
The omniORB2 version 2.8
User’s Guide

Sai-Lai Lo
(email: slo@uk.research.att.com)

David Riddoch
(email: djr@uk.research.att.com)

AT&T Laboratories Cambridge

1st July, 1999



Changes and Additions, 1st July 1999

� Chapter 1 - updates to features and setup information

� Chapter 3 - added notes on incompatibility with pre-omniORB 2.8.0 releases.

� Chapter 4 - updates to command-line options and configuration variables.

� Chapter 5 - new command-line option

� Chapter 9 - updates on the new Any and TypeCode behaviour and added notes
on incompatibility with pre-omniORB 2.8.0 releases.

� Chapter 10 - added note to indicate that the implementation has not been up-
dated to CORBA 2.3 yet.

� Chapter 11 - added note on the change in the default value of CORBA::diiThrowsSysExceptions .

� Chapter 12 - added note to indicate that the implementation has not been up-
dated to CORBA 2.3 yet. Added note on new way to pass system exception
back in the invoke() method.

Changes and Additions, 8th June 1999

� Chapter 9 - correction, recursive TypeCodes are supported

� Chapter 11 - correction, usage of CORBA::ORB::create foo()

Changes and Additions, 22nd February 1999

� Chapter 11 - expanded and updated

Changes and Additions, 30 Sept 1998

� Chapter 1 - updates to features and setup information

� Chapter 2 - new example on tie implementation templates

� Chapter 4 - updates to command-line options and a new section on initial object
reference bootstrapping.

� Chapter 5 - new section on-demand object loading

� Chapter 7 - new runtime configuration variable omniORB::maxTcpConnectionPerServer .

� New chapter - Dynamic Management of Any Values



Contents

1 Introduction 1
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 CORBA 2 compliant . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Missing features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Setting Up Your Environment . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Platform specific variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Basics 5
2.1 The Echo Object Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Specifying the Echo interface in IDL . . . . . . . . . . . . . . . . . . . . . 5
2.3 Generating the C++ stubs . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 A Quick Tour of the C++ stubs . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Object Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Object Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Writing the object implementation . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Writing the client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Example 1 - Colocated Client and Implementation . . . . . . . . . . . . . 12

2.7.1 ORB/BOA initialisation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.2 Object initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.3 Client invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.4 Object disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Example 2 - Different Address Spaces . . . . . . . . . . . . . . . . . . . . 15
2.8.1 Object Implementation: Generating a Stringified Object Reference 15
2.8.2 Client: Using a Stringified Object Reference . . . . . . . . . . . . . 16
2.8.3 Catching System Exceptions . . . . . . . . . . . . . . . . . . . . . 16
2.8.4 Lifetime of an Object Implementation . . . . . . . . . . . . . . . . 17

2.9 Example 3 - Using the COS Naming Service . . . . . . . . . . . . . . . . . 18
2.9.1 Obtaining the Root Context Object Reference . . . . . . . . . . . . 18
2.9.2 The Naming Service Interface . . . . . . . . . . . . . . . . . . . . . 18

2.10 Example 4 - Using tie implementation templates . . . . . . . . . . . . . . 19
2.11 Source Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11.1 echo i.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11.2 greeting.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.11.3 eg1.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



2.11.4 eg2 impl.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.11.5 eg2 clt.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.11.6 eg3 impl.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11.7 eg3 clt.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.11.8 eg3 tieimpl.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11.9 dir.mk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 IDL to C++ Language Mapping 37
3.1 Incompatibilities with pre-2.8.0 releases . . . . . . . . . . . . . . . . . . . 37

4 The omniORB2 API 39
4.1 ORB and BOA initialisation options . . . . . . . . . . . . . . . . . . . . . 39
4.2 Run-time Tracing and Diagnostic Messages . . . . . . . . . . . . . . . . . 40
4.3 Server Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Object Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 GIOP Message Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Initial Object Reference Bootstrapping . . . . . . . . . . . . . . . . . . . . 42
4.7 GIOP Lowest Common Denominator Mode . . . . . . . . . . . . . . . . . 43
4.8 Trapping omniORB2 Internal Errors . . . . . . . . . . . . . . . . . . . . . 44

5 The Basic Object Adaptor (BOA) 45
5.1 BOA Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Object Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Object Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 BOA Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Unsupported functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Loading Objects On Demand . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Interface Type Checking 51
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Basic Interface Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Interface Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Connection Management 57
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Idle Connection Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4 Interoperability Considerations . . . . . . . . . . . . . . . . . . . . . . . . 59
7.5 Connection Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Proxy Objects 61
8.1 System Exception Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.1 CORBA::TRANSIENT handlers . . . . . . . . . . . . . . . . . . . . 62
8.1.2 CORBA::COMM FAILURE . . . . . . . . . . . . . . . . . . . . . . 64
8.1.3 CORBA::SystemException . . . . . . . . . . . . . . . . . . . . . . . 64

8.2 Proxy Object Factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



8.2.2.1 Define a new proxy class . . . . . . . . . . . . . . . . . . 66
8.2.2.2 Define a new proxy factory class . . . . . . . . . . . . . . 67

8.2.3 Further Considerations . . . . . . . . . . . . . . . . . . . . . . . . 68

9 Type Any and TypeCode 69
9.1 Example using type Any . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.1.1 Type Any in IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.1.2 Inserting and Extracting Basic Types from an Any . . . . . . . . . 70
9.1.3 Inserting and Extracting Constructed Types from an Any . . . . . 71

9.2 Type Any in omniORB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.3 TypeCode in omniORB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.4 Source Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.4.1 anyExample impl.cc . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.4.2 anyExample clt.cc . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Dynamic Management of Any Values 87
10.1 C++ mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.2 The DynAny Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.2.1 Example: extract data values from an Any . . . . . . . . . . . . . 91
10.2.1.1 Iterate through the components . . . . . . . . . . . . . . 92
10.2.1.2 Extract basic type components . . . . . . . . . . . . . . . 92
10.2.1.3 Extract complex components . . . . . . . . . . . . . . . . 93
10.2.1.4 Clean-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.2.2 Example: insert data values into an Any . . . . . . . . . . . . . . . 94
10.2.2.1 Insert basic type components . . . . . . . . . . . . . . . . 95
10.2.2.2 Insert complex components . . . . . . . . . . . . . . . . 96

10.3 The DynStruct Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10.4 The DynSequence Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.5 The DynArray Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.6 The DynEnum Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.7 The DynUnion Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.7.1 Three Categories of Union . . . . . . . . . . . . . . . . . . . . . . . 100
10.7.2 Example: extract data values from a union . . . . . . . . . . . . . 100

10.7.2.1 Explicit default union . . . . . . . . . . . . . . . . . . . . 100
10.7.2.2 Implicit default union . . . . . . . . . . . . . . . . . . . . 102
10.7.2.3 No default union . . . . . . . . . . . . . . . . . . . . . . . 102

10.7.3 Example: insert data values into a union . . . . . . . . . . . . . . 102
10.7.3.1 Ambiguous usage . . . . . . . . . . . . . . . . . . . . . . 103

10.8 Duplicate DynAny References . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.9 Other Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11 The Dynamic Invocation Interface 107
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.2 Pseudo Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11.2.1 Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.2.2 NamedValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.2.3 NVList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



11.2.4 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2.5 ContextList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.2.6 ExceptionList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.2.7 UnknownUserException . . . . . . . . . . . . . . . . . . . . . . . . 110
11.2.8 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.3 Creating Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

11.4 Invoking Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.5 Multiple Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12 The Dynamic Skeleton Interface 117
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2 DSI Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.2.1 DynamicImplementation . . . . . . . . . . . . . . . . . . . . . . . 118
12.2.2 ServerRequest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.3 Creating Dynamic Implementations . . . . . . . . . . . . . . . . . . . . . 119
12.3.1 Operations on the ServerRequest . . . . . . . . . . . . . . . . . . . 119

12.4 Registering Dynamic Objects . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A hosts access(5) 123



Chapter 1

Introduction

OmniORB2 is an Object Request Broker (ORB) that implements the 2.3 specification of
the Common Object Request Broker Architecture (CORBA) [OMG99a]1. It has passed
the Open Group CORBA compliant testsuite and is one of the three ORBs to have been
granted the CORBA brand in June 19992.

This user guide tells you how to use omniORB2 to develop CORBA applications.
It assumes a basic understanding of CORBA.

In this chapter, we give an overview of the main features of omniORB2 and what
you need to do to setup your environment to run omniORB2.

1.1 Features

1.1.1 CORBA 2 compliant

OmniORB2 implements the Internet Inter-ORB Protocol (IIOP). This protocol provides
omniORB2 the means of achieving interoperability with the ORBs implemented by
other vendors. In fact, this is the native protocol used by omniORB2 for the commu-
nication amongst its objects residing in different address spaces. Moreover, the IDL
to C++ language mapping provided by omniORB2 conforms to the latest revision of
the CORBA specification. Type Any and TypeCode are now supported (introduced
in version 2.5.0). DynAny is supported since 2.6.0. The Dynamic Invocation Interface
and Dynamic Skeleton Interface are supported since 2.7.0. The C++ mapping has been
updated to the CORBA 2.3 specification since 2.8.0.

1.1.2 Multithreading

OmniORB2 is fully multithreaded. To achieve low IIOP call overhead, unnecessary
call-multiplexing is eliminated. At any time, there is at most one call in-flight in each
communication channel between two address spaces. To do so without limiting the
level of concurrency, new channels connecting the two address spaces are created on
demand and cached when there are more concurrent calls in progress. Each channel

1Most of the 2.3 features have been implemented. The features still missing in this release is listed
in 1.1.4. Where possible, backward compatibility has been maintained up to specification 2.0.

2More information can be found at http://www.opengroup.org/press/7jun99 b.htm

1



2 CHAPTER 1. INTRODUCTION

is served by a dedicated thread. This arrangement provides maximal concurrency
and eliminates any thread switching in either of the address spaces to process a call.
Furthermore, to maximise the throughput in processing large call arguments, large
data elements are sent as soon as they are processed while the other arguments are
being marshalled.

1.1.3 Portability

At AT&T Laboratories, the ability to target a single source tree to multiple platforms
is very important. This is difficult to achieve if the IDL to C++ mapping for these
platforms are different. We avoid this problem by making sure that only one IDL to
C++ mapping is used. We run several flavours of Unices, Windows NT, Windows 95
and our in-house developed systems for our own hardware. OmniORB2 have been
ported to all these platforms. The IDL to C++ mapping for these targets are all the
same.

OmniORB2 uses real C++ exceptions and nested classes. We stay with the CORBA
specification’s standard mapping as much as possible and do not use the alternative
mappings for C++ dialects. The only exception is the mapping of modules.

Starting with 2.6.0, the code generated by the IDL compiler of omniORB2 can be
compiled using C++ classes or namespaces to represent IDL modules depending on
the availability of namespace support in the compiler.

OmniORB2 relies on the native thread libraries to provide the multithreading ca-
pability. A small class library (omnithread [Richardson96a]) is used to encapsulated
the (possibly different) APIs of the native thread libraries. In the application code, it
is recommended but not mandatory to use this class library for thread management.
It should be easy to port omnithread to any platform that either supports the POSIX
thread standard or has a thread package that supports similar capabilities.

1.1.4 Missing features

OmniORB2 is not (yet) a complete implementation of the CORBA 2.3 core. The fol-
lowing is a list of the missing features.

� The BOA only support the persistent server activation policy. Other dynamic
activation and deactivation policies are not supported.

� OmniORB2 does not has its own Interface Repository. However, it can act as a
client to an IR.

� The POA is currently under development.

� The IDL types wchar, wstring, fixed, valuetype and native are not supported in
this release.

These features may be implemented in the short to medium term.
It is best to check out the latest status on the omniORB2 home page
(http://www.uk.research.att.com/omniORB/omniORB.html ).



1.2. SETTING UP YOUR ENVIRONMENT 3

1.2 Setting Up Your Environment

At AT&T Laboratories Cambridge, you should use the OMNI Development Environ-
ment (ODE) [Richardson96b] and the OMNI tree version 5.0 or above to compile your
programs. If this is the case, there is no extra setup you have to do other than those
described in the ODE documentation.

If you are running omniORB2 at other sites, you (or your system administrator)
should install omniORB2 by following the instructions in the installation notes.

� On Unix platforms, the omniORB2 runtime looks for the environment variable
OMNIORBCONFIG. If this variable is defined, it contains the pathname of the
omniORB2 configuration file. If the variable is not set, omniORB2 will use the
compiled-in pathname to locate the file.

� On ARM/ATMos, the omniORB2 runtime looks for configuration information
in the file omniORB.cfg .

� On Win32 platforms (Windows NT, Windows ’95), omniORB2 first checks
the environment variable (OMNIORBCONFIG) to obtain the pathname of the
configuration file. If this is not set, it then attempts to obtain configura-
tion data in the system registry. It searches for the data under the key
HKEYLOCALMACHINEnSOFTWAREnORLnomniORBn2.0

The configuration file is used to obtain an object reference for the COSS Naming
Service. The entry in the configuration file should be specified in the following form:

NAMESERVICE <stringified IOR for the COSS Naming Service>
Comments in the configuration file should be prefixed with a #.
On Win32 platforms, the stringified IOR can be placed in the

system registry, in the (string) value NAMESERVICE, under the key
HKEYLOCALMACHINEnSOFTWAREnORLnomniORBn2.0 .

Since 2.6.0, two other entries are supported:

ORBInitialHost <hostname string>
ORBInitialPort <port number (1-65535)>

The corresponding entries under the Win32 system registry is the key with name
ORBInitialHost and ORBInitialPort .

The two entries provide information to the ORB to locate a bootstrap service at
runtime. The bootstrap service is able to return the initial object reference for the
COSS Naming Service and others. This is now the recommended way to configure
omniORB2. More details are provided in section 4.6.

1.3 Platform specific variables

To compile omniORB2 programs correctly, several C++ preprocessor defines must be
specified to identify the target platform.



4 CHAPTER 1. INTRODUCTION

Platform CPP defines
Sun Solaris 2.5 __sparc__ __sunos__ __OSVERSION__=5
Digital Unix 3.2 __alpha__ __osf1__ __OSVERSION__=3
HPUX 10.x __hppa__ __hpux__ __OSVERSION__=10
HPUX 11.x __hppa__ __hpux__ __OSVERSION__=11
IBM AIX 4.x __aix__ __powerpc__ __OSVERSION__=4
Linux 2.0 (x86) __x86__ __linux__ __OSVERSION__=2
Linux 2.0 (alpha) __alpha__ __linux__ __OSVERSION__=2
Windows/NT 3.5 __x86__ __NT__ __OSVERSION__=3 __WIN32__
Windows/NT 4.0 __x86__ __NT__ __OSVERSION__=4 __WIN32__
Windows/95 __x86__ __WIN32__
OpenVMS 6.x (alpha) __alpha__ __vms __OSVERSION__=6
OpenVMS 6.x (vax) __vax__ __vms __OSVERSION__=6
SGI Irix 6.x __mips__ __irix__ __OSVERSION__=6
Reliant Unix 5.43 __mips__ __SINIX__ __OSVERSION__=5
ATMos 4.0 __arm__ __atmos__ __OSVERSION__=4
NextStep 3.x __m68k__ __nextstep__ __OSVERSION__=3

The preprocessor defines for new platform ports not listed above can be found in
the corresponding platform configuration files. For instance, the platform configura-
tion file for Sun Solaris 2.6 is in mk/platforms/sun4 sosV 5.6.mk . The preprocess
defines to identify a platform is the value of the make variable IMPORTCPPFLAGS.

In a single source multi-target environment, you can put the preprocessor defines
as the command-line arguments for the compiler. Alternately, you could create a sit-
edef.h file in the same directory as omniORB2/CORBA.h. Write into the file the ap-
propriate set of preprocessor defines and add #include <omniORB2/sitedef.h>
at the beginning of omniORB2/CORBAsysdep.h .



Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps to use
omniORB2. By going through the source code of each example, the essential concepts
and APIs are introduced. If you have no previous experience with using CORBA, you
should study this chapter in detail. There are pointers to other essential documents
you should be familiar with.

If you have experience with using other ORBs, you should still go through this
chapter because it provides important information about the features and APIs that
are necessarily omniORB2 specific. For instance, the object implementation skeleton
is covered in section 2.4.2.

2.1 The Echo Object Example

Our example is an object which has only one method. The method simply echos the
argument string. We have to:

1. define the object interface in IDL;

2. use the IDL compiler to generate the stub code1;

3. provide the object implementation;

4. write the client code.

The source code of this example is included in the last section of this chap-
ter. A makefile written to be used under the OMNI Development Environment
(ODE) [Richardson96b] is also included.

2.2 Specifying the Echo interface in IDL

We define an object interface, called Echo, as follows:

1The stub code is the C++ code that provides the object mapping as defined in the CORBA 2.0 speci-
fication.

5



6 CHAPTER 2. THE BASICS

interface Echo {
string echoString(in string mesg);

};

If you are new to IDL, you can learn about its syntax in Chapter 3 of the CORBA
specification 2.0 [OMG99a].

For the moment, you only need to know that the interface consists of a single
operation, echoString, which takes a string as an argument and returns a copy of the
same string.

The interface is written in a file, called echo.idl . If you are using ODE, all IDL
files should have the same extension- .idl and should be placed in the idl directory
of your export tree. This is done so that the stub code will be generated automatically
and kept up-to-date with your IDL file.

For simplicity, the interface is defined in the global IDL namespace. This practice
should be avoided for the sake of object reusuability. If every CORBA developer de-
fines their interfaces in the global IDL namespace, there is a danger of name clashes
between two independently defined interfaces. Therefore, it is better to qualify your
interfaces by defining them inside module names. Of course, this does not eliminate
the chance of a name clash unless some form of naming convention is agreed globally.
Nevertheless, a well-chosen module name can help a lot.

