fact that omniORBpy often is able
figure out a more derived type than the target is only useful when using the Python
interactive command line.

3.2 Support for Any values

In statically typed languages, such as C++, Anys can only be used with built-in
types and IDL-declared types for which stubs have been generated. If, for example,
a C++ program receives an Any containing a struct for which it does not have static
knowledge, it cannot easily extract the struct contents. The only solution is to use
the inconvenient DynAny interface.

Since Python is a dynamically typed language, it does not have this difficulty.
When omniORBpy receives an Any containing types it does not know, it is able to

2Unless you are invoking pseudo operations like _is_a() and _non_existent() .
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create new Python types which behave exactly as if there were statically generated
stubs available. Note that this behaviour is not required by the Python mapping
specification, so other Python ORBs may not be so accommodating.

The equivalent of DynAny creation can be achieved by dynamically writing
and importing new IDL, as described in section 6.12.

There is, however, a minor fly in the ointment when it comes to receiving
Anys. When an Any is transmitted, it is sent as a TypeCode followed by the ac-
tual value. Normally, the TypeCodes for entities with names—members of structs,
for example—contain those names as strings. That permits omniORBpy to create
types with the corresponding names. Unfortunately, the GIOP specification per-
mits TypeCodes to be sent with empty strings where the names would normally
be3. In this situation, the types which omniORBpy creates cannot be given the
correct names. The contents of all types except structs and exceptions can be ac-
cessed without having to know their names, through the standard interfaces. Un-
known structs and exceptions received by omniORBpy have an attribute named
‘_values ’ which contains a sequence of the member values. This attribute is
omniORBpy specific.

Similarly, TypeCodes for constructed types such as structs and unions normally
contain the repository ids of those types. This means that omniORBpy can use
types statically declared in the stubs when they are available. Once again, the
specification permits the repository id strings to be empty4. This means that even
if stubs for a type received in an Any are available, it may not be able to create a
Python value with the right type. For example, with a struct definition such as:

module M {
struct S {

string str;
long l;

};
};

The transmitted TypeCode for M::S may contain only the information that it is a
structure containing a string followed by a long, not that it is type M::S , or what
the member names are.

To cope with this situation, omniORBpy has an extension to the standard in-
terface which allows you to coerce an Any value to a known type. Calling an
Any’s value() method with a TypeCode argument returns either a value of the
requested type, or None if the requested TypeCode is not equivalent to the Any’s
TypeCode. The following code is guaranteed to be safe, but is not standard:

a = # Acquire an Any from somewhere
v = a.value(CORBA.TypeCode(CORBA.id(M.S)))
if v is not None:

3This is now deprecated, but some ORBs may still send empty strings. No version of omniORB
has ever sent empty strings.

4And once again, this practice is deprecated.
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print v.str
else:

print "The Any does not contain a value compatible with M::S."

3.3 Interface Repository stubs

The Interface Repository interfaces are declared in IDL module CORBAso, accord-
ing to the Python mapping, the stubs for them should appear in the Python CORBA
module, along with all the other CORBA definitions. However, since the stubs are
extremely large, omniORBpy does not include them by default. To do so would
unnecessarily increase the memory footprint and start-up time.

The Interface Repository stubs are automatically included if you define the
OMNIORBPY_IMPORT_IR_STUBSenvironment variable. Alternatively, you can
import the stubs at run-time by calling the omniORB.importIRStubs() func-
tion. In both cases, the stubs become available in the Python CORBAmodule.

3.4 Using omniORBpy with omniORB 2.8

omniORBpy is designed to work with omniORB 3. When it is used with omniORB
2.8, many facilities are not available. This section describes the limitations.

If you require facilities which are not available with omniORB 2.8, you can
cause your program to bail-out gracefully by detecting the omniORB version at
start-up. The omniORB.coreVersion() function returns a string of the form
major.minor.micro which indicates what version of omniORB is in use. The two
possible values are currently ‘2.8.0 ’ and ‘3.0.0 ’. Versions which differ only in
micro version number are guaranteed to be compatible with each other.

3.4.1 POA functions

Under 2.8, only the root POA is available. It supports only the following functions:

• destroy()

• _get_the_name()

• _get_the_POAManager()

• activate_object()

• deactivate_object()

• servant_to_id()

• servant_to_reference()

• reference_to_servant()

• reference_to_id()
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• id_to_servant()

• id_to_reference()

The POAManager interface only supports:

• activate()

• get_state()

For both interfaces, all other operations fail, raising the CORBA.NO_IMPLEMENT
exception.

3.4.2 Local / remote transparency

omniORB 3 goes to great lengths to make sure that the semantics of local objects
are identical to those for remote objects. omniORB 2.8 does not. omniORBpy also
tries very hard to keep local and remote semantics identical, but on the foundation
of omniORB 2.8 it is not always possible.

In most cases, you will not notice a difference between local and remote oper-
ations. The cases where local/remote transparency is broken under omniORB 2.8
are:

• An object is not deactivated until all local references to it have been released.

• When invoking on an object reference to a local object of the wrong type,
as described in section 3.1, CORBA.INV_OBJREFis not raised. Instead, if
the operation name does not exist on the object, CORBA.NO_IMPLEMENTis
raised; if the operation name does exist but the argument types are wrong,
CORBA.BAD_PARAMis raised; if the operation exists and the argument types
are correct, the operation is executed.

• Exception handlers (described later in section 6.10) are not executed when
local objects raise system exceptions. Exceptions are always propagated to
the caller.

In all of these cases, omniORB 3 properly preserves local/remote transparency.
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Interoperable Naming Service

omniORB 3 supports the Interoperable Naming Service (INS), which will be part
of CORBA 2.4. The following is a summary of the new facilities described in the
INS edited chapters document [OMG00a]. These facilities are not available when
using omniORBpy with omniORB 2.8.

4.1 Object URIs

As well as accepting IOR-format strings, ORB::string_to_object() now also
supports two new Uniform Resource Identifier (URI) [BLFIM98] formats, which
can be used to specify objects in a convenient human-readable form. The existing
IOR-format strings are now also considered URIs.

4.1.1 corbaloc

corbaloc URIs allow you to specify object references which can be contacted by
IIOP, or found through ORB::resolve_initial_references() . To specify
an IIOP object reference, you use a URI of the form:

corbaloc:iiop: <host>: <port>/ <object key>

for example:

corbaloc:iiop:myhost.example.com:1234/MyObjectKey

which specifies an object with key ‘MyObjectKey’ within a process running on
myhost.example.com listening on port 1234. Object keys containing non-ASCII
characters can use the standard URI % escapes:

corbaloc:iiop:myhost.example.com:1234/My%efObjectKey

23
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denotes an object key with the value 239 (hex ef) in the third octet.
The protocol name ‘iiop ’ can be abbreviated to the empty string, so the origi-

nal URI can be written:

corbaloc::myhost.example.com:1234/MyObjectKey

The IANA has assigned port number 28091 for use by corbaloc , so if the server is
listening on that port, you can leave the port number out. The following two URIs
refer to the same object:

corbaloc::myhost.example.com:2809/MyObjectKey
corbaloc::myhost.example.com/MyObjectKey

You can specify an object which is available at more than one location by separating
the locations with commas:

corbaloc::myhost.example.com,:localhost:1234/MyObjectKey

Note that you must restate the protocol for each address, hence the ‘: ’ before
‘localhost ’. It could equally have been written ‘iiop:localhost ’.