2.3 Generating the C++ stubs

From the IDL file, we use the IDL compiler to produce the C++ mapping of the inter-
face. The IDL compiler for omniORB2 is called omniidl2 . Given the IDL file, omni-
idl2 produces two stub files: a C++ header file and a C++ source file. For example,
from the file echo.idl , the following files are produced:

� echo.hh

� echoSK.cc

If you are using ODE, you don’t need to invoke omniidl2 explicitly. In the example
file dir.mk , we have the following line:

CORBA_INTERFACES = echo

That is all we need to instruct ODE to generate the stubs. Remember, you won’t
find the stubs in your working directory because all stubs are written into the stub
directory at the top level of your build tree.



2.4. A QUICK TOUR OF THE C++ STUBS 7

2.4 A Quick Tour of the C++ stubs

The C++ stubs conform to the mapping defined in the CORBA 2.0 specification (chap-
ter 16-18). It is important to understand the mapping before you start writing any
serious CORBA applications.

Before going any further, it is worth knowing what the mapping looks like.

2.4.1 Object Reference

The use of an object interface denotes an object reference. For the example interface
Echo, the C++ mapping for its object reference is Echo ptr . The type is defined in
echo.hh. The relevant section of the code is reproduced below:

class Echo;
typedef Echo* Echo_ptr;

class Echo : public virtual omniObject, public vir-
tual CORBA::Object {
public:

virtual char * echoString ( const char * mesg ) = 0;
static Echo_ptr _nil();
static Echo_ptr _duplicate(Echo_ptr);
static Echo_ptr _narrow(CORBA::Object_ptr);

... // methods generated for internal use
};

In a compliant application, the operations defined in an object interface should
only be invoked via an object reference. This is done by using arrow (“!”) on an
object reference. For example, the call to the operation echoString would be written
as obj !echoString(mesg) .

It should be noted that the concrete type of an object reference is opaque, i.e. you
must not make any assumption about how an object reference is implemented. In
our example, even though Echo ptr is implemented as a pointer to the class Echo , it
should not be used as a C++ pointer, i.e. conversion to void*, arithmetic operations,
and relational operations, including test for equality using operation== must not be
performed on the type.

In addition to echoString , the mapping also defines three static member func-
tions in the class Echo: nil , duplicate , and narrow . Note that these are opera-
tions on an object reference.

The nil function returns a nil object reference of the Echo interface. The following
call is guaranteed to return TRUE:

CORBA::Boolean true_result = CORBA::is_nil(Echo::_nil());



8 CHAPTER 2. THE BASICS

Remember, CORBA::is nil() is the only compliant way to check if an object
reference is nil. You should not use the equality operator==.

The duplicate function returns a new object reference of the Echo interface.
The new object reference can be used interchangeably with the old object reference to
perform an operation on the same object.

All CORBA objects inherit from the generic object CORBA::Object .
CORBA::Object ptr is the object reference for CORBA::Object . Any object
reference is therefore conceptually inherited from CORBA::Object ptr . In other
words, an object reference such as Echo ptr can be used in places where a
CORBA::Object ptr is expected.

The narrow function takes an argument of the type CORBA::Object ptr and
returns a new object reference of the Echo interface. If the actual (runtime) type of the
argument object reference can be widened to Echo ptr , narrow will return a valid
object reference. Otherwise it will return a nil object reference.

To indicate that an object reference will no longer be accessed, you can call the
CORBA::release operation. Its signature is as follows:

class CORBA {
static void release(CORBA::Object_ptr obj);
... // other methods

};

You should not use an object reference once you have called CORBA::release .
This is because the associated resources may have been deallocated. Notice that we
are referring to the resources associated with the object reference and not the object
implementation. Here is a concrete example, if the implementation of an object re-
sides in a different address space, then a call to CORBA::release will only caused
the resources associated with the object reference in the current address space to be
deallocated. The object implementation in the other address space is unaffected.

As described above, the equality operator== should not be used on object ref-
erences. To test if two object references are equivalent, the member function
is equivalent of the generic object CORBA::Object can be used. Here is an ex-

ample of its usage:

Echo_ptr A;
... // initialised A to a valid object reference
Echo_ptr B = A;
CORBA::Boolean true_result = A->_is_equivalent(B);
// Note: the above call is guaranteed to be TRUE

You have now been introduced to most of the operations that can be invoked
via Echo ptr . The generic object CORBA::Object provides a few more operations
and all of them can be invoked via Echo ptr . These operations deal mainly with
CORBA’s dynamic interfaces. You do not have to understand them in order to use the
C++ mapping provided via the stubs. For details, please read the CORBA specifica-
tion [OMG99a] chapter 17.



2.4. A QUICK TOUR OF THE C++ STUBS 9

Since object references must be released explicitly, their usage is prone to error and
can lead to memory leakage. The mapping defines the object reference variable type
to make life easier. In our example, the variable type Echo var is defined2.

The Echo var is more convenient to use because it will automatically release its
object reference when it is deallocated or when assigned a new object reference. For
many operations, mixing data of type Echo var and Echo ptr is possible without
any explicit operations or castings 3. For instance, the operation echoString can be
called using the arrow (“!”) on a Echo var , as one can do with a Echo ptr .

The usage of Echo var is illustrated below:

Echo_var a;
Echo_ptr p = ... // somehow obtain an object reference

a = p; // a assumes ownership of p, must not use p anymore

Echo_var b = a; // implicit _duplicate

p = ... // somehow obtain another object reference

a = Echo::_duplicate(p); // release old object reference
// a now holds a copy of p.

2.4.2 Object Implementation

Unlike the client side of an object, i.e. the use of object references, the CORBA spec-
ification 2.0 deliberately leave many of the necessary functionalities to implement an
object unspecified. As a consequence, it is very unlikely the implementation code of
an object on top of two different ORBs can be identical. However, most of the code are
expected to be portable. In particular, the body of an operation implementation can
normally be ported with no or little modification.

OmniORB2 uses C++ inheritance to provide the skeleton code for object imple-
mentation. For each object interface, a skeleton class is generated. In our example,
the skeleton class sk Echo is generated for the Echo IDL interface. An object imple-
mentation can be written by creating an implementation class that derives from the
skeleton class.

The skeleton class sk Echo is defined in echo.hh . The relevant section of the
code is reproduced below.

class _sk_Echo : public virtual Echo {
public:

_sk_Echo(const omniORB::objectKey& k);
virtual char * echoString ( const char * mesg ) = 0;
Echo_ptr _this();

2In omniORB2, all object reference variable types are instantiated from the template type
CORBA ObjRef Var.

3However, the implementation of the type conversion operator() between Echo var and Echo ptr
varies slightly among different C++ compilers, you may need to do an explicit casting when the compiler
complains about the conversion being ambiguous.



10 CHAPTER 2. THE BASICS

void _obj_is_ready(BOA_ptr);
void _dispose();
BOA_ptr _boa();
omniORB::objectKey _key();
... // methods generated for internal use

};

The code fragment shows the only member functions that can be used in the ob-
ject implementation code. Other member functions are generated for internal use only.
Unless specified otherwise, the description below is omniORB2 specific. The func-
tions are:

echoString it is through this abstract function that an implementation class provides
the implementation of the echoString operation. Notice that its signature is
the same as the echoString function that can be invoked via the Echo ptr
object reference. The signature of this function is specified by the CORBA
specification.

this this function returns an object reference for the target object. The returned value
must be deallocated via CORBA::release . See 2.7 for an example of how this
function is used.

obj is ready this function tells the Basic Object Adaptor4 (BOA) that the object is
ready to serve. Until this function is called, the BOA would not serve any in-
coming calls to this object. See 2.7 for an example of how this function is used.

dispose this function tells the BOA to dispose of the object. The BOA will stop serv-
ing incoming calls of this object and remove any resources associated with it.
See 2.7 for an example of how this function is used.

boa this function returns a reference to the BOA that serves this object.

key this function returns the key that the ORB used to identify this object. The
type omniORB::objectKey is opaque to application code. The function om-
niORB::keyToOctetSequence can be used to convert the key to a sequence
of octets.

2.5 Writing the object implementation

You define an implementation class to provide the object implementation. There is
little constraint on how you design your implementation class except that it has to in-
herit from the stubs’ skeleton class and to implement all the abstract functions defined
in the skeleton class. Each of these abstract functions corresponds to an operation of
the interface. They are hooks for the ORB to perform upcalls to your implementation.

Here is a simple implementation of the Echo object.

4The interface of a BOA is described in chapter 8 of the CORBA specification.



2.6. WRITING THE CLIENT 11

class Echo_i : public virtual _sk_Echo {
public:

Echo_i() {}
virtual ˜Echo_i() {}
virtual char * echoString(const char *mesg);

};

char *
Echo_i::echoString(const char *mesg) {

char *p = CORBA::string_dup(mesg);
return p;

}

There are three points to note here:

Storage Responsibilities A string, which is used as an IN argument and the return
value of echoString , is a variable size data type. Other examples of variable
size data types include sequences, type “any”, etc. For these data types, you
must be clear about who’s responsibility to allocate and release their associated
storage. As a rule of thumb, the client (or the caller to the implementation func-
tions) owns the storage of all IN arguments, the object implementation (or the
callee) must copy the data if it wants to retain a copy. For OUT arguments and
return values, the object implementation allocates the storage and passes the
ownership to the client. The client must release the storage when the variables
will no longer be used. For details, please refer to Table 24-27 of the CORBA
specification.

Multi-threading As omniORB2 is fully multithreaded, multiple threads may perform
the same upcall to your implementation concurrently. It is up to your implemen-
tation to synchronise the threads’ accesses to shared data. In our simple exam-
ple, we have no shared data to protect so no thread synchronisation is necessary.

Instantiation You must not instantiate an implementation as automatic variables. In-
stead, you should always instantiate an implementation using the new operator,
i.e. its storage is allocated on the heap. The reason behind this restriction will
become clear in section 2.7.

2.6 Writing the client

Here is an example of how a Echo ptr object reference is used.

void
hello(CORBA::Object_ptr obj)
{

Echo_var e = Echo::_narrow(obj); // line 1

if (CORBA::is_nil(e)) { // line 2
cerr << "hello: cannot invoke on a nil object refer-

ence.\n" << endl;
return;



12 CHAPTER 2. THE BASICS

}

CORBA::String_var src = (const char*) "Hello!"; // line 3
CORBA::String_var dest; // line 4

dest = e->echoString(src); // line 5

cerr << "I said,\"" << src << "\"."
<< " The Object said,\"" << dest <<"\"" << endl;

}

Briefly, the function hello accepts a generic object reference. The object reference
(obj ) is narrowed to Echo ptr . If the object reference returned by Echo:: narrow
is not nil, the operation echoString is invoked. Finally, both the argument to and
the return value of echoString are printed to cerr.

The example also illustrates how T var types are used. As it was explained in the
previous section, T var types take care of storage allocation and release automatically
when variables of the type are assigned to or when the variables go out of scope.

In line 1, the variable e takes over the storage responsibility of the object reference
returned by Echo:: narrow . The object reference is released by the destructor of
e. It is called automatically when the function returns. Line 2 and 5 shows how a
Echo var variable is used. As said earlier, Echo var type can be used interchange-
ably with Echo ptr type.

The argument and the return value of echoString are stored in
CORBA::String var variable src and dest respectively. The strings managed by
the variables are deallocated by the destructor of CORBA::String var . It is called
automatically when the function returns. Line 5 shows how CORBA::String var
variables are used. They can be used in place of a string (for which the mapping
is char* )5. As used in line 3, assigning a constant string (const char* ) to a
CORBA::String var causes the string to be copied. On the otherhand, assigning a
char* to a CORBA::String var , as used in line 5, causes the latter to assume the
ownership of the string6.

Under the C++ mapping, T var types are provided for all the non-basic data types.
It is obvious that one should use automatic variables whenever possible both to avoid
memory leak and to maximise performance. However, when one has to allocate data
items on the heap, it is a good practice to use the T var types to manage the heap
storage.

2.7 Example 1 - Colocated Client and Implementation

Having introduced the client and the object implementation, we can now describe
how to link up the two via the ORB. In this section, we describe an example in which
both the client and the object implementation are in the same address space. In the
next two sections, we shall describe the case where the two are in different address
spaces.

5A conversion operator() of CORBA::String var converts a CORBA::String var to a char*.
6Please refer to the CORBA specification 16.7 for the details of the String var mapping. Other T var

types are also covered in chapter 16.



2.7. EXAMPLE 1 - COLOCATED CLIENT AND IMPLEMENTATION 13

The code for this example is reproduced below:

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2"); // line 1
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA"); // line 2

Echo_i *myobj = new Echo_i(); // line 3
myobj->_obj_is_ready(boa); // line 4

boa->impl_is_ready(0,1); // line 5

Echo_ptr myobjRef = myobj->_this(); // line 6
hello(myobjRef); // line 7
CORBA::release(myobjRef); // line 8

myobj->_dispose(); // line 9
return 0;

}

The example illustrates several important interactions among the ORB, the object
implementation and the client. Here are the details:

2.7.1 ORB/BOA initialisation

line 1 The ORB is initialised by calling the CORBA::ORBinit function. The func-
tion uses the 3rd argument to determine which ORB should be returned. To
use omniORB2, this argument must either be “omniORB2” or NULL. If it is
NULL, there must be an argument, -ORBid “omniORB2”, in argv . Like any
command-line arguments understood by the ORB, it will be removed from argv
when CORBA::ORBinit returns. Therefore, an application is not required to
handle any command-line arguments it does not understand. If the ORB identi-
fier is not “omniORB2”, the initialisation will fail and a nil ORBptr will be re-
turned. If supplied, omniORB2 also reads the configuration file omniORB.cfg .
Among other things, the file provides a list of initial object references. One ex-
ample of these object references is the naming service. Its use will be discussed
in section 2.9.1. If any error occurs during the processing of the configuration
file, the system exception CORBA::INITIALIZE is raised.

line 2 The BOA is initialised by calling the ORB’s BOAinit . The 3rd argument
must either be “omniORB2 BOA” or NULL. If it is NULL, then argv must con-
tain an argument, -BOAid “omniORB2 BOA”. If the BOA identifier is not “om-
niORB2 BOA”, the initialisation will fail and a nil BOA ptr will be returned.
Like ORBinit , any command-line arguments understood by BOAinit will be
removed from argv .

2.7.2 Object initialisation

line 3 An instance of the Echo object is initialised using the new operator.



14 CHAPTER 2. THE BASICS

line 4 The object’s obj is ready is called. This function informs the BOA that this
object is ready to serve. Until this function is called, the BOA will not accept any
invocation on the object and will not perform any upcall to the object.

line 5 The BOA’s impl is ready is called. This function tells the BOA the imple-
mentation is ready. After this call, the BOA will accept IIOP requests from other
address spaces. There are 2 points to note here:

1. boa!impl is ready can be called any time after BOAinit is called (line
2). In other words, object instances can be initialised and advertised to the
BOA before or after this function is called.

2. The 2nd argument7 to impl is ready tells the ORB whether this call
should be non-blocking. The default value of this argument is FALSE(0)
and the call will block indefinitely within the ORB. If there are more things
the main thread should do after it calls impl is ready , as it is the case
in this example, the non-blocking option (TRUE=1) should be specified.
Whether the main thread blocks in this call or not, the ORB is not affected
because its functions are provided by other threads spawned internally.
Notice that the signature of impl is ready in the CORBA specification
does not have the 2nd argument8. Therefore, calling impl is ready with
the non-blocking option is omniORB2 specific.

2.7.3 Client invocation

line 6 The object reference is obtained from the implementation by calling this .
Like any object reference, the return value of this must be released by
CORBA::release when it is no longer needed.

line 7 Call hello with this object reference. The argument is widened implicitly to
the generic object reference CORBA::Object ptr .

line 8 Release the object reference.

One of the important characteristic of an object reference is that it is completely lo-
cation transparent. A client can invoke on the object using its object reference without
any need to know whether the object is colocated in the same address space or resided
in a different address space.

In case of colocated client and object implementation, omniORB2 is able to short-
circuit the client calls to direct calls on the implementation methods. The cost of an
invocation is reduced to that of a function call. This optimisation is applicable not
only to object references returned by the this function but to any object references
that are passed around within the same address space or received from other address
spaces via IIOP calls.

7The 1st argument is a pointer to the implementation definition and is always ignored by omniORB2.
8The CORBA specification does not specify when impl is ready should return. Many ORB vendors

choose to implement impl is ready as blocking until a certain time-out value is exceeded. In a single
threaded implementation this is necessary to give the ORB the time to serve incoming requests.



2.8. EXAMPLE 2 - DIFFERENT ADDRESS SPACES 15

2.7.4 Object disposal

line 9 To dispose of an object implementation and release all the resources associated
with it, the dispose function is called. In fact, this is the only clean way to
get rid of an object implementation. Even though the object is created using
the new operator in the application code, the application should never call the
delete operator on the object directly.

Once an application calls dispose on an object implementation, the pointer to
the object should not be used any more. At the time the dispose call is made, there
may be other threads invoking on the object, omniORB2 ensures that all these calls
are completed before removing the object from its internal tables and releasing the
resources associated with it. The storage associated with the object is released by
omniORB2 using the delete operator. This is why all object implementation should be
initialised using the new operator (section 2.5).

The disposal of an object implementation by omniORB2 may also be deferred
when colocated clients continue to hold on to copies of the object’s reference9. This
behavior is to prevent the short-circuited calls from the clients to fail unpredictably.

To summarise, an application can make no assumption as to when the object is
disposed by omniORB2 after the dispose call returns. If it is necessary to have
better control on when to stop serving incoming requests, the work should be done
by the object implementation itself, such as by keeping track of the current serving
state.

2.8 Example 2 - Different Address Spaces

In this example, the client and the object implementation reside in two different ad-
dress spaces. The code of this example is almost the same as the previous example.
The only difference is the extra work need to be done to pass the object reference from
the object implementation to the client.

The simplest (and quite primitive) way to pass an object reference between two
address spaces is to produce a stringified version of the object reference and to pass
this string to the client as a command-line argument. The string is then converted by
the client into a proper object reference. This method is used in this example. In the
next example, we shall introduce a better way of passing the object reference using
the COS Naming Service.

2.8.1 Object Implementation: Generating a Stringified Object Reference

The main function of the object implementation side is reproduced below. The full
listing (eg2 impl.cc ) can be found at the end of this chapter.

int
main(int argc, char **argv)

9Object references held by clients in other address spaces will not prevent the object implementation
from being disposed of. If these clients invoke on the object after it is disposed, the system exception
INV OBJREF is raised.



16 CHAPTER 2. THE BASICS

{
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p;

p = orb->object_to_string(myobjRef); //line 1

cerr << "’" << (char*)p << "’" << endl;
}

boa->impl_is_ready(); // block here indefinitely
// See the explanation in example 1

return 0;
}

The stringified object reference is obtained by calling the ORB’s function
object to string (line 1). This is a sequence starting with the signature “IOR:”

and followed by a hexadecimal string. All CORBA 2.0 compliant ORBs are able to
convert the string into its internal representation of a so-called Interoperable Object
Reference (IOR). The IOR contains the location information and a key to uniquely
identify the object implementation in its own address space10. From the IOR, an ob-
ject reference can be constructed.

2.8.2 Client: Using a Stringified Object Reference

The stringified object reference is passed to the client as a command-line argument.
The client uses the ORB’s function string to object to convert the string into a
generic object reference (CORBA::Object ptr ). The relevant section of the code is
reproduced below. The full listing (eg2 clt.cc ) can be found at the end of this chap-
ter.

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);

}
catch(CORBA::COMM_FAILURE& ex) {

... // code to handle communication failure
}

2.8.3 Catching System Exceptions

When omniORB2 detects an error condition, it may raise a system exception. The
CORBA specification defines a series of exceptions covering most of the error condi-
tions that an ORB may encounter. The client may choose to catch these exceptions

10Notice that the object key is not globally unique across address spaces.



2.8. EXAMPLE 2 - DIFFERENT ADDRESS SPACES 17

and recover from the error condition11. For instance, the code fragment, shown in sec-
tion 2.8.2, catches the system exception COMM FAILURE which indicates that com-
munication with the object implementation in another address space has failed.

All system exceptions inherit from the class CORBA::SystemException . With
compilers that support RTTI1213, a single catch CORBA::SystemException will
catch all the different system exceptions thrown by omniORB2.

When omniORB2 detects an internal inconsistency that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that involves
the ORB’s runtime. It is best to exit the program immediately. The exception structure
carries by omniORB::fatalException contains the exact location (the file name
and the line number) where the exception is raised. You are strongly encourage to file
a bug report and point out the location.

2.8.4 Lifetime of an Object Implementation

It may be obvious but it has to stated that an object implementation exists only for the
duration of the process’s lifetime. When the same program is run again, a different
instance of the object implementation is created. More significantly, the IOR, and
hence the object reference, of this instance is different from that of the previous
run.

For instance, if you look at the stringified object reference produced by the pro-
gram eg2 impl in different runs, they are all different. The implication is that you
cannot store away the stringified object reference and expect to be able to use it again
later when the original program run has terminated.

For system services and other applications, it may be desirable to have “persis-
tent” object implementations. The objects are “persistent” in the sense that they can
be contacted using the same IOR when they are instantiated in different program runs.
To provide this functionality, omniORB2 needs to be provided with two pieces of in-
formation: the (network) location and the object key. The details of how this can be
done will be described in the later part of this manual.

Alternatively, an indirection from textual pathnames to object references can be
used. Applications can register object implementations at runtime to a naming ser-
vice and bind them to fixed pathnames. Clients can bind to the object implementa-
tions at runtime by asking the naming service to resolve the pathnames to the object
references. CORBA defines a naming service, which is a component of the Common
Object Services (COS) [OMG99b], that can be used for this purpose. The next section
describes an example of how to use the COS Naming Service.

11If a system exception is not caught, the C++ runtime will call the terminate function. This function
is defaulted to abort the whole process and on some system will cause a core file to be produced.

12Run Time Type Identification
13A noticeable exception is the GNU C++ compiler (version 2.7.2). It doesn’t support RTTI unless the

compilation flag -frtti is specified. The omniORB2 runtime is not compiled with the -frtti flag. It is said
that RTTI will be properly supported in the upcoming version 2.8.



18 CHAPTER 2. THE BASICS

2.9 Example 3 - Using the COS Naming Service

In this example, the object implementation uses the COS Naming Service [OMG99b]
to pass on the object reference to the client. This method is by-far more practical
than using stringified object references. The full listing of the object implementation
(eg3 impl.cc ) and the client (eg3 clt.cc ) can be found at the end of this chapter.

The object reference is bound to the pathname “test/Echo”14. The pathname con-
sists of the context test and the object name Echo. Both the context and the object name
has an attribute kind. This attribute is a string that is intended to be used to describe
the name in a syntax-independent way. The naming service does not interpret, assign,
or manage these values. However both the name and the kind attribute must match
for a name lookup to succeed. In this example, the kind values for test and Echo are
chosen to be “my context” and “Object” respectively. This is an arbitrary choice for
there is no standardised set of kind values.

2.9.1 Obtaining the Root Context Object Reference

The initial contact with the Naming Service can be established via what we called the
root context. The object reference to the root context is provided by the ORB and can be
obtained by calling resolve initial references . The following code fragment
shows how it is used:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var rootContext;
rootContext = CosNaming::NamingContext::_narrow(initServ);

Remember, omniORB2 constructs its internal list of initial references at ini-
tialisation time using the information provided in the configuration file om-
niORB.cfg . If this file is not present, the internal list will be empty and re-
solve initial references will raise a CORBA::ORB::InvalidName exception.

2.9.2 The Naming Service Interface

It is beyond the scope of this chapter to describe in detail the Naming Service interface.
You should consult the CORBAservices specification [OMG99b] (chapter 3). The code
listed in eg3 impl.cc and eg3 clt.cc are good examples of how the service can be
used. Please spend time to study the examples carefully.

14A pathname, or in the Naming Service’s terminology- a compound name, is a sequence of textual
names. Each name component except the last one is bound to a naming context. A naming context is
analogous to a directory in a filing system, it can contain names of object references or other naming
contexts. The last name component is bound to an object reference. Note: ’/’ is purely a notation to
separate two components in the pathname. It does not appear in the compound name that is registered
with the Naming Service.



2.10. EXAMPLE 4 - USING TIE IMPLEMENTATION TEMPLATES 19

2.10 Example 4 - Using tie implementation templates

Since 2.6.0, a new command-line option (-t ) has been added to omniidl2 . When this
flag is specified, omniidl2 generates an extra template class for each interface. This
template class can be used to tie a C++ class to the skeleton class of the interface.

The source code in eg3 tieimpl.cc at the end of this chapter illustrates how the
template class can be used. The code is almost identical to eg3 impl.cc with only a
few changes.

Firstly, the implementation class Echo i does not inherit from any stub classes.
This is the main benefit of using the template class because there are applications in
which it is difficult to require every implementation class to subclass from CORBA
classes.

Secondly, the instantiation of a CORBA object now involves creating an instance
of the implementation class and an instance of the template. Here is the relevant code
fragment:

class Echo_i { ... };

Echo_i *myimpl = new Echo_i();
_tie_Echo<Echo_i,1> *myobj = new _tie_Echo<Echo_i,1>(myimpl);
myobj->_obj_is_ready(boa);

For interface Echo , the name of its tie implementation template is tie Echo . The
first template parameter is the implementation class that contains an implementation
of each of the operations defined in the interface. The second template parameter is
a boolean flag. When the flag is TRUE (1), as it is in this example, the ORB would
call delete on the implementation object (myimpl ) when dispose is invoked on
myobj . When the flag is FALSE (0), delete would not be called. Instantiating this
template with the flag set to FALSE is useful when the same implementation class
is used to implement multiple interfaces. In this situation, the same implementation
would be used as the argument to a number of tie template instantiations. Provided
that only one of the instantiation has the flag set to TRUE, the object implementation
would not be deleted more than once!



20 CHAPTER 2. THE BASICS

2.11 Source Listing

2.11.1 echo i.cc

// echo_i.cc - This source code demonstrates an implmentation of the
// object interface Echo. It is part of the three examples
// used in Chapter 2 "The Basics" of the om-
niORB2 user guide.
//
#include <string.h>
#include "echo.hh"

class Echo_i : public virtual _sk_Echo {
public:

Echo_i() {}
virtual ˜Echo_i() {}
virtual char * echoString(const char *mesg);

};

char *
Echo_i::echoString(const char *mesg) {

char *p = CORBA::string_dup(mesg);
return p;

}



2.11. SOURCE LISTING 21

2.11.2 greeting.cc

// greeting.cc - This source code demonstrates the use of an object
// reference by a client to perform an operation on an
// object. It is part of the three examples used
// in Chapter 2 "The Basics" of the om-
niORB2 user guide.
//
#include <iostream.h>
#include "echo.hh"

void
hello(CORBA::Object_ptr obj)
{

Echo_var e = Echo::_narrow(obj);

if (CORBA::is_nil(e)) {
cerr << "hello: cannot invoke on a nil object refer-

ence.\n" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!";
CORBA::String_var dest;

dest = e->echoString(src);

cerr << "I said,\"" << src << "\"."
<< " The Object said,\"" << dest <<"\"" << endl;

}



22 CHAPTER 2. THE BASICS

2.11.3 eg1.cc

// eg1.cc - This is the source code of example 1 used in Chapter 2
// "The Basics" of the omniORB2 user guide.
//
// In this example, both the object implementation and the
// client are in the same process.
//
// Usage: eg1
//
#include <iostream.h>
#include "echo.hh"

#include "echo_i.cc"
#include "greeting.cc"

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
// Note: all implementation objects must be instantiated on the
// heap using the new operator.

myobj->_obj_is_ready(boa);
// Tell the BOA the object is ready to serve.
// This call is omniORB2 specific.
//
// This call is equivalent to the following call sequence:
// Echo_ptr myobjRef = myobj->_this();
// boa->obj_is_ready(myobjRef);
// CORBA::release(myobjRef);

boa->impl_is_ready(0,1);
// Tell the BOA we are ready and to return immediately once it has
// done its stuff. It is omniORB2 specific to call impl_is_ready()
// with the extra 2nd argument- CORBA::Boolean NonBlocking,
// which is set to TRUE (1) in this case.

Echo_ptr myobjRef = myobj->_this();
// Obtain an object reference.
// Note: always use _this() to obtain an object reference from the
// object implementation.

hello(myobjRef);

CORBA::release(myobjRef);
// Dispose of the object reference.

myobj->_dispose();
// Dispose of the object implementation.



2.11. SOURCE LISTING 23

// This call is omniORB2 specific.
// Note: *never* call the delete operator or the dtor of the object
// directly because the BOA needs to be informed.
//
// This call is equivalent to the following call sequence:
// Echo_ptr myobjRef = myobj->_this();
// boa->dispose(myobjRef);
// CORBA::release(myobjRef);

return 0;
}



24 CHAPTER 2. THE BASICS

2.11.4 eg2 impl.cc

// eg2_impl.cc - This is the source code of example 2 used in Chap-
ter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the object implementation.
//
// Usage: eg2_impl
//
// On startup, the object reference is printed to cerr as a
// stringified IOR. This string should be used as the argu-
ment to
// eg2_clt.
//
#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

#include "echo_i.cc"

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p = orb->object_to_string(myobjRef);
cerr << "’" << (char*)p << "’" << endl;

}

boa->impl_is_ready();
// Tell the BOA we are ready. The BOA’s default be-

haviour is to block
// on this call indefinitely.

return 0;
}



2.11. SOURCE LISTING 25

2.11.5 eg2 clt.cc

// eg2_clt.cc - This is the source code of example 2 used in Chap-
ter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the client. The object refer-
ence is given as a
// stringified IOR on the command line.
//
// Usage: eg2_clt <object reference>
//
#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"

extern void hello(CORBA::Object_ptr obj);

int
main (int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

if (argc < 2) {
cerr << "usage: eg2_clt <object reference>" << endl;
return 1;

}

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);

}
catch(CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-
tact the "

<< "object." << endl;
}
catch(omniORB::fatalException& ex) {

cerr << "Caught omniORB2 fatalException. This indi-
cates a bug is caught "

<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

}
catch(...) {

cerr << "Caught a system exception." << endl;
}

return 0;
}



26 CHAPTER 2. THE BASICS

2.11.6 eg3 impl.cc

// eg3_impl.cc - This is the source code of example 3 used in Chap-
ter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the object implementation.
//
// Usage: eg3_impl
//
// On startup, the object reference is registered with the
// COS naming service. The client uses the naming service to
// locate this object.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

#include "echo_i.cc"

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr,CORBA::Object_ptr);

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
if (!bindObjectToName(orb,myobjRef)) {

return 1;
}

}

boa->impl_is_ready();
// Tell the BOA we are ready. The BOA’s default be-

haviour is to block
// on this call indefinitely.

return 0;
}



2.11. SOURCE LISTING 27

static
CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

// Narrow the object returned by resolve_initial_references()
// to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))

{
cerr << "Failed to narrow naming context." << endl;
return 0;

}
}
catch(CORBA::ORB::InvalidName& ex) {

cerr << "Service required is invalid [does not exist]." << endl;
return 0;

}

try {
// Bind a context called "test" to the root context:

CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (const char*) "test"; // string copied
contextName[0].kind = (const char*) "my_context"; // string copied
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {

// Bind the context to root, and assign testContext to it:
testContext = rootContext->bind_new_context(contextName);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {

// If the context already exists, this excep-
tion will be raised.

// In this case, just resolve the name and assign testContext
// to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {



28 CHAPTER 2. THE BASICS

cerr << "Failed to narrow naming context." << endl;
return 0;

}
}

// Bind the object (obj) to testContext, naming it Echo:
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (const char*) "Echo"; // string copied
objectName[0].kind = (const char*) "Object"; // string copied

// Bind obj with name Echo to the testContext:
try {

testContext->bind(objectName,obj);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {

testContext->rebind(objectName,obj);
}
// Note: Using rebind() will overwrite any Object previ-

ously bound
// to /test/Echo with obj.
// Alternatively, bind() can be used, which will raise a
// CosNaming::NamingContext::AlreadyBound excep-

tion if the name
// supplied is already bound to an object.

// Amendment: When using OrbixNames, it is neces-
sary to first try bind

// and then rebind, as rebind on it’s own will throw a Not-
Foundexception if

// the Name has not already been bound. [This is incorrect be-
haviour -

// it should just bind].
}
catch (CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-
tact the "

<< "naming service." << endl;
return 0;

}
catch (omniORB::fatalException& ex) {

throw;
}
catch (...) {

cerr << "Caught a system exception while using the naming ser-
vice."<< endl;

return 0;
}
return 1;

}



2.11. SOURCE LISTING 29

2.11.7 eg3 clt.cc

// eg3_clt.cc - This is the source code of example 3 used in Chap-
ter 2
// "The Basics" of the omniORB2 user guide.
//
// This is the client. It uses the COSS naming service
// to obtain the object reference.
//
// Usage: eg3_clt
//
//
// On startup, the client lookup the object refer-
ence from the
// COS naming service.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"

extern void hello(CORBA::Object_ptr obj);

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);

int
main (int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

try {
CORBA::Object_var obj = getObjectReference(orb);
hello(obj);

}
catch(CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-
tact the "

<< "object." << endl;
}
catch(omniORB::fatalException& ex) {

cerr << "Caught omniORB2 fatalException. This indi-
cates a bug is caught "

<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"



30 CHAPTER 2. THE BASICS

<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

}
catch(...) {

cerr << "Caught a system exception." << endl;
}

return 0;
}

static
CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)
{

CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

// Narrow the object returned by resolve_initial_references()
// to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))

{
cerr << "Failed to narrow naming context." << endl;
return CORBA::Object::_nil();

}
}
catch(CORBA::ORB::InvalidName& ex) {

cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();

}

// Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0].id = (const char*) "test"; // string copied
name[0].kind = (const char*) "my_context"; // string copied
name[1].id = (const char*) "Echo";
name[1].kind = (const char*) "Object";
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CORBA::Object_ptr obj;
try {

// Resolve the name to an object reference, and as-
sign the reference



2.11. SOURCE LISTING 31

// returned to a CORBA::Object:
obj = rootContext->resolve(name);

}
catch(CosNaming::NamingContext::NotFound& ex)

{
// This exception is thrown if any of the components of the
// path [contexts or the object] aren’t found:
cerr << "Context not found." << endl;
return CORBA::Object::_nil();

}
catch (CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-
tact the "

<< "naming service." << endl;
return CORBA::Object::_nil();

}
catch(omniORB::fatalException& ex) {

throw;
}
catch (...) {

cerr << "Caught a system exception while using the naming ser-
vice."<< endl;

return CORBA::Object::_nil();
}
return obj;

}



32 CHAPTER 2. THE BASICS

2.11.8 eg3 tieimpl.cc

// eg3_tieimpl.cc - This example is similar to eg3_impl.cc ex-
cept that
// the tie implementation skeleton is used.
//
// This is the object implementation.
//
// Usage: eg3_tieimpl
//
// On startup, the object reference is registered with the
// COS naming service. The client uses the naming service to
// locate this object.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// Echo [object] kind [Object]
//

#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

// Real implementation, notice that it does not in-
herit from any stub class
class Echo_i {
public:

Echo_i() {}
virtual ˜Echo_i() {}
virtual char * echoString(const char *mesg);

};

char *
Echo_i::echoString(const char *mesg) {

char *p = CORBA::string_dup(mesg);
return p;

}

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr,CORBA::Object_ptr);

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myimpl = new Echo_i();
_tie_Echo<Echo_i,1> *myobj = new _tie_Echo<Echo_i,1>(myimpl);



2.11. SOURCE LISTING 33

myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
if (!bindObjectToName(orb,myobjRef)) {

return 1;
}

}

boa->impl_is_ready();
// Tell the BOA we are ready. The BOA’s default be-

haviour is to block
// on this call indefinitely.

return 0;
}

static
CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

// Narrow the object returned by resolve_initial_references()
// to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))

{
cerr << "Failed to narrow naming context." << endl;
return 0;

}
}
catch(CORBA::ORB::InvalidName& ex) {

cerr << "Service required is invalid [does not exist]." << endl;
return 0;

}

try {
// Bind a context called "test" to the root context:

CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (const char*) "test"; // string copied
contextName[0].kind = (const char*) "my_context"; // string copied
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used



34 CHAPTER 2. THE BASICS

// by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {

// Bind the context to root, and assign testContext to it:
testContext = rootContext->bind_new_context(contextName);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {

// If the context already exists, this excep-
tion will be raised.