You can also specify an IIOP version number, although omniORB only supports
IIOP 1.0 at present:

corbaloc::1.2@myhost.example.com/MyObjectKey

Alternatively, to use resolve_initial_references() , you use a URI of the
form:

corbaloc:rir:/NameService

4.1.2 corbaname

corbaname URIs cause string_to_object() to look-up a name in a CORBA
Naming service. They are an extension of the corbaloc syntax:

corbaname: <corbaloc location>/ <object key>#<stringified name>

for example:

corbaname::myhost/NameService#project/example/echo.obj
corbaname:rir:/NameService#project/example/echo.obj

Note that the object found with the corbaloc -style portion must be of type Cos-
Naming::NamingContext , or something derived from it. If the object key (or
rir name) is ‘NameService ’, it can be left out:

1Not 2089 as printed in [OMG00a]!
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corbaname::myhost#project/example/echo.obj
corbaname:rir:#project/example/echo.obj

The stringified name portion can also be left out, in which case the URI denotes the
CosNaming::NamingContext which would have been used for a look-up:

corbaname::myhost.example.com
corbaname:rir:

The first of these examples is the easiest way of specifying the location of a naming
service.

4.2 Configuring resolve_initial_references

The INS adds two new command line arguments which provide a portable way of
configuring ORB::resolve_initial_references() :

4.2.1 ORBInitRef

-ORBInitRef takes an argument of the form <ObjectId>=<ObjectURI>. So, for
example, with command line arguments of:

-ORBInitRef NameService=corbaname::myhost.example.com

resolve_initial_references("NameService") will return a reference to
the object with key ‘NameService’ available on myhost.example.com, port 2809.
Since IOR-format strings are considered URIs, you can also say things like:

-ORBInitRef NameService=IOR:00ff...

4.2.2 ORBDefaultInitRef

-ORBDefaultInitRef provides a prefix string which is used to resolve other-
wise unknown names. When resolve_initial_references() is unable to
resolve a name which has been specifically configured (with -ORBInitRef ), it
constructs a string consisting of the default prefix, a ‘/ ’ character, and the name
requested. The string is then fed to string_to_object() . So, for example, with
a command line of:

-ORBDefaultInitRef corbaloc::myhost.example.com

a call to resolve_initial_references("MyService") will return the object
reference denoted by ‘corbaloc::myhost.example.com/MyService ’.

Similarly, a corbaname prefix can be used to cause look-ups in the naming
service. Note, however, that since a ‘/ ’ character is always added to the prefix, it
is impossible to specify a look-up in the root context of the naming service—you
have to use a sub-context, like:
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-ORBDefaultInitRef corbaname::myhost.example.com#services

4.2.3 omniORB configuration file

As an extension to the standard facilities of the INS, omniORB supports configu-
ration file entries named ORBInitRef and ORBDefaultInitRef . The syntax is
identical to the command line arguments. omniORB.cfg might contain:

ORBInitRef NameService=corbaname::myhost.example.com
ORBDefaultInitRef corbaname:rir:#services

4.2.4 Resolution order

With all these options for specifying object references to be returned by resolve_
initial_references() , it is important to understand the order in which the
options are tried. The resolution order, as required by the CORBA specification, is:

1. Check for special names such as ‘RootPOA’2.

2. Resolve with an -ORBInitRef argument.

3. Resolve with the -ORBDefaultInitRef prefix, if present.

4. Resolve with an ORBInitRef (or old-style NAMESERVICE) entry in the con-
figuration file.

5. Resolve with the ORBDefaultInitRef entry in the configuration file, if
present.

6. Resolve with the deprecated ORBInitialHost boot agent.

This order mostly has the expected consequences—in particular that command line
arguments override entries in the configuration file. However, you must be careful
with the default prefixes. Suppose you have configured a ‘NameService ’ entry in
the configuration file, and you specify a default prefix on the command line with:

-ORBDefaultInitRef corbaname:rir:#services

expecting unknown services to be looked up in the configured naming service.
Now, step 3 above means that resolve_initial_references("MyService")
should be processed with the steps:

1. Construct the URI ‘corbaname:rir:#services/MyService ’ and give it
to string_to_object() .

2In fact, a strict reading of the specification says that it should be possible to override ‘RootPOA’
etc. with -ORBInitRef , but since POAs are locality constrained that is ridiculous.
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2. Resolve the first part of the corbaname URI by calling
resolve_initial_references("NameService") .

3. Construct the URI ‘corbaname:rir:#services/NameService ’ and give
it to string_to_object() .

4. Resolve the first part of the corbaname URI by calling
resolve_initial_references("NameService") .

5. . . . and so on for ever. . .

omniORB detects loops like this and throws either CORBA.ORB.InvalidName if
the loop started with a call to resolve_initial_references() , or CORBA.
BAD_PARAMif it started with a call to string_to_object() . To avoid the prob-
lem you must either specify the NameService reference on the command line, or
put the DefaultInitRef in the configuration file.

4.3 omniNames

4.3.1 NamingContextExt

omniNames now supports the CosNaming::NamingContextExt interface:

module CosNaming {
interface NamingContextExt : NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name (in StringName sn) raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

};
};

to_string() and to_name() convert from CosNaming::Name sequences
to flattened strings and vice-versa. Note that calling these operations involves re-
mote calls to the naming service, so they are not particularly efficient. The omni-
ORB.URI module contains equivalent nameToString() and stringToName()
functions, which do not involve remote calls.
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A CosNaming::Name is stringified by separating name components with ‘/ ’
characters. The kind and id fields of each component are separated by ‘. ’ char-
acters. If the kind field is empty, the representation has no trailing ‘. ’; if the id
is empty, the representation starts with a ‘. ’ character; if both id and kind are
empty, the representation is just a ‘. ’. The backslash ‘\ ’ is used to escape the mean-
ing of ‘/ ’, ‘. ’ and ‘\ ’ itself.

to_url() takes a corbaloc style address and key string (but without the
corbaloc: part), and a stringified name, and returns a corbaname URI (incor-
rectly called a URL) string, having properly escaped any invalid characters. The
specification does not make it clear whether or not the address string should also
be escaped by the operation; omniORB does not escape it. For this reason, it is best
to avoid calling to_url() if the address part contains escapable characters. The
local function omniORB.URI.addrAndNameToURI() is equivalent.

resolve_str() is equivalent to calling to_name() followed by the inherited
resolve() operation. There are no string-based equivalents of the various bind
operations.

4.3.2 Use with corbaname

To make it easy to use omniNames with corbaname URIs, it now starts with the
default port of 2809, and an object key of ‘NameService ’ for the root naming
context. This is only possible when it is started ‘fresh’, rather than with a log file
from an older omniNames version.

If you have a previous omniNames log, configured to run on a different port,
and with a different object key for its root context, all is not lost. If the root context’s
object key is not ‘NameService ’, omniNames creates a forwarding agent with that
key. Effectively, this means that there are two object keys which refer to the root
context—‘NameService ’ and whatever the original key was.