// In this case, just resolve the name and assign testContext
// to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {

cerr << "Failed to narrow naming context." << endl;
return 0;

}
}

// Bind the object (obj) to testContext, naming it Echo:
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (const char*) "Echo"; // string copied
objectName[0].kind = (const char*) "Object"; // string copied

// Bind obj with name Echo to the testContext:
try {

testContext->bind(objectName,obj);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {

testContext->rebind(objectName,obj);
}
// Note: Using rebind() will overwrite any Object previ-

ously bound
// to /test/Echo with obj.
// Alternatively, bind() can be used, which will raise a
// CosNaming::NamingContext::AlreadyBound excep-

tion if the name
// supplied is already bound to an object.

// Amendment: When using OrbixNames, it is neces-
sary to first try bind

// and then rebind, as rebind on it’s own will throw a Not-
Foundexception if

// the Name has not already been bound. [This is incorrect be-
haviour -

// it should just bind].
}
catch (CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-



2.11. SOURCE LISTING 35

tact the "
<< "naming service." << endl;

return 0;
}
catch (omniORB::fatalException& ex) {

throw;
}
catch (...) {

cerr << "Caught a system exception while using the naming ser-
vice."<< endl;

return 0;
}
return 1;

}



36 CHAPTER 2. THE BASICS

2.11.9 dir.mk

# dir.mk - This is the makefile to compile all the example pro-
grams used in
# Chapter 2 The Basics.
# This makefile is to be used under the OMNI develop-
ment environment.
#
CXXSRCS = greeting.cc eg1.cc \

eg2_impl.cc eg2_clt.cc \
eg3_impl.cc eg3_clt.cc

DIR_CPPFLAGS = $(CORBA_CPPFLAGS)

CORBA_INTERFACES = echo

eg1 = $(patsubst %,$(BinPattern),eg1)
eg2_impl = $(patsubst %,$(BinPattern),eg2_impl)
eg2_clt = $(patsubst %,$(BinPattern),eg2_clt)
eg3_impl = $(patsubst %,$(BinPattern),eg3_impl)
eg3_clt = $(patsubst %,$(BinPattern),eg3_clt)

all:: $(eg1) $(eg2_impl) $(eg2_clt) $(eg3_impl) $(eg3_clt)

clean::
$(RM) $(eg1) $(eg2_impl) $(eg2_clt) $(eg3_impl) $(eg3_clt)

$(eg1): eg1.o $(CORBA_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg2_impl): eg2_impl.o $(CORBA_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg2_clt): eg2_clt.o $(CORBA_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg3_impl): eg3_impl.o $(CORBA_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg3_clt): eg3_clt.o $(CORBA_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))



Chapter 3

IDL to C++ Language Mapping

Now that you are familiar with the basics, it is important to familiar yourselves with
the IDL to C++ language. The mapping is described in detail in [OMG99a]. If you
have not done so, you should obtain a copy of the document and use that as the
programming guide to omniORB2.

The specification is not an easy read. The alternative is to use one of the books
on CORBA programming that has begun to appear. For instance, the “Advanced
CORBA Programming with C++” by Michi Henning and Steve Vinoski includes many
example code bits to illustrate how to use the CORBA 2.3 C++ mapping.

3.1 Incompatibilities with pre-2.8.0 releases

Before 2.8.0, omniORB2 implements the CORBA 2.0 C++ mapping. Since 2.8.0, the
mapping has been updated to CORBA 2.3. Unfortunately, to comply with the CORBA
2.3 specification, it is necessary to change the semantics of a few APIs in a way that
is incompatible with older omniORB2 releases. The incompatible changes are limited
to:

1. the extraction of string, object reference and typecode from an Any.

2. the DII interface now defaults to report a system exception by raising a C++
exception instead of returning the exception as an environment value.

The changes are minor and requires minimal changes to the application source
code. However, it is not possible to detect the old usage at compile time. In par-
ticular, unmodified code that use the affected Any extraction operators would most
certainly cause runtime errors to occur.

To smooth the transition from the old usage to the new, an ORB configuration
variable omniORB::omniORB 27 CompatibleAnyExtraction can be set to revert
the any extraction operators to the old semantics. More information can be found in
chapter 9.

37



38 CHAPTER 3. IDL TO C++ LANGUAGE MAPPING



Chapter 4

The omniORB2 API

In this chapter, we introduce the omniORB2 API. The purpose of this API is to provide
access points to omniORB2 specific functionalities that are not covered by the CORBA
specification. Obviously, if you use this API in your application, that part of your
code is not going to be portable to run unchanged on other vendors’ ORBs. To make
it easier to identify omniORB2 dependent code, this API is defined under the name
space “omniORB”1.

4.1 ORB and BOA initialisation options

CORBA::ORBinit accepts the following command-line arguments:

-ORBid ‘‘omniORB2’’ The identifier supplied must be “omniORB2”.

-ORBtraceLevel <level> See section 4.2.

-ORBserverName <string> See section 4.3.

-ORBtcAliasExpand <0 or 1> See section 9.2.

-ORBgiopMaxMsgSize <size in bytes> See section 4.5.

-ORBInitialHost <string> See section 4.6.

-ORBInitialPort <1-65535> See section 4.6.

-ORBdiiThrowsSysExceptions <0 or 1> See section 11.4.

-ORBinConScanPeriod <0-65535> See section 7.3.

-ORBoutConScanPeriod <0-65535> See section 7.3.

-ORBverifyObjectExistsAndType <0 or 1> See section 4.7.

-ORBlcdMode See secion 4.7

-ORBabortOnInternalError <0 or 1> See section 4.8.
1omniORB is a class name if the C++ compiler does not support the namespace keyword.

39



40 CHAPTER 4. THE OMNIORB2 API

BOAinit accepts the following command-line arguments:

-BOAid ‘‘omniORB2 BOA’’ The identifier supplied must be “omniORB2 BOA”.

-BOAiiop port <port number> This option tells the BOA which TCP/IP port to
use to accept IIOP calls. If this option is not specified, the BOA will use an
arbitrary port assigned by the operating system.

-BOAno bootstrap agent See section 4.6.

-BOAiiop name port <hostname[:port number]> This options tells the BOA
the hostname and optionally the port number to use. See below for details.

By default, the BOA can work out the IP address of the host machine. This address
is recorded in the object references of the local objects. However, when the host has
multiple network interfaces and multiple IP addresses, it may be desirable for the
application to control what address the BOA should use. This can be done by defining
the environment variable OMNIORBUSEHOSTNAMEto contain the preferred host name
or IP address in dot-numeric form. Alternatively, the same can be acheived using the
-BOAiiop name port option.

As defined in the CORBA specification, any command-line arguments understood
by the ORB/BOA will be removed from argv when the initialisation functions return.
Therefore, an application is not required to handle any command-line arguments it
does not understand.

4.2 Run-time Tracing and Diagnostic Messages

OmniORB2 uses the C++ iostream cerr to output any tracing and diagnostic mes-
sages. Some or all of these messages can be turned-on/off by setting the variable
omniORB::traceLevel . The type definition of the variable is:

CORBA::ULong omniORB::traceLevel = 1; // The default value is 1

At the moment, the following trace levels are defined:

level 0 turn off all tracing and informational messages

level 1 informational messages only

level 2 the above plus configuration information

level 5 the above plus notifications when server threads are created or communica-
tion endpoints are shutdown

level 10-20 the above plus execution traces

level 25 the above plus hex dump of all data sent and received by the ORB via its
network connections.

The variable can be changed by assignment inside your applications. It can also be
changed by specifying the command-line option: -ORBtraceLevel <level> . For
instance:

$ eg2_impl -ORBtraceLevel 5



4.3. SERVER NAME 41

4.3 Server Name

Applications can optionally specified a name to identify the server process. At the mo-
ment, this name is only used by the host-based access control module. See section 7.5
for details.

The name is stored in the variable omniORB::serverName .

CORBA::String_var omniORB::serverName;

The variable can be changed by assignment inside your applications. It can also
be changed by specifying the command-line option: -ORBserverName <string> .

4.4 Object Keys

OmniORB2 uses a data type omniORB::objectKey to uniquely identify each object
implementation. This is an opaque data type and can only be manipulated by the
following functions:

void omniORB::generateNewKey(omniORB::objectKey &k);

omniORB::generateNewKey returns a new objectKey . The return value is
guaranteed to be unique among the keys generated during this program run. On
the platforms that have a realtime clock and unique process identifiers, a stronger
assertion can be made, i.e. the keys are guaranteed to be unique among all keys ever
generated on the same machine.

const unsigned int omniORB::hash_table_size;
int omniORB::hash(omniORB::objectKey& k);

omniORB::hash returns the hash value of an objectKey . The value returned by
this function is always between 0 and omniORB:hash table size - 1 inclusively.

omniORB::objectKey omniORB::nullkey();

omniORB::nullkey always returns the same objectKey value. This key is
guaranteed to hash to 0.

int operator==(const omniORB::objectKey &k1,const om-
niORB::objectKey &k2);
int operator!=(const omniORB::objectKey &k1,const om-
niORB::objectKey &k2);

ObjectKeys can be tested for equality using the overloaded operator== and
operator!= .

omniORB::seqOctets*
omniORB::keyToOctetSequence(const omniORB::objectKey &k1);

omniORB::objectKey
omniORB::octetSequenceToKey(const omniORB::seqOctets& seq);



42 CHAPTER 4. THE OMNIORB2 API

omniORB::keyToOctetSequence takes an objectKey and returns its exter-
nalised representation in the form of a sequence of octets. The same sequence can be
converted back to an objectKey using omniORB::octetSequenceToKey . If the
supplied sequence is not an objectKey , omniORB::octetSequenceToKey raises
a CORBA::MARSHALexception.

4.5 GIOP Message Size

omniORB2 sets a limit on the GIOP message size that can be sent or received. The
value can be obtained by calling:

size_t omniORB::MaxMessageSize();

and can be changed by:

void omniORB::MaxMessageSize(size_t newvalue);

or by the command-line option -ORBgiopMaxMsgSize .
The exact value is somewhat arbitrary. The reason such a limit exists is to pro-

vide some way to protect the server side from resource exhaustion. Think about the
case when the server receives a rogue GIOP(IIOP) request message that contains a se-
quence length field set to 2**31. With a reasonable message size limit, the server can
reject this rogue message straight away.

4.6 Initial Object Reference Bootstrapping

Starting from 2.6.0, a new mechanism is available for the ORB runtime to obtain the
initial object references to CORBA services. Previously, it is necessary to write the IOR
string of these services in the configuration file (section 1.2). Now the object references
can be obtained from a bootstrap service. The bootstrap service is a special object with
the object key ’INIT’ and the following interface2.:

// IDL
module CORBA {

interface InitialReferences {
Object get(in ORB::ObjectId id);
// returns the initial object reference of the service
// identified by <id>. For example the id for the COSS
// Naming service is "NameService".

ORB::ObjectIdList list();
// returns the list of service id that this agent knows of
// their initial object reference.

};
};

2This interface is first defined by Sun’s NEO and is in used in Sun’s JavaIDL



4.7. GIOP LOWEST COMMON DENOMINATOR MODE 43

By default, all omniORB2 servers, i.e. those applications with the BOA ini-
tialised, contains an instance of this object and is able to responds to remote invo-
cations. To prevent the ORB from instantiating this object, the command-line option
-BOAno bootstrap agent should be specified.

In particular, the Naming Service omniNames is able to respond to a query
through this interface and returns the object reference of its root context. In effect,
the bootstrap agent provides a level of indirection. All omniORB2 clients still have
to be supplied with the address of the bootstrap agent. However the information is
much easier to specify than a stringified IOR! Another advantage of this approach
is that it is completely compatiable with JavaIDL. This makes it possible for a client
written in JavaIDL to share with a omniORB2 server the same Naming Service.

The address of the bootstrap agent is given by the ORBInitialHost and
ORBInitialPort parameter in the omniORB configuration file (section 1.2). The
parameters can also be specified as command-line options (section 4.1). ORBIni-
tialHost is the host name and ORBInitialPort is the TCP/IP port number. The
parameter ORBInitialPort is optional. If it is not specified, port number 900 will
be used.

During initialisation, the ORB reads the parameters in the omniORB configura-
tion file. If the parameter NAMESERVICEis specified, the stringified IOR would be
used as the object reference of the root naming context. If the parameter is absent and
the parameter ORBInitialHost is present, the ORB would contact the bootstrap
agent at the address specified to obtain the root naming context when the application
calls resolve initial reference() . If neither the NAMESERVICEnor ORBIni-
tialHost is present, a call to resolve initial reference() returns a nil object.
Finally, the command line argument -ORBInitialHost overrides any parameters
in the configuration file. The ORB would always contact the bootstrap agent at the
address specified to obtain the root naming context.

Now we are ready to describe a simple way to set up omniNames.

1. Start omniNames for the first time on a machine (e.g. wobble):

$ omniNames -start 1234

2. Add to omniORB.cfg:

ORBInitialHost wobble

ORBInitialPort 1234

3. All omniORB2 applications will now be able to contact omniNames.

Alternatively, the command line options can be used, for example:
$ eg3 impl -ORBInitialHost wobble -ORBInitialPort 1234 &
$ eg3 clt -ORBInitialHost wobble -ORBInitialPort 1234

4.7 GIOP Lowest Common Denominator Mode

Sometimes, to cope with bugs in another ORB, it is necessary to disable various GIOP
and IIOP features in order to achieve interoperability. If the command line option



44 CHAPTER 4. THE OMNIORB2 API

-ORBlcdMode or the function omniORB::enableLcdMode() is called, the ORB en-
ters the so-called “lowest common denominator mode”. It bends over backwards to
cope with bugs in the ORB at the other end. This is purely a transitional measure. The
long term solution is to report the bugs to the other vendors and ask them to fix them
expediently.

By default, omniORB2 uses GIOP LOCATE REQUEST message to verify the
existence of an object prior to the first invocation. If another vendor’s ORB
is known not to be able to handle this GIOP message, set the variable om-
niORB::verifyObjectExistsAndType to 0 would disable this feature, and hence
achieve interoperability. The option can also be set via the command line option -
ORBverifyObjectExistsAndType .

4.8 Trapping omniORB2 Internal Errors

class fatalException {
public:

const char *file() const;
int line() const;
const char *errmsg() const;

};

When omniORB2 detects an internal inconsistency that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that involves
the ORB’s runtime. It is best to exit the program immediately. The exception structure
carries by omniORB::fatalException contains the exact location (the file name
and the line number) where the exception is raised. You are strongly encourage to file
a bug report and point out the location.

It may help to cause a core-dump and look at the stack trace to locate
where the exception was thrown. This can be done by setting the variable om-
niORB::abortOnInternalError to 1. The variable can also be set via the com-
mand line option -ORBabortOnInternalError .



Chapter 5

The Basic Object Adaptor (BOA)

This chapter describes the BOA implementation in omniORB2. The CORBA speci-
fication defines the Basic Object Adaptor as the entity that mediates between object
implementations and the ORB. Unfortunately, the BOA specification is incomplete
and does not address the multi-threading issues appropriately. The end result is that
different ORB vendors implement different extensions to their BOAs. Worse, the im-
plementation of the operations defined in the specification are different in different
ORBs. Recently, a new Object Adaptor specification (the Portable Object Adaptor-
POA) has been adopted and will replace the BOA as the standard Object Adaptor in
CORBA. The new specification recognises the compatibility problems of BOA and rec-
ommends that all BOAs should be considered propriety extensions. OmniORB2 will
support POA in future releases. Until then, you have to use the BOA to attach object
implementations to the ORB.

The rest of this chapter describes the interface of the BOA in detail. It is important
to recognise that the interface described below is omniORB2 specific and hence the
code using this interface is unlikely to be portable to other ORBs.

Unless it is stated otherwise, the term “object” will be used below to refer to object
implementations. This should not be confused with “object references” which are
handles held by clients.

5.1 BOA Initialisation

It takes two steps to put the BOA into service. The BOA has to be initialised using
BOAinit and activated using impl is ready .
BOAinit is a member of the CORBA::ORBclass. Its signature is:

BOA_ptr BOA_init(int & argc,
char ** argv,
const char * boa_identifier);

Typically, it is used in the startup code as follows:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2"); // line 1
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA"); // line 2

45



46 CHAPTER 5. THE BASIC OBJECT ADAPTOR (BOA)

The argv parameters may contain BOA options. These options will be removed
from the argv list when BOAinit returns. Other parameters in argv will remain.
The supported options are:

-BOAiiop port <port number (0-65535)> Use the port number to receive IIOP
requests. This option can be specified multiple times in the command line and
the BOA would be initialised to listen on all of the ports.

-BOAid <id (string)> If this option is used the id must be “omniORB2 BOA”.

-BOAiiop name port <hostname[:port number]> Similar to -BOAiiop port ,
this options tells the BOA the hostname and optionally the port number to use.

If the third argument of BOAinit is non-nil, it must be the string constant “om-
niORB2 BOA”. If the argument is nil, -BOAid must be present in argv .

If there is any problem in the initialisation process, a CORBA::INITIALIZE ex-
ception would be raised.

To register an object with the BOA, the method obj is ready should be called
with the return value of BOAinit as the argument.

BOAinit is thread-safe. It can be called multiple times and the same BOAptr
will be returned. However, only the argv in the first call will be scanned, the argu-
ment is ignored in subsequent calls.

BOAinit returns a pseudo object of type CORBA::BOAptr . Similar to
CORBA::Object ptr , the pointer can be managed using CORBA::BOAvar ,
BOA:: duplicate and CORBA::release . The pointer can be tested using
CORBA::is nil which returns true if the pointer is equivalent to the return value
of BOA:: nil .

After BOAinit is called, objects can be registered. However, incoming IIOP re-
quests would not be despatched until impl is ready is called.

class BOA {
public:

impl_is_ready(CORBA::ImplementationDef_ptr p = 0,
CORBA::Boolean NonBlocking = 0);

};

One of the common pitfall in using the BOA is to forget to call impl is ready. Until
this call returns, there is no thread listening on the port from which IIOP requests are
received. The remote client may hang because of this.

When impl is ready is called with no argument. The calling thread would be
blocked indefinitely in the function until impl shutdown (see below) is called. The
thread that is calling impl is ready is not used by the BOA to perform its inter-
nal functions. The BOA has its own set of threads to process incoming requests
and general housekeeping. Therefore, it is not necessary to have a thread blocked
in the call if it can be put into use elsewhere. For example, the main thread may call
impl is ready once in non-blocking mode (see below) and then enter the event loop
to handle the GUI frontend.

If non-blocking behaviour is needed, the NonBlocking argument should be set
to 1. For instance, if you creates a callback object, you might call impl is ready in



5.2. OBJECT REGISTRATION 47

non-blocking mode to tell the BOA to start receiving IIOP requests before sending the
callback object to the remote object. The first argument ImplementationDef ptr is
ignored by the BOA. Just set the argument to nil.

impl is ready is thread safe and can be called multiple times. Multiple threads
can be blocked in impl is ready .

5.2 Object Registration

Once the BOA is initialised, objects can be registered. The purpose of object registra-
tion is to let the BOA know of the existence of the object and to dispatch requests for
the object as upcalls into the object.

To register an object, the obj is ready function should be called.
obj is ready is a member function of the implementation skeleton class. The

function should be called only once for each object. The call should be made only
after the object is fully initialised.

The member function obj is ready of the BOA may also be used to register an
object. However, this function has been superseded by obj is ready and should
not be used in new application code.

5.3 Object Disposal

Once an object is registered, it is under the management of the BOA. To remove the
object from the BOA and to delete it (when it is safe to do so), the dispose function
should be called. dispose is a member function of the implementation skeleton
class. The function should be called only once for each object.

Notice the asymmetry in object instantiation and destruction. To instantiate an
object, the application code has to call the new operator. To remove the object, the
application should never call the delete operator on the object directly.

At the time the dispose call is made, there may be other threads invoking on the
object, the BOA ensures that all these calls are completed before removing the object
from its internal tables and calling the delete operator.

Internally, the BOA keeps a reference count on each object. Initially, the reference
count is 0. After a call to obj is ready , the reference count is 1. The BOA increases
the reference count by 1 before an upcall into the object is made. The count is de-
creased by 1 when the upcall returns. dispose decreases the reference count by 1, if
the reference count is 0, the delete operator is called. If the count is non-zero, the object
is marked as disposed. The object will be deleted when the reference count eventually
goes to zero.

The reference count is also increased by 1 for each object reference held in the
same address space. Hence, the delete operator will not be called when there are
outstanding object references in the same address space. To ensure that an object is
deleted, all its object references in the same address space should be released using
CORBA::release .

Unlike colocated object references, references held by clients in other address
spaces would not prevent the deletion of objects. If these clients invoke on the object



48 CHAPTER 5. THE BASIC OBJECT ADAPTOR (BOA)

after it is disposed, the system exception INV OBJREF would be raised. The differ-
ence in semantics is an undesirable side-effect of the current BOA implementation.
In future, colocated references will have the same semantics as remote references, i.e.
their presence will not delay the deletion of the objects.

Instead of dispose , it may be useful to have a method to deactivate the object
but not deleting it. This feature is not supported in the current BOA implementation.

5.4 BOA Shutdown

The BOA can be withdrawn from service using member functions impl shutdown
and destroy .

class BOA {
public:

void impl_shutdown();
void destroy();

};

impl shutdown and destroy are the inverse of impl is ready and BOAinit
respectively.

impl shutdown deactivates the BOA. When the call returns, all the inter-
nal threads and network connections will be shutdown. Any thread blocking in
impl is ready would be unblocked. After the call, no request from other address
spaces will be processed. In other words, the BOA will be in the same state as it was in
before impl is ready was called. For example, a remote client may hang if it tries to
connect to the server after impl shutdown was called because no thread is listening
on the IIOP port.

impl shutdown does not wait for incoming requests to complete before it closes
the network connections. The remote clients will see the network connections shut-
down and the replies may not reach them even if the upcalls have been completed.
Therefore, if the application is to define an operation in an IDL interface to shutdown
the BOA, the operation should be defined as an oneway operation.

impl shutdown is thread-safe and can be called multiple times. The call is silently
ignored if the BOA has already been shutdown. After impl shutdown is called, the
BOA can be reactivated by another call to impl is ready .

It should be noted that impl shutdown does not affect outgoing network connec-
tions. That is, clients in the same address space will still be able to make calls to objects
in other address spaces.

While remote requests are not delivered after impl shutdown is called, the cur-
rent implementation does not stop colocated clients from calling the objects. In future,
colocated clients will exhibit the same behaviour as remote clients.

destroy permanently removed the BOA. This function will call impl shutdown
implicitly if it has not been called. When this call returns, the IIOP port(s) held by
the BOA will be freed. Remote clients will see their requests refused by the operating
system when they try to open a connection to the IIOP port(s).

After destroy is called, the BOA should not be used. If there is any objects still
registered with the BOA, the objects should not be invoked afterwards. The objects



5.5. UNSUPPORTED FUNCTIONS 49

are not disposed. Invoking on the objects after destroy would result in undefined
behaviour. Initialisation of another BOA using BOAinit is not supported. The be-
haviour of BOAinit after this call is undefined.

5.5 Unsupported functions

The following member functions are not implemented. Calling these functions do not
have any effect.

� Object ptr create(...)

� ReferenceData* get id(Object ptr)

� Principal ptr get principal(Object ptr,Environment ptr)

� void change implementation(Object ptr, Implementation-
Def ptr)

� void deactivate impl(ImplementationDef ptr)

� void deactivate obj(Object ptr)

5.6 Loading Objects On Demand

Since 2.5.0, there is limited support for loading objects on demand. An application
can register a handler for loading objects dynamically. The handler should have the
signature omniORB::loader::mapKeyToObject t :

namespace omniORB {
...
class loader {
public:

typedef CORBA::Object_ptr (*mapKeyToObject_t) (const objec-
tKey& key);

static void set(mapKeyToObject_t NewKeyToObject);
};

};

When the ORB cannot locate the target object in this address space, it calls the
handler with the object key of the target. The handler is expected to instantiate the
object, either in this address space or in another address space, and returns the object
reference to the newly instantiated object. The ORB will then reply with a LOCA-
TION FORWARD message to instruct the client to retry using the object reference
returned by the handler. When the handler returns, the ORB assumes ownership of
the returned value. It will call CORBA::release() on the returned value when it has
finished with it.

The handler may be called concurrently by multi-threads. Hence it must be thread-
safe.



50 CHAPTER 5. THE BASIC OBJECT ADAPTOR (BOA)

If the handler cannot load the target object, it should return CORBA::Object:: nil().
The object will be treated as non-existing.

The application registers the handler with the ORB at runtime using om-
niORB::loader::set(). This function is not thread-safe. Calling this function again will
replace the old handler with the new one.



Chapter 6

Interface Type Checking

This chapter describes the mechanism used by omniORB2 to ensure type safety when
object references are exchanged across the network. This mechanism is handled com-
pletely within the ORB. There is no programming interface visible at the application
level. However, for the sake of diagnosing the problem when there is a type violation,
it is useful to understand the underlying mechanism in order to interpret the error
conditions reported by the ORB.

6.1 Introduction

In GIOP/IIOP, an object reference is encoded as an Interoperable Object Reference
(IOR) when it is sent across a network connection. The IOR contains a Repository
ID (REPOID) and one or more communication profiles. The communication profiles
describe where and how the object can be contacted. The REPOID is a string which
uniquely identifies the IDL interface of the object.

Unless the ID pragma is specified in the IDL, the ORB generates the REPOID string
in the so-called OMG IDL Format1. For instance, the REPOID for the Echo interface
used in the examples of chapter 2 is IDL:Echo:1.0 .

When interface inheritance is used in the IDL, the ORB always sends the REPOID
of the most derived interface. For example:

// IDL
interface A {

...
};
interface B : A {

...
};
interface C {

void op(in A arg);
};

// C++
C_ptr server;

1For further details of the repository ID formats, see section 6.6 in the CORBA specification.

51



52 CHAPTER 6. INTERFACE TYPE CHECKING

B_ptr objB;
A_ptr objA = objB;
server->op(objA); // Send B as A

In the example, the operation C::op accepts an object reference of type A. The real
type of the reference passed to C::op is B, which inherits from A. In this case, the
REPOID of B, and not that of A, is sent across the network.

The GIOP/IIOP specification allows an ORB to send a null string in the REPOID
field of an IOR. It is up to the receiving end to work out the real type of the object.
OmniORB2 never sends out null strings as REPOID. However, it may receive null
REPOID from other ORBs. In that case, it will use the mechanism described below to
ensure type safety.

6.2 Basic Interface Type Checking

The ORB is provided with the interface information by the stubs via the proxyObject-
Factory class. For an interface A, the stub of A contains a A proxyObjectFactory class.
This class is derived from the proxyObjectFactory class. The proxyObjectFactory is an
abstract class which contains 3 virtual functions.

class proxyObjectFactory {
public:

virtual const char *irRepoId() const = 0;

virtual _CORBA_Boolean is_a(const char *base_repoId) const = 0;

virtual CORBA::Object_ptr newProxyObject(Rope *r,
CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList
*profiles,
CORBA::Boolean re-

lease) = 0;

};

� irRepoId returns the REPOID of the interface.

� is a returns true(1) if the argument is the REPOID of the interface itself or it is
that of its base interfaces.

� newProxyObject returns an object reference based on the information sup-
plied in the arguments.

A single instance of every * proxyObjectFactory is instantiated at runtime. The
instances are entered into a list inside the ORB. The list constitutes all the interface
information known to the ORB.



6.3. INTERFACE INHERITANCE 53

When the ORB receives an IOR from the network, it unmarshals and extracts the
REPOID from the IOR. At this point, the ORB has two pieces of information in hand:

1. The REPOID of the object reference received from the network.

2. The REPOID the ORB is expecting. This comes from the unmarshal function that
tells the ORB to receive the object reference.

Using the REPOID received, the ORB searches its proxyObjectFactory list for an
exact match. If there is an exact match, all is well because the runtime can use the
is a method of the proxyFactory to check if the expected REPOID is the same as the
received REPOID or if it is that of its base interfaces. If the answer is positive, the IOR
passes the type checking test and the ORB can proceed to create an object reference in
its own address space to represent the IOR.

However, the ORB may fail to find a match in its proxyObjectFactory list. This
means that the ORB has no local knowledge of the REPOID. There are three possible
causes:

1. The remote end is another ORB and it sends a null string as the REPOID.

2. The ORB is expecting an object reference of interface A. The remote end sends
the REPOID of B which is an interface that inherits from A. The stubs of A is
linked into the executable but the stubs of B is not.

3. The remote end has sent a duff IOR.

To handle this situation, the ORB must find out the type information dynamically.
This is explained in the next section.

6.3 Interface Inheritance

When the ORB receives an IOR of interface type B when it expects the type to be A, it
must find out if B inherits from A. When the ORB has no local knowledge of the type
B, it must work out the type of B dynamically.

The CORBA specification defines an Interface Repository (IR) from which IDL in-
terfaces can be queried dynamically. In the above situation, the ORB could contact the
IR to find out the type of B. However, this approach assumes that an IR is always avail-
able and contains the up-to-date information of all the interfaces used in the domain.
This assumption may not be valid in many applications.

An alternative is to use the is a operation to work out the actual type of an object.
This approach is simpler and more robust than the previous one because no 3rd party
is involved.

class Object{
CORBA::Boolean _is_a(const char* type_id);

};



54 CHAPTER 6. INTERFACE TYPE CHECKING

The is a operation is part of the CORBA::Object interface and must be imple-
mented by every object. The input argument is a REPOID. The function returns true(1)
if the object is really an instance of that type, including if that type is a base type of the
most derived type of that object.

In the situation above, the ORB would invoke the is a operation on the object
and ask if the object is of type A before it processes any application invocation on the
object.

Notice that the is a call is not performed when the IOR is unmarshalled. It is
performed just prior to the first application invocation on the object. This leads to
some interesting failure mode if B reports that it is not an A. Consider the following
example:

\\ IDL
interface A { ... };
interface B : A { ... };
interface D { ... };
interface C {

A op1();
Object op2();

};

\\ C++

C_ptr objC;
A_ptr objA;
CORBA::Object_ptr objR;

objA = objC->op1(); // line 1
(void) objA->_non_existent(); // line 2

objR = objC->op2(); // line 3
objA = A::_narrow(objR); // line 4

If the stubs of A,B,C,D are linked into the executable and:

Case 1 C::op1 and C::op2 returns a B. Line 1-4 complete successful. The remote
object is only contacted at line 2.

Case 2 C::op1 and C::op2 returns a D. This condition only occurs if the runtime of
the remote end is buggy. The ORB raises a CORBA::Marshal exception at line 1
because it knows it has received an interface of the wrong type.

If only the stub of A is linked into the executable and:

Case 1 C::op1 and C::op2 returns a B. Line 1-4 completes successful. When line 2 and
4 is executed, the object is contacted to ask if it is a A.

Case 2 C::op1 and C::op2 returns a D. This condition only occurs if the runtime of the
remote end is buggy. Line 1 completes and no exception is raised. At line 2, the



6.3. INTERFACE INHERITANCE 55

object is contacted to ask if it is a A. If the answer is no, a CORBA::INV OBJREF
exception is raised. The application will also see a CORBA::INV OBJREF at line
4.



56 CHAPTER 6. INTERFACE TYPE CHECKING



Chapter 7

Connection Management

This chapter describes how omniORB2 manages network connections.

7.1 Background

In CORBA, the ORB is the “middleware” that allows a client to invoke an operation
on an object without regard to its implementation or location. In order to invoke an
operation on an object, a client needs to “bind” to the object by acquiring its object
reference. Such a reference may be obtained as the result of an operation on another
object (such as a naming service) or by conversion from a stringified representation
previously generated by the same ORB. If the object is in a different address space, the
binding process involves the ORB building a proxy object in the client’s address space.
The ORB arranges for invocations on the proxy object to be transparently mapped to
equivalent invocations on the implementation object.

For the sake of interoperability, CORBA mandates that all ORBs should support
IIOP as the means to communicate remote invocations over a TCP/IP connection.
IIOP is asymmetric with respect to the roles of the parties at the two ends of a connec-
tion. At one end is the client which can only initiate remote invocations. At the other
end is the server which can only receive remote invocations.

Notice that in CORBA, as in most distributed systems, remote bindings are es-
tablished implicitly without application intervention. This provides the illusion that
all objects are local, a property known as “location transparency”. CORBA does not
specify when such bindings should be established or how they should be multiplexed
over the underlying network connections. Instead, ORBs are free to implement im-
plicit binding by a variety of means.

The rest of this chapter describes how omniORB2 manages network connections
and the programming interface to fine tune the management policy.

7.2 The Model

OmniORB2 is designed from the ground up to be fully multi-threaded. The objec-
tive is to maximise the degree of concurrency and at the same time eliminate any
unnecessary thread overhead. Another objective is to minimise the interference by

57



58 CHAPTER 7. CONNECTION MANAGEMENT

the activities of other threads on the progress of a remote invocation. In other words,
thread “cross-talk” should be minimised within the ORB. To achieve these objectives,
the degree of multiplexing at every level is kept to a minimum.