For the port number, there are two options. The first is to run omniNames with
a command line argument like:

omniNames -logdir /the/log/dir -ORBpoa_iiop_port 2809

This causes it to listen on both port 2809 and whatever port it listened on before.
The disadvantage with this is that the IORs to all naming contexts now contain two
IIOP profiles, one for each port, which, amongst other things, increases the size of
the omniNames log.

The second option is to use omniMapper, as described below.

4.4 omniMapper

omniMapper is a simple daemon which listens on port 2809 (or any other port),
and redirects IIOP requests for configured object keys to associated persistent IORs.
It can be used to make a naming service (even an old non-INS aware version of
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omniNames or other ORB’s naming service) appear on port 2809 with the object
key ‘NameService ’. The same goes for any other service you may wish to specify,
such as an interface repository. omniMapper is started with a command line of:

omniMapper [-port <port>] [-config <config file>] [-v]

The -port option allows you to choose a port other than 2809 to listen on3. The
-config option specifies a location for the configuration file. The default name is
/etc/omniMapper.cfg , or C:\omniMapper.cfg on Windows. omniMapper
does not normally print anything; the -v option makes it verbose so it prints con-
figuration information and a record of the redirections it makes, to standard out-
put.

The configuration file is very simple. Each line contains a string to be used as
an object key, some white space, and an IOR (or any valid URI) that it will redirect
that object key to. Comments should be prefixed with a ‘#’ character. For example:

# Example omniMapper.cfg
NameService IOR:000f...
InterfaceRepository IOR:0100...

omniMapper can either be run on a single machine, in much the same way as
omniNames, or it can be run on every machine, with a common configuration file.
That way, each machine’s omniORB configuration file could contain the line:

ORBDefaultInitRef corbaloc::localhost

4.5 Creating objects with simple object keys

In normal use, omniORB creates object keys containing various information in-
cluding POA names and various non-ASCII characters. Since object keys are sup-
posed to be opaque, this is not usually a problem. The INS breaks this opacity and
requires servers to create objects with human-friendly keys.

If you wish to make your objects available with human-friendly URIs, there
are two options. The first is to use omniMapper as described above, in conjunction
with a PERSISTENTPOA. The second is to create objects with the required keys
yourself. You do this with a special POA with the name ‘omniINSPOA’, acquired
from resolve_initial_references() . This POA has the USER_IDand PER-
SISTENT policies, and the special property that the object keys it creates contain
only the object ids given to the POA, and no other data. It is a normal POA in all
other respects, so you can activate/deactivate it, create children, and so on, in the
usual way.

3You can also play the -ORBpoa_iiop_port trick to make it listen on more than one port.
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Chapter 5

The IDL compiler

omniORBpy uses a new IDL compiler, named omniidl, which is also used by omni-
ORB 3. It consists of a generic front-end parser written in C++, and a number of
back-ends written in Python. omniidl is very strict about IDL validity, so you may
find that it reports errors in IDL which compiles fine with earlier versions of omni-
ORB, and with other ORBs.

The general form of an omniidl command line is:

omniidl [options] -b <back-end> [back-end options] <file 1> <file 2> . . .

5.1 Common options

The following options are common to all back-ends:

-D name[=value] Define name for the preprocessor.
-U name Undefine name for the preprocessor.
-I dir Include dir in the preprocessor search path.
-E Only run the preprocessor, sending its output to stdout.
-Y cmd Use cmd as the preprocessor, rather than the normal C preprocessor.
-N Do not run the preprocessor.
-T Use a temporary file, not a pipe, for preprocessor output.
-Wparg[,arg. . . ] Send arguments to the preprocessor.
-b back-end Run the specified back-end. For omniORBpy, use -bpython .
-Wbarg[,arg. . . ] Send arguments to the back-end.
-nf Do not warn about unresolved forward declarations.
-k Keep comments after declarations, to be used by some back-ends.
-K Keep comments before declarations, to be used by some back-ends.
-C dir Change directory to dir before writing output files.
-d Dump the parsed IDL then exit, without running a back-end.
-p dir Use dir as a path to find omniidl back-ends.
-V Print version information then exit.
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-u Print usage information.
-v Verbose: trace compilation stages.

Most of these options are self explanatory, but some are not so obvious.

5.1.1 Preprocessor interactions

IDL is processed by the C preprocessor before omniidl parses it. Unlike the old IDL
compiler, which used different C preprocessors on different platforms, omniidl
always uses the GNU C preprocessor (which it builds with the name omnicpp).
The -D , -U , and -I options are just sent to the preprocessor. Note that the current
directory is not on the include search path by default—use ‘-I. ’ for that. The -Y
option can be used to specify a different preprocessor to omnicpp. Beware that line
directives inserted by other preprocessors are likely to confuse omniidl.

5.1.1.1 Windows 9x

The output from the C preprocessor is normally fed to the omniidl parser through
a pipe. On some Windows 98 machines (but not all!) the pipe does not work, and
the preprocessor output is echoed to the screen. When this happens, the omniidl
parser sees an empty file, and produces useless stub files with strange long names.
To avoid the problem, use the ‘-T ’ option to create a temporary file between the
two stages.

5.1.2 Forward-declared interfaces

If you have an IDL file like:

interface I;
interface J {

attribute I the_I;
};

then omniidl will normally issue a warning:

test.idl:1: Warning: Forward declared interface ‘::I’ was never
fully defined

It is illegal to declare such IDL in isolation, but it is valid to define interface I in a
separate file. If you have a lot of IDL with this sort of construct, you will drown
under the warning messages. Use the -nf option to suppress them.
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5.1.3 Comments

By default, omniidl discards comments in the input IDL. However, with the -k and
-K options, it preserves the comments for use by the back-ends. The C++ back-end
ignores this information, but it is relatively easy to write new back-ends which do
make use of comments.

The two different options relate to how comments are attached to declarations
within the IDL. Given IDL like:

interface I {
void op1();
// A comment
void op2();

};

the -k flag will attach the comment to op1() ; the -K flag will attach it to op2() .

5.2 Python back-end options

When you specify the Python back-end (with -bpython ), the following -Wb op-
tions are available. Note that the -Wb options must be specified after the -bpython
option, so omniidl knows which back-end to give the arguments to.

-Wbstdout Send the generated stubs to standard output, rather than to a file.
-Wbinline Output stubs for #included files in line with the main file.
-Wbglobal= g Use g as the name for the global IDL scope (default _GlobalIDL ).
-Wbpackage= p Put both Python modules and stub files in package p.
-Wbmodules= p Put Python modules in package p.
-Wbstubs= p Put stub files in package p.

The -Wbstdout option is not really useful if you are invoking omniidl your-
self. It is used by omniORB.importIDL() , described in section 6.12.

When you compile an IDL file which #includes other IDL files, omniidl nor-
mally only generates code for the main file, assuming that code for the included
files will be generated separately. Instead, you can use the -Wbinline option to
generate code for the main IDL file and all included files in a single stub file.

Definitions declared at IDL global scope are normally placed in a Python mod-
ule named ‘_GlobalIDL ’. The -Wbglobal allows you to change that.

As explained in section 2.2, when you compile an IDL file like:

// echo_example.idl
module Example {

interface Echo {
string echoString(in string mesg);

};
};
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omniidl generates directories named Example and Example__POA , which pro-
vide the standard Python mapping modules, and also the file example_echo_
idl.py which contains the actual definitions. The latter file contains code which
inserts the definitions in the standard modules. This arrangement means that it is
not possible to move all of the generated code into a Python package by simply
placing the files in a suitably named directory. You may wish to do this to avoid
clashes with names in use elsewhere in your software.

You can place all generated code in a package using the -Wbpackage com-
mand line option. For example,

omniidl -bpython -Wbpackage=generated echo_example.idl

creates a directory named ‘generated ’, containing the generated code. The stub
module is now called ‘generated.Example ’, and the actual stub definitions are
in ‘generated.example_echo_idl ’. If you wish to split the modules and the
stub definitions into different Python packages, you can use the -Wbmodules and
-Wbstubs options.

Note that if you use these options to change the module package, the interface
to the generated code is not strictly-speaking CORBA compliant. You may have to
change your code if you ever use a Python ORB other than omniORBpy.

5.3 Examples

Generate the Python stubs for a file a.idl :

omniidl -bpython a.idl

As above, but put the stubs in a package called ‘stubs ’:

omniidl -bpython -Wbstubs=stubs a.idl

Generate both Python and C++ stubs for two IDL files (requires omniORB 3):

omniidl -bpython -bcxx a.idl b.idl

Just check the IDL files for validity, generating no output:

omniidl a.idl b.idl
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The omniORBpy API

In this chapter, we introduce the omniORBpy API. The purpose of this API is to
provide access points to omniORB specific functionality that is not covered by the
CORBA specification. Obviously, if you use this API in your application, that part
of your code is not going to be portable to run unchanged on other vendors’ ORBs.
To make it easier to identify omniORB dependent code, this API is defined in the
‘omniORB’ module.

6.1 ORB initialisation options

CORBA::ORB_init() accepts the following standard command-line arguments:

-ORBid omniORB3 The identifier must be ‘omniORB3’.
-ORBInitRef <ObjectId>=<ObjectURI> See section 4.2.
-ORBDefaultInitRef <Default URI> See section 4.2.

and the following omniORB-specific arguments:

-ORBtraceLevel <level> See section 6.3.
-ORBtraceInvocations See section 6.3.
-ORBstrictIIOP See section 6.8.
-ORBgiopMaxMsgSize <size in bytes> See section 6.5.
-ORBobjectTableSize <number of entries> See section 6.6.
-ORBserverName <string> See section 6.4.
-ORBno_bootstrap_agent See section 6.7.
-ORBverifyObjectExistsAndType <0 or 1> See section 6.8.
-ORBinConScanPeriod <0–max integer> See section 7.3.
-ORBoutConScanPeriod <0–max integer> See section 7.3.
-ORBclientCallTimeOutPeriod <0–max integer> See section 7.3.
-ORBserverCallTimeOutPeriod <0–max integer> See section 7.3.
-ORBscanGranularity <0–max integer> See section 7.3.
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-ORBlcdMode See section 6.8.
-ORBpoa_iiop_port <port no.> See section 6.2.
-ORBpoa_iiop_name_port <hostname[:port no.]> See section 6.2.
-ORBhelp Lists all ORB command line options.

and these two obsolete omniORB-specific arguments:

-ORBInitialHost <string> See section 6.7.
-ORBInitialPort <1–65535>] See section 6.7.

As defined in the CORBA specification, any command-line arguments understood
by the ORB will be removed from argv when the initialisation functions return.
Therefore, an application is not required to handle any command-line arguments
it does not understand.

6.2 Hostname and port

Normally, omniORB lets the operating system pick which port number it should
use to listen for IIOP calls. Alternatively, you can specify a particular port us-
ing -ORBpoa_iiop_port . If you specify -ORBpoa_iiop_port more than once,
omniORB will listen on all the ports you specify.

By default, the ORB can work out the IP address of the host machine. This ad-
dress is recorded in the object references of the local objects. However, when the
host has multiple network interfaces and multiple IP addresses, it may be desirable
for the application to control what address the ORB should use. This can be done
by defining the environment variable OMNIORB_USEHOSTNAMEto contain the pre-
ferred host name or IP address in dot-numeric form. Alternatively, the same can be
achieved using the -ORBpoa_iiop_name_port option. You can optionally spec-
ify a port number too. Again, you can specify more than one host name by using
-ORBpoa_iiop_name_port more than once.

When using omniORB 2.8, these two options are named -BOAiiop_port and
-BOAiiop_name_port .

6.3 Run-time Tracing and Diagnostic Messages

omniORB can output tracing and diagnostic messages to the standard error stream.
You can vary the amount of tracing using the -ORBtraceLevel <level> com-
mand line argument. For instance:

$ example_echo_srv.py -ORBtraceLevel 5

You can also inspect or modify the trace level at run-time. A call to omniORB.
traceLevel( level) sets the level; calling the function with no argument returns
the current level.
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At the moment, the following trace levels are defined:

level 0 turn off all tracing and informational messages
level 1 informational messages only
level 2 the above plus configuration information
level 5 the above plus notifications when server threads

are created or communication endpoints are shut-
down

level 10–20 the above plus execution and exception traces
level 25 the above plus hex dumps of all data sent and re-

ceived by the ORB via its network connections.

With omniORB 3, you can also use -ORBtraceInvocations to trace all opera-
tion invocations.

6.4 Server Name

Applications can optionally specify a name to identify the server process. At the
moment, this name is only used by the host-based access control module. See sec-
tion 7.5 for details. The server name can be changed by specifying the command-
line option: -ORBserverName <string>.

6.5 GIOP Message Size

omniORB sets a limit on the GIOP message size that can be sent or received. The
maximum size can be set with the command-line option -ORBgiopMaxMsgSize .
The exact value is somewhat arbitrary. The reason such a limit exists is to provide
some way to protect the server side from resource exhaustion. Think about the
case when the server receives a rogue GIOP(IIOP) request message that contains
a sequence length field set to 231. With a reasonable message size limit, the server
can reject this rogue message straight away.

6.6 Object table size

omniORB uses a hash table to store the mapping from object keys to servant ob-
jects. Normally, it dynamically re-sizes the hash table when it becomes too full or
too empty. This is the most efficient trade-off between performance and memory
usage. However, since all POA operations which add or remove objects from the
table can (very occasionally) cause the object table to resize, the time spent in POA
operations is much less predictable than if the table size was fixed.

The -ORBobjectTableSize argument allows you to choose a fixed size for
the object table. This prevents omniORB from resizing it. Note that omniORB uses
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an open hash table so you can have any number of objects active, no matter what
size table you specify. If you have many more active objects than hash table entries,
object look-up performance will become linear with the number of objects.