On the client side of a connection, the thread that invokes on a proxy object drives
the IIOP protocol directly and blocks on the connection to receive the reply. On the
server side, a dedicated thread blocks on the connection. When it receives a request, it
performs the up-call to the object and sends the reply when the upcall returns. There
is no thread switching along the call chain.

With this design, there is at most one call in-flight at any time in a connection. If
there is only one connection, concurrent invocations to the same remote address space
would have to be serialised. To eliminate this limitation, omniORB2 implements a
dynamic policy- multiple connections to the same remote address space are created
on demand and cached when there are concurrent invocations in progress.

To be more precise, a network connection to another address space is only estab-
lished when a remote invocation is about to be made. Therefore, there may be one or
more object references in one address space that refers to objects in a different address
space but unless the application invokes on these objects, no network connection is
made. The maximum number of connections opened to another address space is 5
by default. Since 2.6.0, this parameter can be changed by setting the variable om-
niORB::maxTcpConnectionPerServer before calling ORBinit .

It is wasteful to leave a connection opened when it has been left unused for a
considerable time. Too many idle connections could block out new connections to a
server when it runs out of spare communication channels. For example, most unix
platforms has a limit on the number of file handles a process can open. 64 is the usual
default limit. The value can be increased to a maximum of a thousand or more by
changing the “ulimit” in the shell.

7.3 Idle Connection Shutdown

Inside the ORB, two separate threads are dedicated to scan for idle connections. One
thread is responsible for outgoing connections and the other looks after incoming con-
nections. The thread for incoming connections is only created when the BOA is ini-
tialised because only then will there be any incoming connections.

The threads scan all opened connections once every “scan period”. If a connec-
tion is found to be idle for two consecutive periods, it will be closed. The threads
use mark-and-swipe to detect if a connection is idle. When a connection is checked, a
status flag attached to the connection is set. Every remote invocation using that con-
nection would clear the flag. So if a connection’s status flag is found to be set in two
consecutive scans, the connection has been idled during the scan period.

The scan period for incoming and outgoing connections can be individually con-
trolled by the following API:

class omniORB {

public:



7.4. INTEROPERABILITY CONSIDERATIONS 59

enum idleConnType { idleIncoming, idleOutgoing };

static void idleConnectionScanPeriod(idleConnType direction,
CORBA::ULong sec);

static CORBA::ULong idleConnectionScanPeriod(idleConnType direction);

};

The current value of the scan period (in seconds) is returned by the read-only
idleConnectionScanPeriod . The scan period can be changed by the write-only
idleConnectionScanPeriod . The scan period can be changed at any time but the
write function is non-thread safe. Concurrent calls to this function could result in
undefined behaviour. The scan periods may also be specified on the command-line
by using the options -ORBinConScanPeriod and -ORBoutConScanPeriod . See
section 4.1.

The default value for both incoming and outgoing connections is 30 seconds. The
scan can be disabled completely by setting the scan period to 0.

7.4 Interoperability Considerations

The IIOP specification allows both the client and the server to shutdown a connec-
tion unilaterally. When one end is about to shutdown a connection, it should send a
closeConnection message to the other end. It should also make sure that the message
will reach the other end before it proceeds to shutdown the connection.

The client should distinguish between an orderly and an abnormal connection
shutdown. When a client receives a closeConnection message before the connection is
closed, the condition is an orderly shutdown. If the message is not received, the con-
dition is an abnormal shutdown. In an abnormal shutdown, the ORB should raise a
COMMFAILURE exception whereas in an orderly shutdown, the ORB should not raise
an exception and should try to re-establish a new connection transparently.

OmniORB2 implements this semantics completely. However, it is known that
some ORBs are not (yet) able to distinguish between an orderly and an abnormal shut-
down. Usually this is manifested as the client in these ORBs seeing a COMMFAILURE
occasionally when connected to an omniORB2 server. The workaround is either to
catch the exception in the application code and retries or to turn off the idle connec-
tion shutdown inside the omniORB2 server.

7.5 Connection Acceptance

OmniORB2 provides the hook to implement a connection acceptance policy. Inside
the ORB runtime, a thread is dedicated to receive new connections. When the thread
is given the handle of a new connection by the operating system, it calls the policy
module to decide if the connection can be accepted. If the answer is yes, the ORB will
start serving requests coming in from that connection. Otherwise, the connection is
shutdown immediately.



60 CHAPTER 7. CONNECTION MANAGEMENT

There can be a number of policy module implementations. The basic one is a
dummy module which just accepts every connection.

In addition, a host-based access control module is available on unix platforms.
The module uses the IP address of the client to decide if the connection can be ac-
cepted. The module is implemented using tcp wrappers 7.6. The access control policy
can be defined as rules in two access control files: hosts.allow and hosts.deny .
The syntax of the rules is described in the manual page hosts access(5) which
can be found in appendix A. The syntax defines a simple access control language that
is based on client (host name/address, user name), and server (process name, host
name/address) patterns. When searching for a match on the server process name,
the ORB uses the value of omniORB::serverName . ORBinit uses the argument
argv[0] to set the default value of this variable. This can be overridden by the ap-
plication by passing the option: -ORBserverName <string> to ORBinit .

The default location of the access control files is /etc . This can be overridden by
the extra options in omniORB.cfg . For instance:

# omniORB configuration file - extra options
#

GATEKEEPER_ALLOWFILE /project/omni/var/hosts.allow

GATEKEEPER_DENYFILE /project/omni/var/hosts.deny

As each policy module is implemented as a separate library, the choice of policy
module is determined at program linkage time.

For instance, if the host-based access control module is in use:

% eg1 -ORBtraceLevel 2
omniORB2 gateKeeper is tcpwrapGK 1.0 - based on tcp_wrappers_7.6
I said,"Hello!". The Object said,"Hello!"

Whereas if the dummy module is in use:

% eg1 -ORBtraceLevel 2
omniORB2 gateKeeper is not installed. All incoming are accepted.
I said,"Hello!". The Object said,"Hello!"



Chapter 8

Proxy Objects

When a client acquires a reference to an object in another address space, omniORB2
creates a local representation of the object and returns a pointer to this object as its
object reference. The local representation is known as the proxy object.

The proxy object maps each IDL operation into a method to deliver invocations
to the remote object. The method implements argument marshalling using the ORB
runtime. When the ORB runtime detects an error condition, it may raise a system
exception. These exceptions will normally be propagated by the proxy object to the
application code. However, there may be applications that prefer to have the system
exceptions trapped in the proxy object. For these applications, it is possible to install
exception handlers for individual proxy object or all proxy objects. The API to do this
will be explained in this chapter.

As described in section 6.2, proxy objects are created by instances of the proxy-
ObjectFactory class. For each IDL interface A, the stubs of A contains a derived class
of proxyObjectFactory (A proxyObjectFactory). This derived class is responsible for
creating proxy objects for A. This process is completely transparent to the applica-
tion. However, there may be applications that require greater control on the creation
of proxy objects or even want to change the behavior of the proxy objects. To cater for
this requirement, applications can override the default proxyObjectFactories and in-
stall their own versions of proxyObjectFactories. The way to do this will be explained
in this chapter.

8.1 System Exception Handlers

By default, all system exceptions, with the exception of CORBA::TRANSIENT,
are propagated by the proxy objects to the application code. Some applications
may prefer to trap these exceptions within the proxy objects so that the applica-
tion logic does not have to deal with the error condition. For example, when a
CORBA::COMM FAILURE is received, an application may just want to retry the in-
vocation until it finally succeeds. This approach is useful for objects that are persistent
and their operations are idempotent.

OmniORB2 provides a set of functions to install exception handlers. Once they
are installed, proxy objects will call these handlers when the target system ex-
ceptions are raised by the ORB runtime. Exception handlers can be installed for

61



62 CHAPTER 8. PROXY OBJECTS

CORBA::TRANSIENT, CORBA::COMM FAILURE and CORBA::SystemException.
The last handler covers all system exceptions other than the two covered by the first
two handlers. An exception handler can be installed for individual proxy object or it
can be installed for all proxy objects in the address space.

8.1.1 CORBA::TRANSIENT handlers

When a CORBA::TRANSIENT exception is raised by the ORB runtime, the de-
fault behaviour of the proxy objects is to retry indefinitely until the operation
succeeds. Successive retries will be delayed progressively by multiples of om-
niORB::defaultTransientRetryDelayIncrement . The delay will be limited
to a maximum specified by omniORB::defaultTransientRetryDelayMaximum .
The unit of both values are in seconds.

The ORB runtime will raised CORBA::TRANSIENT under the following condi-
tions:

1. When a cached network connection is broken while an invocation is in progress.
The ORB will try to open a new connection at the next invocation.

2. When the proxy object has been redirected by a location forward message by
the remote object to a new location and the object at the new location cannot be
contacted. In addition to the CORBA::TRANSIENT exception, the proxy object
also resets its internal state so that the next invocation will be directed at the
original location of the remote object.

3. When the remote object reports CORBA::TRANSIENT.

Applications can override the default behaviour by installing their own exception
handler. The API to do so is summarised below:

class omniORB {

public:

typedef CORBA::Boolean (*transientExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::TRANSIENT& ex);

static void installTransientExceptionHandler(void* cookie,
transientExceptionHan-

dler_t fn);

static void installTransientExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
transientExceptionHan-

dler_t fn);

static CORBA::ULong defaultTransientRetryDelayIncrement;
static CORBA::ULong defaultTransientRetryDelayMaximum;



8.1. SYSTEM EXCEPTION HANDLERS 63

}

The overloaded functions installTransientExceptionHandler can be used
to install the exception handlers for CORBA::TRANSIENT.

Two overloaded forms are available. The first form install an exception handler for
all object references except for those which have an exception handler installed by the
second form, which takes an addition argument to identify the target object reference.
The argument cookie is an opaque pointer which will be passed on by the ORB when
it calls the exception handler.

An exception handler will be called by proxy objects with three arguments. The
cookie is the opaque pointer registered by installTransientExceptionHan-
dler . The argument n retries is the number of times the proxy has called this han-
dler for the same invocation. The argument ex is the value of the exception caught.
The exception handler is expected to do whatever is appropriate and returns a boolean
value. If the return value is TRUE(1), the proxy object would retry the operation again.
If the return value is FALSE(0), the CORBA::TRANSIENT exception would be propa-
gated into the application code.

The following sample code installs a simple exception handler for all objects and
for a specific object:

CORBA::Boolean my_transient_handler1 (void* cookie,
CORBA::ULong retries,
const CORBA::TRANSIENT& ex)

{
cerr << ’’transient handler 1 called.’’ << endl;
return 1; // retry immediately.

}

CORBA::Boolean my_transient_handler2 (void* cookie,
CORBA::ULong retries,
const CORBA::TRANSIENT& ex)

{
cerr << ’’transient handler 2 called.’’ << endl;
return 1; // retry immediately.

}

static Echo_ptr myobj;

void installhandlers()
{

omniORB::installTransientExceptionHandler(0,my_transient_handler1);
// All proxy objects will call my_transient_handler1 from now on.

omniORB::installTransientExceptionHandler(myobj,0,my_transient_handler2);
// The proxy object of myobj will call my_transient_handler2 from now on.

}



64 CHAPTER 8. PROXY OBJECTS

8.1.2 CORBA::COMM FAILURE

When the ORB runtime fails to establish a network connection to the remote object and
none of the conditions listed above for raising a CORBA::TRANSIENT is applicable,
it raises a CORBA::COMM FAILURE exception.

The default behaviour of the proxy objects is to propagate this exception to the
application.

Applications can override the default behaviour by installing their own exception
handlers. The API to do so is summarised below:

class omniORB {

public:

typedef CORBA::Boolean (*commFailureExceptionHan-
dler_t)(void* cookie,

CORBA::ULong n_retries,
const CORBA::COMM_FAILURE& ex);

static void installCommFailureExceptionHandler(void* cookie,
commFailureException-

Handler_t fn);

static void installCommFailureExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
commFailureExceptionHandler_t
fn);

}

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

8.1.3 CORBA::SystemException

To report an error condition, the ORB runtime may raise other SystemExceptions. If
the exception is neither CORBA::TRANISENT nor CORBA::COMM FAILURE, the de-
fault behaviour of the proxy objects is to propagate this exception to the application.

Application can override the default behaviour by installing their own exception
handlers. The API to do so is summarised below:

class omniORB {

public:

typedef CORBA::Boolean (*systemExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::SystemException& ex);

static void installSystemExceptionHandler(void* cookie,
systemExceptionHan-

dler_t fn);



8.2. PROXY OBJECT FACTORIES 65

static void installSystemExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
systemExceptionHan-

dler_t fn);
}

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

8.2 Proxy Object Factories

This section describes how an application can control the creation or change the be-
haviour of proxy objects.

8.2.1 Background

For each interface A, its stub contains a proxy factory
class- A proxyObjectFactory . This class is derived from
CORBA::proxyObjectFactory and implements three virtual functions:

class A_proxyObjectFactory : public virtual CORBA::proxyObjectFactory {
public:

virtual const char *irRepoId() const;

virtual _CORBA_Boolean is_a(const char *base_repoId) const;

virtual CORBA::Object_ptr newProxyObject(Rope *r,
CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList
*profiles,
CORBA::Boolean release);

};

As described in chapter 6, the functions allow the ORB runtime to perform type
checking. The function newProxyObject creates a proxy object for A based on its
input arguments. The return value is a pointer to the class proxy A which is au-
tomatically re-casted into a CORBA::Object ptr . proxy A implements the proxy
object for A:

class _proxy_A : public virtual A {
public:

_proxy_A (Rope *r,
CORBA::Octet *key,
size_t keysize,IOP::TaggedProfileList *profiles,



66 CHAPTER 8. PROXY OBJECTS

CORBA::Boolean release);
virtual ˜_proxy_A();

// plus other internal functions.

};

The stub of A guarantees that exactly one instance of A proxyObjectFactory
is instantiated when an application is executed. The constructor of
A proxyObjectFactory , via its base class proxyObjectFactory links the
instance into the ORB’s proxy factory list.

Newly instantiated proxy object factories are always entered at the front of the
ORB’s proxy factory list. Moreover, when the ORB searches for a match on the
type, it always stops at the first match. In other words, when additional instances
of A proxyObjectFactory or derived classes of it are created, the last instantiation
will override earlier instantiations to be the proxy factory selected to create proxy ob-
jects of A. This property can be used by an application to install its own proxy object
factories.

8.2.2 An Example

Using the Echo example in chapter 2 as the basis, one can tell the ORB to use a modi-
fied proxy object class to create proxy objects. The steps involved are as follows:

8.2.2.1 Define a new proxy class

We define a new proxy class to cache the result of the last invocation of echoString .

class _new_proxy_Echo : public virtual _proxy_Echo {
public:

_new_proxy_Echo (Rope *r,
CORBA::Octet *key,
size_t keysize,IOP::TaggedProfileList *profiles,
CORBA::Boolean release)

: _proxy_Echo(r,key,keysize,profiles,release),
omniObject(Echo_IntfRepoID,r,key,keysize,profiles,release)

{
// You have to look at the _proxy_Echo class and copy from its
// ctor all the explicit ctor calls to its base member.

}
virtual ˜_new_proxy_Echo() {}

virtual char* echoString(const char* mesg) {
//
// Only calls the remote object if the argument is differ-

ent from the
// last invocation.

omni_mutex_lock sync(lock);
if ((char*)last_arg) {



8.2. PROXY OBJECT FACTORIES 67

if (strcmp(mesg,(char*)last_arg) == 0) {
return CORBA::string_dup(last_result);

}
}
char* res = _proxy_Echo::echoString(mesg);
last_arg = mesg;
last_result = (const char*) res;
return res;

}

private:
omni_mutex lock;
CORBA::String_var last_arg;
CORBA::String_var last_result;

};

8.2.2.2 Define a new proxy factory class

Next, we define a new proxy factory class to instantiate new proxy Echo as proxy
objects for Echo .

class _new_Echo_proxyObjectFactory : public vir-
tual Echo_proxyObjectFactory
{
public:

_new_Echo_proxyObjectFactory () {}
virtual ˜_new_Echo_proxyObjectFactory() {}

// Only have to override newProxyObject
virtual CORBA::Object_ptr newProxyObject(Rope *r,

CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList *pro-

files,
CORBA::Boolean re-

lease) {
_new_proxy_Echo *p = new _new_proxy_Echo(r,key,keysize,profiles,release);
return p;

}
};

Finally, we have to instantiate a single instance of the new proxy factory in the
application code.

int main(int argc, char** argv)
{

// Other initialisation steps

_new_Echo_proxyObjectFactory* f = new _new_Echo_proxyObjectFactory;

// Use the new operator to instantiate the proxy fac-
tory and never



68 CHAPTER 8. PROXY OBJECTS

// call the delete operator on this instance.

// From this point onwards, _new_proxy_Echo will be used to create
// proxy objects for Echo.

}

8.2.3 Further Considerations

Notice that the ORB may call newProxyObject multiple times to create proxy objects
for the same remote object. In other words, the ORB does not guarantee that only
one proxy object is created for each remote object. For applications that require this
guarantee, it is necessary to check within newProxyObject whether a proxy object
has already been created for the current request. If the argument Rope* r points
to the same structure and the content of the sequence CORBA::Octet* key is the
same, then an existing proxy object can be returned to satisfy the current request. Do
not forget to call CORBA::duplicate() before returning the object reference.

newProxyObject may be called concurrently by different threads within the
ORB. Needless to say, the function must be thread-safe.



Chapter 9

Type Any and TypeCode

The CORBA specification provides for a type that can hold the value of any OMG
IDL type. This type is known as type Any. The OMG also specifies a pseudo-object,
TypeCode, that can encode a description of any type specifiable in OMG IDL.