6.7 Obsolete Initial Object Reference Bootstrapping

Starting from 2.6.0, but superseded by the Interoperable Naming Service in omni-
ORB 3, a mechanism is available for the ORB runtime to obtain the initial object
references to CORBA services. The bootstrap service is a special object with the
object key ‘INIT’ and the following interface1:

// IDL
module CORBA {

interface InitialReferences {
Object get(in ORB::ObjectId id);
// returns the initial object reference of the service
// identified by <id>. For example the id for the
// Naming service is "NameService".

ORB::ObjectIdList list();
// returns the list of service ids that this agent knows

};
};

By default, all omniORB servers contain an instance of this object and are able
to respond to remote invocations. To prevent the ORB from instantiating this ob-
ject, the command-line option -ORBno_bootstrap_agent should be specified.

In particular, the Naming Service omniNames is able to respond to a query
through this interface and return the object reference of its root context. In effect,
the bootstrap agent provides a level of indirection. All omniORB clients still have
to be supplied with the address of the bootstrap agent. However, the informa-
tion is much easier to specify than a stringified IOR! Another advantage of this
approach is that it is completely compatible with JavaIDL. This makes it possible
for programs written for JavaIDL to share a Naming Service with omniORB.

The address of the bootstrap agent is given by the ORBInitialHost and
ORBInitialPort parameter in the omniORB configuration file (section 1.2). The
parameters can also be specified as command-line options (section 6.1). The pa-
rameter ORBInitialPort is optional. If it is not specified, port number 900 will
be used.

During initialisation, the ORB reads the parameters in the omniORB config-
uration file. If the parameter NAMESERVICEis specified, the stringified IOR is
used as the object reference of the root naming context. If the parameter is absent
and the parameter ORBInitialHost is present, the ORB contacts the bootstrap

1This interface was first defined by Sun’s NEO and is in used in Sun’s JavaIDL.
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agent at the address specified to obtain the root naming context when the appli-
cation calls resolve_initial_references() . If neither is present, resolve_
initial_references() returns a nil object reference. Finally, the command
line argument -ORBInitialHost overrides any parameters in the configuration
file. The ORB always contacts the bootstrap agent at the address specified to obtain
the root naming context.

Now we are ready to describe a simple way to set up omniNames.

1. Start omniNames for the first time on a machine (e.g. wobble):

$ omniNames -start 1234

2. Add to omniORB.cfg:

ORBInitialHost wobble

ORBInitialPort 1234

3. All omniORB applications will now be able to contact omniNames.

Alternatively, the command line options can be used, for example:

$ eg3_impl -ORBInitialHost wobble -ORBInitialPort 1234 &

$ eg3_clt -ORBInitialHost wobble -ORBInitialPort 1234

6.8 GIOP Lowest Common Denominator Mode

Sometimes, to cope with bugs in another ORB, it is necessary to disable various
GIOP and IIOP features in order to achieve interoperability. If the command line
option -ORBlcdMode is present, the ORB enters the so-called ‘lowest common
denominator mode’. It bends over backwards to cope with bugs in the ORB at the
other end. This is purely a transitional measure. The long term solution is to report
the bugs to the other vendors and ask them to fix them expediently.

In some (sloppy) IIOP implementations, the message size value in the IIOP
header can be larger than the actual body size, i.e. there is garbage at the end. As
the spec does not say the message size must match the body size exactly, this is
not a clear violation of the spec. omniORB’s default policy is to expect incoming
messages to be formatted properly. Any messages that have garbage at the end
will be rejected.

-ORBlcdMode sets omniORB to silently skip the unread part of such invalid
messages. Alternatively, you can change just this policy with a command line ar-
gument of -ORBstrictIIOP 0 . The problem with doing this is that the header
message size may actually be garbage, caused by a bug in the sender’s code. The
receiving thread may block forever as it tries to read more data from the connec-
tion. In this case the sender won’t send any more as it thinks it has marshalled in
all the data.
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By default, omniORB uses the GIOP LOCATE_REQUEST message to verify
the existence of an object prior to the first invocation. If another vendor’s ORB is
known not to be able to handle this GIOP message, you can disable this feature
with the -ORBverifyObjectExistsAndType option, and hence achieve inter-
operability.

6.9 GIOP Requesting Principal field

In versions 1.0 and 1.1 of the GIOP specification, request messages contain a ‘prin-
cipal’ field which was intended to identify the client. The meaning of the principal
field was never specified, and its use is now deprecated. The field is not present
in GIOP 1.2. omniORB normally uses the string ‘nobody ’ in the principal field.
However, some systems (e.g. the GNOME desktop environment) use the princi-
pal field as an authentication mechanism, so omniORB allows you to configure the
principal by setting the OMNIORB_PRINCIPALenvironment variable.

6.10 System Exception Handlers

By default, all system exceptions which are raised during an operation invocation,
with the exception of CORBA.TRANSIENT, are propagated to the application code.
Some applications may prefer to trap these exceptions within the proxy objects so
that the application logic does not have to deal with the error condition. For ex-
ample, when a CORBA.COMM_FAILUREis received, an application may just want
to retry the invocation until it finally succeeds. This approach is useful for objects
that are persistent and their operations are idempotent.

omniORBpy provides a set of functions to install exception handlers. Once they
are installed, proxy objects will call these handlers when the associated system
exceptions are raised by the ORB runtime. Handlers can be installed for CORBA.
TRANSIENT, CORBA.COMM_FAILUREand CORBA.SystemException . This last
handler covers all system exceptions other than the two covered by the first two
handlers. An exception handler can be installed for individual proxy objects, or it
can be installed for all proxy objects in the address space.

6.10.1 CORBA.TRANSIENT handlers

When a CORBA.TRANSIENTexception is raised by the ORB runtime, the default
behaviour of the proxy objects is to retry indefinitely until the operation succeeds,
with an exponentially increasing delay (up to a limit) between retries.

The ORB runtime will raise CORBA.TRANSIENTunder the following condi-
tions:

1. When a cached network connection is broken while an operation invocation
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is in progress. The ORB will try to open a new connection at the next invoca-
tion.

2. When the proxy object has been redirected by a location forward message by
the remote object to a new location and the object at the new location cannot
be contacted. In addition to the CORBA.TRANSIENTexception, the proxy
object also resets its internal state so that the next invocation will be directed
at the original location of the remote object.

3. When the remote object reports CORBA.TRANSIENT.

You can override the default behaviour by installing your own exception han-
dler. The function to call has signature:

omniORB.installTransientExceptionHandler(cookie, function [, object])

The arguments are a cookie, which is any Python object, a call-back function,
and optionally an object reference. If the object reference is present, the exception
handler is installed for just that object; otherwise the handler is installed for all
objects with no handler of their own.

The call-back function must have the signature

function(cookie, retries, exc) -> boolean

When a TRANSIENTexception occurs, the function is called, passing the cookie
object, a count of how many times the operation has been retried, and the TRAN-
SIENT exception object itself. If the function returns true, the operation is retried;
if it returns false, the TRANSIENT exception is raised in the application.

6.10.2 CORBA.COMM_FAILURE and CORBA.SystemException

There are two other functions for registering exception handlers: one for CORBA.
COMM_FAILURE, and one for all other exceptions. For both these cases, the default
is for there to be no handler, so exceptions are propagated to the application.

omniORB.installCommFailureExceptionHandler(cookie, function [, object])
omniORB.installSystemExceptionHandler(cookie, function [, object])

In both cases, the call-back function has the same signature as for TRANSIENT
handlers.

6.11 Location forwarding

Any CORBA operation invocation can return a LOCATION_FORWARDmessage to
the caller, indicating that it should retry the invocation on a new object reference.
The standard allows ServantManagers to trigger LOCATION_FORWARDs by rais-
ing the PortableServer::ForwardRequest exception, but it does not provide
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a similar mechanism for normal servants. omniORBpy provides the omniORB.
LOCATION_FORWARDexception for this purpose. The exception object is initialised
with the target object reference. It can be thrown by any operation implementation.
omniORB.LOCATION_FORWARDis not supported on omniORB 2.8.0.

6.12 Dynamic importing of IDL

omniORBpy is usually used with pre-generated stubs. Since Python is a dynamic
language, however, it is possible to compile and import new stubs at run-time.

Dynamic importing is achieved with omniORB.importIDL() and omniORB.
importIDLString() . Their signatures are:

importIDL(filename [, args ]) -> tuple
importIDLString(string [, args ]) -> tuple

The first function compiles and imports the specified file; the second takes
a string containing the IDL definitions. The functions work by forking omniidl
and importing its output; they both take an optional argument containing a list
of strings which are used as arguments for omniidl. For example, the following
command runs omniidl with an include path set:

m = omniORB.importIDL("test.idl", ["-I/my/include/path"])

Instead of specifying omniidl arguments on each import, you can set the argu-
ments to be used for all calls using the omniORB.omniidlArguments() func-
tion.

Both import functions return a tuple containing the names of the Python mod-
ules which have been imported. The modules themselves can be accessed through
sys.modules . For example:

// test.idl
const string s = "Hello";
module M1 {

module M2 {
const long l = 42;

};
};
module M3 {

const short s = 5;
};

From Python:

>>> import sys, omniORB
>>> omniORB.importIDL("test.idl")
(’M1’, ’M1.M2’, ’M3’, ’_GlobalIDL’)
>>> sys.modules["M1.M2"].l
42
>>> sys.modules["M3"].s
5
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>>> sys.modules["_GlobalIDL"].s
’Hello’
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Chapter 7

Connection Management

This chapter describes how omniORB manages network connections.

7.1 Background

In CORBA, the ORB is the ‘middleware’ that allows a client to invoke an operation
on an object without regard to its implementation or location. In order to invoke
an operation on an object, a client needs to ‘bind’ to the object by acquiring its ob-
ject reference. Such a reference may be obtained as the result of an operation on
another object (such as a naming service) or by conversion from a stringified repre-
sentation. If the object is in a different address space, the binding process involves
the ORB building a proxy object in the client’s address space. The ORB arranges
for invocations on the proxy object to be transparently mapped to equivalent invo-
cations on the implementation object.

For the sake of interoperability, CORBA mandates that all ORBs should support
IIOP as the means to communicate remote invocations over a TCP/IP connection.
IIOP is asymmetric with respect to the roles of the parties at the two ends of a
connection. At one end is the client which can only initiate remote invocations. At
the other end is the server which can only receive remote invocations.

Notice that in CORBA, as in most distributed systems, remote bindings are
established implicitly without application intervention. This provides the illusion
that all objects are local, a property known as ‘location transparency’. CORBA
does not specify when such bindings should be established or how they should be
multiplexed over the underlying network connections. Instead, ORBs are free to
implement implicit binding by a variety of means.

The rest of this chapter describes how omniORB manages network connections
and the programming interface to fine tune the management policy.
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7.2 The Model

omniORB is designed from the ground up to be fully multi-threaded. The objec-
tive is to maximise the degree of concurrency and at the same time eliminate any
unnecessary thread overhead. Another objective is to minimise the interference
by the activities of other threads on the progress of a remote invocation. In other
words, thread ‘cross-talk’ should be minimised within the ORB. To achieve these
objectives, the degree of multiplexing at every level is kept to a minimum.

On the client side of a connection, the thread that invokes on a proxy object
drives the IIOP protocol directly and blocks on the connection to receive the reply.
On the server side, a dedicated thread blocks on the connection. When it receives
a request, it performs the up-call to the object and sends the reply when the up-call
returns. There is no thread switching along the call chain.

With this design, there is at most one call in-flight at any time on a connec-
tion. If there is only one connection, concurrent invocations to the same remote
address space would have to be serialised. To eliminate this limitation, omniORB
implements a dynamic policy—multiple connections to the same remote address
space are created on demand and cached when there are concurrent invocations in
progress.

To be more precise, a network connection to another address space is only es-
tablished when a remote invocation is about to be made. Therefore, there may be
one or more object references in one address space that refer to objects in a differ-
ent address space but unless the application invokes on these objects, no network
connection is made.

It is wasteful to leave a connection open when it has been left unused for a
considerable time. Too many idle connections could block out new connections to
a server when it runs out of spare communication channels. For example, most
Unix platforms have a limit on the number of file handles a process can open. 64
is the usual default limit. The value can be increased to a maximum of a thousand
or more by changing the ‘ulimit’ in the shell.

7.3 Idle Connection Shutdown and Remote Call Timeout

Inside the ORB, a thread is dedicated to scan for idle connections. The thread looks
after both the outgoing connections and the incoming connections.

When a connection is idle for a period of time, the connection is shutdown.
Similarly, if a remote call has not completed within a defined period of time, the
connection is shutdown and the ORB will return COMM_FAILUREto the client.

How often the internal thread scans the connections is determined by the value
of the scan granularity. This value is defaulted to 5 seconds and can be changed
using the command-line option -ORBscanGranularity . Notice that this value
determines the precision the ORB is able to keep to the value of the idle connection
or remote call timeout.
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How long the ORB will wait before it shuts down an idle connection is deter-
mined by the idleConnectionPeriods. There are separate values for incoming and
outgoing connections. The default values are 180 and 120 seconds for incoming
and outgoing connections respectively. These values can be changed using the
command-line options -ORBinConScanPeriod and -ORBoutConScanPeriod .

Similarly, how long the ORB will wait for a remote call to complete is deter-
mined by the parameter clientCallTimeOutPeriod for the client side and the server-
CallTimeOutPeroid for the server side. By default calls will not timeout on either
the client or server side.

The timeout can be changed with the -ORBclientCallTimeOutPeriod and
-ORBserverCallTimeOutPeriod options. The scan can be disabled completely
by setting the scan granularity to 0.

7.4 Interoperability Considerations

The IIOP specification allows both the client and the server to shutdown a con-
nection unilaterally. When one end is about to shutdown a connection, it should
send a closeConnection message to the other end. It should also make sure that the
message will reach the other end before it proceeds to shutdown the connection.