In this chapter, an example demonstrating the use of type Any is presented. This
is followed by sections describing the behaviour of type Any and TypeCode in om-
niORB2. For further information on type Any, refer to the C++ Mapping section of the
CORBA 2 specification [OMG99a], and for more information on TypeCode, refer to the
Interface Repository chapter in the CORBA core section of the CORBA 2 specification.

WARNING: Since 2.8.0, omniORB2 has been updated to CORBA 2.3. In order
to comply with the 2.3 specification, it is necessary to change the semantics of the
extraction of string, object reference and typecode from an Any. The memory of the ex-
tracted values of these types now belong to the Any value. The storage is freed when
the Any value is deallocated. Previously the extracted value is a copy and the ap-
plication is responsible to release the storage. It is not possible to detect the old us-
age at compile time. In particular, unmodified code that uses the affected Any ex-
traction operators would most certainly cause runtime errors to occur. To smooth
the transition from the old usage to the new, an ORB configuration variable om-
niORB::omniORB 27 CompatibleAnyExtraction can be set to revert the any ex-
traction operators to the old semantics.

9.1 Example using type Any

Before going through this example, you should make sure that you have read and
understood the examples in chapter 2. The source code for this example is included
in the omniORB2 distribution, in the directory src/examples/anyExample. A listing
of the source code is provided at the end of this chapter.

9.1.1 Type Any in IDL

Type Any allows one to delay the decision on the type used in an operation until
run-time. To use type any in IDL, use the keyword any , as in the following example:

// IDL

69



70 CHAPTER 9. TYPE ANY AND TYPECODE

interface anyExample {
any testOp(in any mesg);

};

The operation testOp() in this example can now take any value expressible in
OMG IDL as an argument, and can also return any type expressible in OMG IDL.

Type Any is mapped into C++ as the type CORBA::Any . When passed as an argu-
ment or as a result of an operation, the following rules apply:

In InOut Out Return
const CORBA::Any& CORBA::Any& CORBA::Any*& CORBA::Any*

So, the above IDL would map to the following C++

// C++

class anyExample_i : public virtual _sk_anyExample {
public:

anyExample_i() { }
virtual ˜anyExample_i() { }
virtual CORBA::Any* testOp(const CORBA::Any& a);

};

9.1.2 Inserting and Extracting Basic Types from an Any

The question now arises as to how values are inserted into and removed from an Any.
This is achieved using two overloaded operators: <<= and >>= .

Two insert a value into an Any, the <<= operator is used, as in this example:

// C++

CORBA::Any an_any;
CORBA::Long l = 100;
an_any <<= l;

Note that the overloaded <<= operator has a return type of void .
To extract a value, the >>= operator is used, as in this example (where the Any

contains a long):

// C++

CORBA::Long l;
an_any >>= l;

cout << "This is a long: " << l << endl;



9.1. EXAMPLE USING TYPE ANY 71

The overloaded >>= operator returns a CORBA::Boolean. If an attempt is made
to extract a value from an Any when it contains a different value (e.g. an attempt to
extract a long from an Any containing a double), the overloaded >>= operator will
return False; otherwise it will return True. Thus, a common tactic to extract values
from an Any is as follows:

// C++

CORBA::Long l;
CORBA::Double d;
const char* str; // From CORBA 2.3 onwards, uses const char*

// instead of char*.

if (an_any >>= l) {
cout << "Long: " << l << endl;

}
else if (an_any >>= d) {

cout << "Double: " << d << endl;
}
else if (an_any >>= str) {

cout << "String: " << str << endl;
// Since 2.8.0 the storage of the extracted string is still
// owned by the any.
// In pre-omniORB 2.8.0 releases, the string returned is a copy.

}
else {

cout << "Unknown value." << endl;
}

9.1.3 Inserting and Extracting Constructed Types from an Any

It is also possible to insert and extract constructed types and object references from an
Any. omniidl2 will generate insertion and extraction operators for the constructed
type. Note that it is necessary to specify the -a command-line flag when running
omniidl2 in order to generate these operators. The following example illustrates the
use of constructed types with type Any:

// IDL

struct testStruct {
long l;
short s;

};

interface anyExample {
any testOp(in any mesg);

};



72 CHAPTER 9. TYPE ANY AND TYPECODE

Upon compiling the above IDL with omniidl2 -a , the following overloaded op-
erators are generated:

1. void operator<<=(CORBA::Any&, const testStruct& )

2. void operator<<=(CORBA::Any&, testStruct* )

3. CORBA::Boolean operator>>=(const CORBA::Any&, const test-
Struct*&)

Operators of this form are generated for all constructed types, and for interfaces.
The first operator, (1) , copies the constructed type, and inserts it into the Any. The

second operator, (2) , inserts the constructed type into the Any, and then manages it.
Note that if the second operator is used, the Any consumes the constructed type, and
the caller should not used the pointer to access the data after insertion. The following
is an example of how to insert a value into an Any using operator (1) :

// C++

CORBA::Any an_any;

testStruct t;
t.l = 456;
t.s = 8;

an_any <<= t;

The third operator, (3) , is used to extract the constructed type from the Any, and
can be used as follows:

const testStruct* tp; // From CORBA 2.3 onwards, use
// const testStruct* instead of testStruct*

if (an_any >>= tp) {
cout << "testStruct: l: " << tp->l << endl;
cout << " s: " << tp->s << endl;

}
else {

cout << "Unknown value contained in Any." << endl;
}

As with basic types, if an attempt is made to extract a type from an Any that does
not contain a value of that type, the extraction operator returns False. If the Any does
contain that type, the extraction operator returns True. If the extraction is successful,
the caller’s pointer will point to memory managed by the Any. The caller must not
delete or otherwise change this storage, and should not use this storage after the con-
tents of the Any are replaced (either by insertion or assignment), or after the Any has



9.2. TYPE ANY IN OMNIORB2 73

been destroyed. In particular, management of the pointer should not be assigned to a
var type.

WARNING!!! In pre-omniORB 2.8.0 releases, it is unclear in the CORBA spec-
ification whether or not object references should be managed by an Any. The om-
niORB2 implementation leaves management of an extracted object reference to the
caller. Therefore, the programmer should release object references and TypeCodes
that have been extracted from an Any. The same also applies to string extraction.
CORBA 2.3 has clarified this issue and decreed that the management of an extracted
object reference still belongs to the Any! Since 2.8.0, the omniORB2 implementation
conforms to the CORBA 2.3 specification. For backward compatibility, the runtime
variable omniORB::omniORB 27 CompatibleAnyExtraction can be set to 1 to
get back the old behaviour. Notice that this should be used as a transitional measure
and in the long run, applications should be written to use the new behaviour.

If the extraction fails, the caller’s pointer will be set to point to null.
Note that there are special rules for inserting and extracting arrays (using forany

types), and for inserting and extracting booleans, octets, chars, and bounded strings.
Please refer to the C++ Mapping chapter of the CORBA 2 specification [OMG99a] for
further information.

9.2 Type Any in omniORB2

This section contains some notes on the use and behaviour of type Any in omniORB2.

Generating Insertion and Extraction Operators. To generate type Any insertion and
extraction operators for constructed types and interfaces, the -a command line flag
should be specified when running omniidl2 .

TypeCode comparison when extracting from an Any. When an attempt is made to
extract a type from an Any, the TypeCode of the type is checked for equivalence with
the TypeCode of the type stored by the Any. The equivalent() test in the TypeCode
interface is used for this purpose1.

Examples:

// IDL 1

typedef double Double1;

struct Test1 {
Double1 a;
};

------

1In pre-omniORB 2.8.0 releases, omniORB2 performs an equality test and will ignore any alias Type-
Codes (tk alias ) when making this comparison. The semantics is similar to the equivalent() test in the
TypeCode interface of CORBA 2.3.



74 CHAPTER 9. TYPE ANY AND TYPECODE

// IDL 2

typedef double Double2;

struct Test1 {
Double2 a;

};

If an attempt is made to extract the type Test1 defined in IDL 1 from an Any
containing the Test1 defined in IDL 2, this will succeed (and vice-versa), as the two
types differ only by an alias.

Object references. WARNING!! In pre-omniORB 2.8.0 releases, the type Any does
not manage object reference types - it was unclear in the pre-2.3 CORBA specifica-
tion whether this is required or not. Therefore, the programmer should release ob-
ject references and pseudo-objects (such as TypeCode) that have been extracted from
an Any. Type Any will, however, manage constructed types (as per the CORBA
2 specification) - constructed types extracted from an Any should not be deleted,
as they will be deleted by the Any when it is destroyed. CORBA 2.3 has clari-
fied this issue and decreed that the management of an extracted object reference
still belongs to the Any! Since 2.8.0, the omniORB2 implementation conforms to
the CORBA 2.3 specification. For backward compatibility, the runtime variable om-
niORB::omniORB 27 CompatibleAnyExtraction can be set to 1 to get back the
old behaviour.

Top-level aliases. When a type is inserted into an Any, the Any stores both the value
of the type and the TypeCode for that type. The treatment of top-level aliases from
omniORB 2.8.0 onwards is different from pre-omniORB 2.8.0 releases.

In pre-omniORB 2.8.0 releases, if there are any top-level tk alias TypeCodes in
the TypeCode, they will be removed from the TypeCode stored in the Any. Note that
this does not affect the tc TypeCode generated to represent the type (see section
on TypeCode, below). This behaviour is necessary, as two types that differ only by a
top-level alias can use the same insertion and extraction operators. If the tk alias
is not removed, one of the types could be transmitted with an incorrect tk alias
TypeCode. Example:

// IDL 3

typedef sequence<double> seqDouble1;
typedef sequence<double> seqDouble2;
typedef seqDouble2 seqDouble3;

If either seqDouble1 or seqDouble2 is inserted into an Any, the TypeCode stored
will be for a sequence<double> , and not for an alias to a sequence<double> .



9.2. TYPE ANY IN OMNIORB2 75

From omniORB 2.8.0 onwards, there are two changes. Firstly, in the example, seq-
Double1 and seqDouble2 are now distinct types and therefore each has its own set of
C++ operators for Any insertion and extraction. Secondly, the top level aliases are not
removed. For example, if seqDouble3 is inserted into an Any, the insertion operator
for seqDouble2 is invoked (because seqDouble3 is just a C++ typedef of seqDouble2).
Therefore, the typecode in the Any would be that of seqDouble2. If this is not de-
sirable, one can use the new member function ’void type(TypeCode ptr)’ of the Any
interface to explicitly set the typecode to the correct one.

Removing aliases from TypeCodes. Some ORBs (e.g. Orbix) will not accept Type-
Codes containing tk alias TypeCodes. When using type Any while interoperating
with these ORBs, it is necessary to remove tk alias TypeCodes from throughout the
TypeCode representing a constructed type.

To remove all tk alias TypeCodes from TypeCodes stored in Anys, supply
the -ORBtcAliasExpand 1 command-line flag when running an omniORB2 ex-
ecutable. There will be some (small) performance penalty when inserting values into
an Any.

Note that the tc TypeCodes generated for all constructed types will contain the
complete TypeCode for the type (including any tk alias TypeCodes), regardless of
whether the -ORBtcAliasExpand flag is set to 1 or not.

Recursive TypeCodes. omniORB2 does now (as of version 2.7) support recursive
TypeCodes. This means that types such as the following can be inserted or extracted
from an Any:

// IDL 4

struct Test4 {
sequence<Test4> a;

};

Type-unsafe construction and insertion. If using the type-unsafe Any constructor,
or the CORBA::Any::replace() member function, ensure that the value returned
by the CORBA::Any::value() member function and the TypeCode returned by the
CORBA::Any::type() member function are used as arguments to the constructor or
function. Using other values or TypeCodes may result in a mismatch, and is undefined
behaviour.

Note that a non-CORBA 2 function,

CORBA::ULong CORBA::Any::NP_length() const

is supplied. This member function returns the length of the value returned by the
CORBA::Any::value() member function. It may be necessary to use this function
if the Any’s value is to be stored in a file.



76 CHAPTER 9. TYPE ANY AND TYPECODE

Threads and type Any. Inserting and extracting simultaneously from the same Any
(in 2 different threads) is undefined behaviour.

Extracting simultaneously from the same Any (in 2 or more different threads) also
leads to undefined behaviour. It was decided not to protect the Any with a mutex,
as this condition should rarely arise, and adding a mutex would lead to performance
penalties.

9.3 TypeCode in omniORB2

This section contains some notes on the use and behaviour of TypeCode in omniORB2

TypeCodes in IDL. When using TypeCodes in IDL, note that they are defined in the
CORBA scope. Therefore, CORBA::TypeCode should be used. Example:

// IDL 5

struct Test5 {
long length;
CORBA::TypeCode desc;

};

orb.idl Inclusion of the file orb.idl in IDL using CORBA::TypeCode is optional.
An empty orb.idl file is provided for compatibility purposes.

Generating TypeCodes for constructed types. To generate a TypeCode for con-
structed types, specify the -a command-line flag when running omniidl2. This will
generate a tc TypeCode describing the type, at the same scope as the type (as per
the CORBA 2 specification). Example:

// IDL 6

struct Test6 {
double a;
sequence<long> b;

};

A TypeCode, tc Test6 , will be generated to describe the struct Test6 . The op-
erations defined in the TypeCode interface (see section 6.7.1 of the CORBA 2 specifi-
cation [OMG99a] ) can be used to query the TypeCode about the type it represents.

TypeCode equality. The behaviour of CORBA::TypeCode::equal() member
function from omniORB 2.8.0 onwards is different from pre-omniORB 2.8.0 re-
leases. In summary, the pre-omniORB 2.8.0 is close to the semantics of the new
CORBA::TypeCode::equivalent() member function. Details are as follows:

The CORBA::TypeCode::equal() member function will return true only if the
two TypeCodes are exactly the same. tk alias TypeCodes are included in this com-
parison, unlike the comparison made when values are extracted from an Any (see
section on Any, above).



9.3. TYPECODE IN OMNIORB2 77

In pre-omniORB 2.8.0 releases, equality test would ignore the optional fields when
one of the fields in the two typecodes is empty. For example, if one of the Type-
Codes being checked is a tk struct , tk union , tk enum, or tk alias , and has
an empty repository ID parameter, then the repository ID parameter will be ignored
when checking for equality. Similarly, if the name or member name parameters of
a TypeCode are empty strings, they will be ignored for equality checking purposes.
This is because a CORBA 2 ORB does not have to include these parameters in a Type-
Code (see the Interoperability section of the CORBA 2 specification [OMG99a]). Note
that these (optional) parameters are included in TypeCodes generated by omniORB2.

Since CORBA 2.3, the issue of typecode equality has been clarified. There is now a
new member CORBA::TypeCode::equivalent() which provides the semantics of
the CORBA::TypeCode::equal() as implemented in pre-omniORB 2.8.0 releases.
So from omniORB 2.8.0 onwards, the CORBA::TypeCode::equal() function has
been changed to enforce strict equality. The pre-2.8.0 behaviour can be obtained with
equivalent() .



78 CHAPTER 9. TYPE ANY AND TYPECODE

9.4 Source Listing

9.4.1 anyExample impl.cc

// anyExample_impl.cc - This is the source code of the exam-
ple used in
// Chapter 9 "Type Any and Type-
Code" of the omniORB2
// users guide.
//
// This is the object implementation.
//
// Usage: anyExample_impl
//
// On startup, the object reference is registered with the
// COS naming service. The client uses the naming service to
// locate this object.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// anyExample [object] kind [Object]
//

#include <iostream.h>

#include "anyExample.hh"

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr,CORBA::Object_ptr);

class anyExample_i : public virtual _sk_anyExample {
public:

anyExample_i() { }
virtual ˜anyExample_i() { }
virtual CORBA::Any* testOp(const CORBA::Any& a);

};

CORBA::Any*
anyExample_i::testOp(const CORBA::Any& a) {

cout << "Any received, containing: " << endl;

#ifndef NO_FLOAT
CORBA::Double d;

#endif

CORBA::Long l;
const char* str; // From CORBA 2.3 onwards, uses const char*



9.4. SOURCE LISTING 79

// instead of char*.

const testStruct* tp; // From CORBA 2.3 onwards, use
// const testStruct* in-

stead of testStruct*

if (a >>= l) {
cout << "Long: " << l << endl;

}
#ifndef NO_FLOAT

else if (a >>= d) {
cout << "Double: " << d << endl;

}
#endif

else if (a >>= str) {
cout << "String: " << str << endl;
// Since 2.8.0 the storage of the extracted string is still
// owned by the any.
// In pre-omniORB 2.8.0 releases, the string returned is a copy.

}
else if (a >>= tp) {

cout << "testStruct: l: " << tp->l << endl;
cout << " s: " << tp->s << endl;

}
else {

cout << "Unknown value." << endl;
}

CORBA::Any* ap = new CORBA::Any;

*ap <<= (CORBA::ULong) 314;

cout << "Returning Any containing: ULong: 314\n" << endl;
return ap;

}

int
main(int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

anyExample_i *myobj = new anyExample_i();
myobj->_obj_is_ready(boa);

{
anyExample_var myobjRef = myobj->_this();
if (!bindObjectToName(orb,myobjRef)) {

return 1;
}

}



80 CHAPTER 9. TYPE ANY AND TYPECODE

boa->impl_is_ready();
// Tell the BOA we are ready. The BOA’s default be-

haviour is to block
// on this call indefinitely.

return 0;
}

static
CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

// Narrow the object returned by resolve_initial_references()
// to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))

{
cerr << "Failed to narrow naming context." << endl;
return 0;

}
}
catch(CORBA::ORB::InvalidName& ex) {

cerr << "Service required is invalid [does not exist]." << endl;
return 0;

}

try {
// Bind a context called "test" to the root context:

CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (const char*) "test"; // string copied
contextName[0].kind = (const char*) "my_context"; // string copied
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {

// Bind the context to root, and assign testContext to it:
testContext = rootContext->bind_new_context(contextName);

}
catch(CosNaming::NamingContext::AlreadyBound& ex) {



9.4. SOURCE LISTING 81

// If the context already exists, this excep-
tion will be raised.