The client should distinguish between an orderly and an abnormal connec-
tion shutdown. When a client receives a closeConnection message before the con-
nection is closed, the condition is an orderly shutdown. If the message is not re-
ceived, the condition is an abnormal shutdown. In an abnormal shutdown, the
ORB should raise a COMM_FAILUREexception whereas in an orderly shutdown,
the ORB should not raise an exception and should try to re-establish a new connec-
tion transparently.

omniORB implements these semantics completely. However, it is known that
some ORBs are not (yet) able to distinguish between an orderly and an abnor-
mal shutdown. Usually this is manifested as the client in these ORBs seeing a
COMM_FAILUREoccasionally when connected to an omniORB server. The work-
around is either to catch the exception in the application code and retry, or to turn
off the idle connection shutdown inside the omniORB server.

7.5 Connection Acceptance

omniORB provides the hook to implement a connection acceptance policy. Inside
the ORB runtime, a thread is dedicated to receive new connections. When the
thread is given the handle of a new connection by the operating system, it calls the
policy module to decide if the connection can be accepted. If the answer is yes, the
ORB will start serving requests coming in from that connection. Otherwise, the
connection is shutdown immediately.

There can be a number of policy module implementations. The basic one is a
dummy module which just accepts every connection.
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In addition, a host-based access control module is available on Unix platforms.
The module uses the IP address of the client to decide if the connection can be
accepted. The module is implemented using tcp_wrappers 7.6. The access con-
trol policy can be defined as rules in two access control files: hosts.allow and
hosts.deny . The syntax of the rules is described in the manual page hosts_
access(5) which can be found in appendix A. The syntax defines a simple ac-
cess control language that is based on client (host name/address, user name), and
server (process name, host name/address) patterns. When searching for a match
on the server process name, the ORB uses the value of omniORB::serverName .
ORB_init() uses the argument argv[0] to set the default value of this variable.
This can be overridden by the application with the -ORBserverName <string>
command line argument

The default location of the access control files is /etc . This can be overridden
by the extra options in omniORB.cfg . For instance:

# omniORB configuration file - extra options

GATEKEEPER_ALLOWFILE /project/omni/var/hosts.allow

GATEKEEPER_DENYFILE /project/omni/var/hosts.deny

As each policy module is implemented as a separate library, the choice of policy
module is determined at program linkage time. For instance, if the host-based
access control module is in use:

% eg1 -ORBtraceLevel 2
omniORB gateKeeper is tcpwrapGK 1.0 - based on tcp_wrappers_7.6
I said,"Hello!". The Object said,"Hello!"

Whereas if the dummy module is in use:

% eg1 -ORBtraceLevel 2
omniORB gateKeeper is not installed. All incoming are accepted.
I said,"Hello!". The Object said,"Hello!"



Appendix A

hosts_access(5)

DESCRIPTION

This manual page describes a simple access control language that is based on client
(host name/address, user name), and server (process name, host name/address)
patterns. Examples are given at the end. The impatient reader is encouraged to
skip to the EXAMPLES section for a quick introduction.

An extended version of the access control language is described in the hosts_
options(5) document. The extensions are turned on at program build time by
building with -DPROCESS_OPTIONS.

In the following text, daemon is the process name of a network daemon pro-
cess, and client is the name and/or address of a host requesting service. Network
daemon process names are specified in the inetd configuration file.

ACCESS CONTROL FILES

The access control software consults two files. The search stops at the first match:

• Access will be granted when a (daemon,client) pair matches an entry in the
/etc/hosts.allow file.

• Otherwise, access will be denied when a (daemon,client) pair matches an
entry in the /etc/hosts.deny file.

• Otherwise, access will be granted.

A non-existing access control file is treated as if it were an empty file. Thus,
access control can be turned off by providing no access control files.

ACCESS CONTROL RULES

Each access control file consists of zero or more lines of text. These lines are pro-
cessed in order of appearance. The search terminates when a match is found.
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• A newline character is ignored when it is preceded by a backslash character.
This permits you to break up long lines so that they are easier to edit.

• Blank lines or lines that begin with a # character are ignored. This permits
you to insert comments and whitespace so that the tables are easier to read.

• All other lines should satisfy the following format, things between [] being
optional: daemon_list : client_list [ : shell_command ]

daemon_list is a list of one or more daemon process names (argv[0] values)
or wildcards (see below).

client_list is a list of one or more host names, host addresses, patterns or
wildcards (see below) that will be matched against the client host name or address.

The more complex forms daemon@host and user@host are explained in the
sections on server endpoint patterns and on client username lookups, respectively.

List elements should be separated by blanks and/or commas.
With the exception of NIS (YP) netgroup lookups, all access control checks are

case insensitive.

PATTERNS

The access control language implements the following patterns:

• A string that begins with a . character. A host name is matched if the last
components of its name match the specified pattern. For example, the pattern
.tue.nl matches the host name wzv.win.tue.nl .

• A string that ends with a . character. A host address is matched if its first
numeric fields match the given string. For example, the pattern 131.155.
matches the address of (almost) every host on the Eindhoven University net-
work (131.155.x.x ).

• A string that begins with an character is treated as an NIS (formerly YP)
netgroup name. A host name is matched if it is a host member of the specified
netgroup. Netgroup matches are not supported for daemon process names
or for client user names.

• An expression of the form n.n.n.n/m.m.m.m is interpreted as a ‘net/mask’
pair. A host address is matched if ‘net’ is equal to the bitwise AND of the ad-
dress and the ‘mask’. For example, the net/mask pattern 131.155.72.0/
255.255.254.0 matches every address in the range 131.155.72.0 to
131.155.73.255 .
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WILDCARDS

The access control language supports explicit wildcards:

ALL
The universal wildcard, always matches.

LOCAL
Matches any host whose name does not contain a dot character.

UNKNOWN
Matches any user whose name is unknown, and matches any host whose
name or address are unknown. This pattern should be used with care: host
names may be unavailable due to temporary name server problems. A net-
work address will be unavailable when the software cannot figure out what
type of network it is talking to.

KNOWN
Matches any user whose name is known, and matches any host whose name
and address are known. This pattern should be used with care: host names
may be unavailable due to temporary name server problems. A network
address will be unavailable when the software cannot figure out what type
of network it is talking to.

PARANOID
Matches any host whose name does not match its address. When tcpd is
built with -DPARANOID (default mode), it drops requests from such clients
even before looking at the access control tables. Build without -DPARANOID
when you want more control over such requests.

OPERATORS

EXCEPT
Intended use is of the form: list_1 EXCEPT list_2 ; this construct matches
anything that matches list_1 unless it matches list_2 . The EXCEPToper-
ator can be used in daemon_lists and in client_lists . The EXCEPTop-
erator can be nested: if the control language would permit the use of paren-
theses, a EXCEPT b EXCEPT cwould parse as (a EXCEPT (b EXCEPT
c)) .

SHELL COMMANDS

If the first-matched access control rule contains a shell command, that command
is subjected to %<letter> substitutions (see next section). The result is executed
by a /bin/sh child process with standard input, output and error connected to
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/dev/null. Specify an & at the end of the command if you do not want to wait
until it has completed.

Shell commands should not rely on the PATH setting of the inetd. Instead,
they should use absolute path names, or they should begin with an explicit PATH=
whatever statement.

The hosts_options(5) document describes an alternative language that uses the
shell command field in a different and incompatible way.

% EXPANSIONS

The following expansions are available within shell commands:

%a (%A) The client (server) host address.

%c Client information: user@host, user@address, a host name, or just an ad-
dress, depending on how much information is available.

%d The daemon process name (argv[0] value).

%h (%H) The client (server) host name or address, if the host name is unavailable.

%n (%N) The client (server) host name (or "unknown" or "paranoid").

%p The daemon process id.

%s Server information: daemon@host, daemon@address, or just a daemon name,
depending on how much information is available.

%u The client user name (or "unknown").

%%Expands to a single %character.

Characters in % expansions that may confuse the shell are replaced by under-
scores.

SERVER ENDPOINT PATTERNS

In order to distinguish clients by the network address that they connect to, use
patterns of the form:

process_name@host_pattern : client_list ...
Patterns like these can be used when the machine has different internet ad-

dresses with different internet hostnames. Service providers can use this facility
to offer FTP, GOPHER or WWW archives with internet names that may even be-
long to different organisations. See also the ‘twist’ option in the hosts_options(5)
document. Some systems (Solaris, FreeBSD) can have more than one internet ad-
dress on one physical interface; with other systems you may have to resort to
SLIP or PPP pseudo interfaces that live in a dedicated network address space.
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The host_pattern obeys the same syntax rules as host names and addresses
in client_list context. Usually, server endpoint information is available only
with connection-oriented services.

CLIENT USERNAME LOOKUP

When the client host supports the RFC 931 protocol or one of its descendants
(TAP, IDENT, RFC 1413) the wrapper programs can retrieve additional information
about the owner of a connection. Client username information, when available, is
logged together with the client host name, and can be used to match patterns like:

daemon_list : ... user_pattern@host_pattern ...
The daemon wrappers can be configured at compile time to perform rule-

driven username lookups (default) or to always interrogate the client host. In
the case of rule-driven username lookups, the above rule would cause username
lookup only when both the daemon_list and the host_pattern match.

A user pattern has the same syntax as a daemon process pattern, so the same
wildcards apply (netgroup membership is not supported). One should not get
carried away with username lookups, though.

• The client username information cannot be trusted when it is needed most,
i.e. when the client system has been compromised. In general, ALL and
(UN)KNOWN are the only user name patterns that make sense.

• Username lookups are possible only with TCP-based services, and only when
the client host runs a suitable daemon; in all other cases the result is ‘un-
known’.

• A well-known UNIX kernel bug may cause loss of service when username
lookups are blocked by a firewall. The wrapper README document de-
scribes a procedure to find out if your kernel has this bug.

• Username lookups may cause noticeable delays for non-UNIX users. The
default timeout for username lookups is 10 seconds: too short to cope with
slow networks, but long enough to irritate PC users.

Selective username lookups can alleviate the last problem. For example, a rule
like:

daemon_list : @pcnetgroup ALL@ALL
would match members of the pc netgroup without doing username lookups,

but would perform username lookups with all other systems.

DETECTING ADDRESS SPOOFING ATTACKS

A flaw in the sequence number generator of many TCP/IP implementations allows
intruders to easily impersonate trusted hosts and to break in via, for example, the
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remote shell service. The IDENT (RFC931 etc.) service can be used to detect such
and other host address spoofing attacks.

Before accepting a client request, the wrappers can use the IDENT service to
find out that the client did not send the request at all. When the client host pro-
vides IDENT service, a negative IDENT lookup result (the client matches UN-
KNOWN@host) is strong evidence of a host spoofing attack.

A positive IDENT lookup result (the client matches KNOWN@host) is less trust-
worthy. It is possible for an intruder to spoof both the client connection and the
IDENT lookup, although doing so is much harder than spoofing just a client con-
nection. It may also be that the client’s IDENT server is lying.

Note: IDENT lookups don’t work with UDP services.

EXAMPLES

The language is flexible enough that different types of access control policy can be
expressed with a minimum of fuss. Although the language uses two access control
tables, the most common policies can be implemented with one of the tables being
trivial or even empty.

When reading the examples below it is important to realise that the allow table
is scanned before the deny table, that the search terminates when a match is found,
and that access is granted when no match is found at all.

The examples use host and domain names. They can be improved by including
address and/or network/netmask information, to reduce the impact of temporary
name server lookup failures.

MOSTLY CLOSED

In this case, access is denied by default. Only explicitly authorised hosts are per-
mitted access.

The default policy (no access) is implemented with a trivial deny file:

/etc/hosts.deny:
ALL: ALL

This denies all service to all hosts, unless they are permitted access by entries
in the allow file.

The explicitly authorised hosts are listed in the allow file. For example:

/etc/hosts.allow:
ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

The first rule permits access from hosts in the local domain (no . in the host
name) and from members of the some_netgroup netgroup. The second rule per-
mits access from all hosts in the foobar.edu domain (notice the leading dot),
with the exception of terminalserver.foobar.edu .
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MOSTLY OPEN

Here, access is granted by default; only explicitly specified hosts are refused ser-
vice.

The default policy (access granted) makes the allow file redundant so that it
can be omitted. The explicitly non-authorised hosts are listed in the deny file. For
example:

/etc/hosts.deny:
ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

The first rule denies some hosts and domains all services; the second rule still
permits finger requests from other hosts and domains.

BOOBY TRAPS

The next example permits tftp requests from hosts in the local domain (notice the
leading dot). Requests from any other hosts are denied. Instead of the requested
file, a finger probe is sent to the offending host. The result is mailed to the supe-
ruser.

/etc/hosts.allow:
in.tftpd: LOCAL, .my.domain

/etc/hosts.deny:
in.tftpd: ALL: (/some/where/safe\_finger -l @%h | \

/usr/ucb/mail -s %d-%h root) &

The safe_finger command comes with the tcpd wrapper and should be in-
stalled in a suitable place. It limits possible damage from data sent by the remote
finger server. It gives better protection than the standard finger command.

The expansion of the %h (client host) and %d (service name) sequences is de-
scribed in the section on shell commands.

Warning: do not booby-trap your finger daemon, unless you are prepared for
infinite finger loops.

On network firewall systems this trick can be carried even further. The typical
network firewall only provides a limited set of services to the outer world. All
other services can be "bugged" just like the above tftp example. The result is an
excellent early-warning system.

DIAGNOSTICS

An error is reported when a syntax error is found in a host access control rule;
when the length of an access control rule exceeds the capacity of an internal buffer;
when an access control rule is not terminated by a newline character; when the
result of expansion would overflow an internal buffer; when a system call fails
that shouldnt́. All problems are reported via the syslog daemon.
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FILES

/etc/hosts.allow , (daemon,client) pairs that are granted access.
/etc/hosts.deny , (daemon,client) pairs that are denied access.

SEE ALSO

tcpd(8) tcp/ip daemon wrapper program.
tcpdchk(8), tcpdmatch(8), test programs.

BUGS

If a name server lookup times out, the host name will not be available to the access
control software, even though the host is registered.

Domain name server lookups are case insensitive; NIS (formerly YP) netgroup
lookups are case sensitive.

AUTHOR

Wietse Venema (wietse@wzv.win.tue.nl)
Department of Mathematics and Computing Science
Eindhoven University of Technology
Den Dolech 2, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
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