// In this case, just resolve the name and assign testContext
// to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {

cerr << "Failed to narrow naming context." << endl;
return 0;

}
}

// Bind the object (obj) to testContext, naming it anyExample:
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (const char*) "anyExam-

ple"; // string copied
objectName[0].kind = (const char*) "Object"; // string copied

// Bind obj with name anyExample to the testContext:
try {

testContext->bind(objectName,obj);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {

testContext->rebind(objectName,obj);
}
// Note: Using rebind() will overwrite any Object previ-

ously bound
// to /test/anyExample with obj.
// Alternatively, bind() can be used, which will raise a
// CosNaming::NamingContext::AlreadyBound excep-

tion if the name
// supplied is already bound to an object.

}
catch (CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-
tact the "

<< "naming service." << endl;
return 0;

}
catch (omniORB::fatalException& ex) {

throw;
}
catch (...) {

cerr << "Caught a system exception while using the naming ser-
vice."<< endl;

return 0;
}
return 1;

}



82 CHAPTER 9. TYPE ANY AND TYPECODE

9.4.2 anyExample clt.cc

// anyExample_clt.cc - This is the source code of the exam-
ple used in
// Chapter 9 "Type Any and Type-
Code" of the omniORB2
// users guide.
//
// This is the client. It uses the COSS naming service
// to obtain the object reference.
//
// Usage: anyExample_clt
//
//
// On startup, the client lookup the object refer-
ence from the
// COS naming service.
//
// The name which the object is bound to is as follows:
// root [context]
// |
// text [context] kind [my_context]
// |
// anyExample [object] kind [Object]
//

#include <iostream.h>
#include "anyExample.hh"

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);
static void invokeOp(anyExample_ptr& tobj, const CORBA::Any& a);

int
main (int argc, char **argv)
{

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");
CORBA::Object_var obj;

try {
obj = getObjectReference(orb);

}
catch(CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-
tact the "

<< "object." << endl;
return -1;

}
catch(omniORB::fatalException& ex) {

cerr << "Caught omniORB2 fatalException. This indi-
cates a bug is caught "

<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"



9.4. SOURCE LISTING 83

<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

return -1;
}
catch(...) {

cerr << "Caught a system exception." << endl;
return -1;

}

anyExample_ptr tobj = anyExample::_narrow(obj);

if (CORBA::is_nil(tobj)) {
cerr << "Can’t narrow object reference to type anyExam-

ple." << endl;
return -1;

}

CORBA::Any a;

try {
// Sending Long
CORBA::Long l = 100;
a <<= l;
cout << "Sending Any containing Long: " << l << endl;
invokeOp(tobj,a);

// Sending Double
#ifndef NO_FLOAT

CORBA::Double d = 1.2345;
a <<= d;
cout << "Sending Any containing Double: " << d << endl;
invokeOp(tobj,a);

#endif

// Sending String
const char* str = "Hello";
a <<= str;
cout << "Sending Any containing String: " << str << endl;
invokeOp(tobj,a);

// Sending testStruct [Struct defined in IDL]
testStruct t;
t.l = 456;
t.s = 8;
a <<= t;
cout << "Sending Any containing testStruct: l: " << t.l << endl;
cout << " s: " << t.s << endl;
invokeOp(tobj,a);

}
catch(CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-



84 CHAPTER 9. TYPE ANY AND TYPECODE

tact the "
<< "object." << endl;

return -1;
}
catch(omniORB::fatalException& ex) {

cerr << "Caught omniORB2 fatalException. This indi-
cates a bug is caught "

<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

return -1;
}
catch(...) {

cerr << "Caught a system exception." << endl;
return -1;

}

return 0;
}

static
CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)
{

CosNaming::NamingContext_var rootContext;

try {
// Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

// Narrow the object returned by resolve_initial_references()
// to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))

{
cerr << "Failed to narrow naming context." << endl;
return CORBA::Object::_nil();

}
}
catch(CORBA::ORB::InvalidName& ex) {

cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();

}

// Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0].id = (const char*) "test"; // string copied
name[0].kind = (const char*) "my_context"; // string copied



9.4. SOURCE LISTING 85

name[1].id = (const char*) "anyExample";
name[1].kind = (const char*) "Object";
// Note on kind: The kind field is used to indicate the type
// of the object. This is to avoid conventions such as that used
// by files (name.type -- e.g. test.ps = postscript etc.)

CORBA::Object_ptr obj;
try {

// Resolve the name to an object reference, and as-
sign the reference

// returned to a CORBA::Object:
obj = rootContext->resolve(name);

}
catch(CosNaming::NamingContext::NotFound& ex)

{
// This exception is thrown if any of the components of the
// path [contexts or the object] aren’t found:
cerr << "Context not found." << endl;
return CORBA::Object::_nil();

}
catch (CORBA::COMM_FAILURE& ex) {

cerr << "Caught system exception COMM_FAILURE, unable to con-
tact the "

<< "naming service." << endl;
return CORBA::Object::_nil();

}
catch(omniORB::fatalException& ex) {

throw;
}
catch (...) {

cerr << "Caught a system exception while using the naming ser-
vice."<< endl;

return CORBA::Object::_nil();
}
return obj;

}

static void
invokeOp(anyExample_ptr& tobj, const CORBA::Any& a)
{

CORBA::Any_var bp;

cout << "Invoking operation." << endl;
bp = tobj->testOp(a);

cout << "Operation completed. Returned Any: ";
CORBA::ULong ul;

if (bp >>= ul) {
cout << "ULong: " << ul << "\n" << endl;

}



86 CHAPTER 9. TYPE ANY AND TYPECODE

else {
cout << "Unknown value." << "\n" << endl;

}
}



Chapter 10

Dynamic Management of Any
Values

In CORBA specification 2.2, a new facility- DynAny is introduced. Previously, it is
not possible to insert or extract constructed and other complex types from an any
without using the stub code generated by an idl compiler for these types. This makes
it impossible to write generic servers (bridges, event channels supporting filtering etc)
because these servers can not have static knowledge of all the possible data types that
they have to handle.

To fill this gap, the DynAny facility is defined to enable traversal of the data value
associated with an any at runtime and extraction of its constituents. This facility also
enables the construction of an any at runtime, without having static knowledge of its
types.

This chapter explains how DynAny may be used. For completeness, you should
also read the DynAny specification defined in Chapter 7 of the CORBA specification
2.2. Where possible, the implementation in omniORB2 adheres closely to the speci-
fication. However, there are areas in the specification that are ambiguous or lacking
in details. A number of these issues are currently opened with the ORB revision task
force. Until the issues are resolved, it is possible that a different implementation may
choose to intepret the specification differently. This chapter provides clarifications to
the specification, explains the interpretation used and offers some advice and warn-
ings on potential portability problems.

Notice that the DynAny interface has been changed in CORBA 2.3, particularly
with the addition of the support for the IDL type valuetype . Future releases of
omniORB will be updated to implement the interface as defined in CORBA 2.3.

10.1 C++ mapping

// namespace CORBA

class ORB {
public:

...

87



88 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

class InconsistentTypeCode : public UserException { ... };

DynAny_ptr create_dyn_any(const Any& value);

DynAny_ptr create_basic_dyn_any(TypeCode_ptr tc);

DynStruct_ptr create_dyn_struct(TypeCode_ptr tc);

DynSequence_ptr create_dyn_sequence(TypeCode_ptr tc);

DynArray_ptr create_dyn_array(TypeCode_ptr tc);

DynUnion_ptr create_dyn_union(TypeCode_ptr tc);

DynEnum_ptr create_dyn_enum(TypeCode_ptr tc);

};

typedef DynAny* DynAny_ptr;
class DynAny_var { ... };

class DynAny {
public:

class Invalid : public UserException { ... };
class InvalidValue : public UserException { ... };
class TypeMismatch : public UserException { ... };
class InvalidSeq : public UserException { ... };

typedef _CORBA_Unbounded_Sequence__Octet OctetSeq;

TypeCode_ptr type() const;

void assign(DynAny_ptr dyn_any) throw(Invalid,SystemException);
void from_any(const Any& value) throw(Invalid,SystemException);
Any* to_any() throw(Invalid,SystemException);
void destroy();
DynAny_ptr copy();

DynAny_ptr current_component();
Boolean next();
Boolean seek(Long index);
void rewind();

void insert_boolean(Boolean value) throw(InvalidValue,SystemException);
void insert_octet(Octet value) throw(InvalidValue,SystemException);
void insert_char(Char value) throw(InvalidValue,SystemException);
void insert_short(Short value) throw(InvalidValue,SystemException);
void insert_ushort(UShort value) throw(InvalidValue,SystemException);
void insert_long(Long value) throw(InvalidValue,SystemException);
void insert_ulong(ULong value) throw(InvalidValue,SystemException);
void insert_float(Float value) throw(InvalidValue,SystemException);
void insert_double(Double value) throw(InvalidValue,SystemException);



10.1. C++ MAPPING 89

void insert_string(const char* value) throw(InvalidValue,SystemException);
void insert_reference(Object_ptr v) throw(InvalidValue,SystemException);
void insert_typecode(TypeCode_ptr v) throw(InvalidValue,SystemException);
void insert_any(const Any& value) throw(InvalidValue,SystemException);

Boolean get_boolean() throw(TypeMismatch,SystemException);
Octet get_octet() throw(TypeMismatch,SystemException);
Char get_char() throw(TypeMismatch,SystemException);
Short get_short() throw(TypeMismatch,SystemException);
UShort get_ushort() throw(TypeMismatch,SystemException);
Long get_long() throw(TypeMismatch,SystemException);
ULong get_ulong() throw(TypeMismatch,SystemException);
Float get_float() throw(TypeMismatch,SystemException);
Double get_double() throw(TypeMismatch,SystemException);
char* get_string() throw(TypeMismatch,SystemException);
Object_ptr get_reference() throw(TypeMismatch,SystemException);
TypeCode_ptr get_typecode() throw(TypeMismatch,SystemException);
Any* get_any() throw(TypeMismatch,SystemException);

static DynAny_ptr _duplicate(DynAny_ptr);
static DynAny_ptr _narrow(DynAny_ptr);
static DynAny_ptr _nil();

};

// DynFixed is not supported.

typedef DynEnum* DynEnum_ptr;
class DynEnum_var { ... };

class DynEnum : public DynAny {
public:

char* value_as_string();
void value_as_string(const char* value);
ULong value_as_ulong();
void value_as_ulong(ULong value);

static DynEnum_ptr _duplicate(DynEnum_ptr);
static DynEnum_ptr _narrow(DynAny_ptr);
static DynEnum_ptr _nil();

};

typedef char* FieldName;
typedef String_var FieldName_var;

struct NameValuePair {
String_member id;
Any value;

};

typedef _CORBA_ConstrType_Variable_Var<NameValuePair> NameValuePair_var;
typedef _CORBA_Unbounded_Sequence<NameValuePair > NameValuePairSeq;



90 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

typedef DynStruct* DynStruct_ptr;
class DynStruct_var { ... };

class DynStruct : public DynAny {
public:

char* current_member_name();
TCKind current_member_kind();
NameValuePairSeq* get_members();
void set_members(const NameValuePairSeq& NVSeqVal)

throw(InvalidSeq,SystemException);

static DynStruct_ptr _duplicate(DynStruct_ptr);
static DynStruct_ptr _narrow(DynAny_ptr);
static DynStruct_ptr _nil();

};

typedef DynUnion* DynUnion_ptr;
class DynUnion_var { ... };

class DynUnion : public DynAny {
public:

Boolean set_as_default();
void set_as_default(Boolean value);
DynAny_ptr discriminator();
TCKind discriminator_kind();
DynAny_ptr member();
char* member_name();
void member_name(const char* value);
TCKind member_kind();

static DynUnion_ptr _duplicate(DynUnion_ptr);
static DynUnion_ptr _narrow(DynAny_ptr);
static DynUnion_ptr _nil();

};

typedef _CORBA_Unbounded_Sequence<Any > AnySeq;

typedef DynSequence* DynSequence_ptr;
class DynSequence_var { ... };

class DynSequence : public DynAny {
public:

ULong length();
void length (ULong value);
AnySeq* get_elements();
void set_elements(const AnySeq& value) throw(InvalidValue,SystemException);

static DynSequence_ptr _duplicate(DynSequence_ptr);
static DynSequence_ptr _narrow(DynAny_ptr);
static DynSequence_ptr _nil();



10.2. THE DYNANY INTERFACE 91

};

typedef DynArray* DynArray_ptr;
class DynArray_var { ... };

class DynArray : public DynAny {
public:

AnySeq* get_elements();
void set_elements(const AnySeq& value) throw(InvalidValue,SystemException);

static DynArray_ptr _duplicate(DynArray_ptr);
static DynArray_ptr _narrow(DynAny_ptr);
static DynArray_ptr _nil();

};

10.2 The DynAny Interface

10.2.1 Example: extract data values from an Any

If an any contains a value of one of the basic data types, its value can be extracted using
the pre-defined operators in the Any interface. When the value is a struct or other
non-basic types, one can use the DynAny interface to extract its constituent values.

In this section, we use a struct as an example to illustrate how the DynAny inter-
face can be used.

The example struct is as follows:

// IDL

struct exampleStruct1 {
string s;
double d;
long l;

};

To create a DynAny from an Any value, one uses the create dyn any method:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

Any v;
... // Initialise v to contain a value of type exampleStruct1.

CORBA::DynAny_var dv = orb->create_dyn_any(v);

Like CORBA object and pseudo object references, a DynAny ptr can be managed
by a var type (DynAny var ) which will release the DynAny ptr automatically when
the variable goes out of scope.



92 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

10.2.1.1 Iterate through the components

Once the DynAny object is created, we can use the DynAny interface to extract the in-
dividual components in exampleStruct1 . The DynAny interface provides a num-
ber of functions to extract and insert component values. These functions are defined
to operate on the component identified by the current component pointer.

A current component pointer is an internal state of a DynAny object. When a
DynAny object is created, the pointer is initialised to point to the first component of
the any value.

The pointer can be advanced to the next component with the next() operation.
The function returns FALSE (0) if there are no more components. Otherwise it returns
TRUE (1). When the any value in the DynAny object contains only one component,
the next() operation always returns FALSE(0).

Another way of adjusting the pointer is the seek() operation. The function re-
turns FALSE (0) if there is no component at the specified index. Otherwise it returns
TRUE (1). The index value of the first component is zero. Therefore, a seek(0)
call rewinds the pointer to the first component, this is also equivalent to a call to the
rewind() operation.

For completeness, we should also mention here the current component() op-
eration. This operation causes the DynAny object to return a reference to another
DynAny object that can be used to access the current component. It is possible
that the current component pointer is not pointing to a valid component, for in-
stance, the next() operation has been invoked and there is no more component.
Under this circumstance, the current component() operation returns a nil Dy-
nAny object reference1. For components which are just basic data types, calling cur-
rent component() is an overkill because we can just use the basic type extraction
and insertion functions directly.

10.2.1.2 Extract basic type components

In our example, the component values can be extracted as follows:

CORBA::String_var s = dv->get_string();
CORBA::Double d = dv->get_double();
CORBA::Long l = dv->get_long();

Each get basic type operation has the side-effect of advancing the current compo-
nent pointer. For instance:

CORBA::String_var s = dv->get_string();

is equivalent to:

CORBA::DynAny_var temp = dv->current_component();
CORBA::String_var s = temp->get_string();
dv->next();

1Testing a nil DynAny object with CORBA::is nil() returns TRUE(1). The CORBA 2.2 specification
does not specify what is the return value of this function when the current component pointer is invalid.
To ensure portability, it is best to avoid calling current component() under this condition.



10.2. THE DYNANY INTERFACE 93

The get operations ensure that the current component is of the same type as re-
quested. Otherwise, the object throws a TypeMismatch exception. If the current
component pointer is invalid when a get operation is called, the object also throws
a TypeMismatch exception2.

To repeatedly access the components, one can use the rewind() or seek() op-
eration to manipulate the current component pointer. For instance, to access the d
member in exampleStruct1 directly:

dv->seek(1); // position current component to member d.
CORBA::Double d = dv->get_double();

10.2.1.3 Extract complex components

When a component is not one of the basic data types, it is not possible to extract its
value using the get operations. Instead, a DynAny object has to be created from which
the component is accessed.

Consider this example:

// IDL

struct exampleStruct2 {
string m1;
exampleStruct1 m2;

};

In order to extract the data members within m2 (of type exampleStruct1 ), we
use current component() as follows:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.
Any v;
... // Initialise v to contain a value of type exampleStruct2.

CORBA::DynAny_var dv = orb->create_dyn_any(v);

CORBA::String_var m1 = dv->get_string(); // extract member m1
CORBA::DynAny_var dm = dv->current_component(); // DynAny refer-

ence to m2
CORBA::String_var s = dm->get_string(); // m2.s
CORBA::Double d = dm->get_double(); // m2.d
CORBA::Long l = dm->get_long(); // m2.l

10.2.1.4 Clean-up

Now we finish off this example with a description on destroying DynAny objects.
There are two points to remember:

2The CORBA 2.2 specification does not define the behavior of this error condition. To ensure porta-
bility, it is best to avoid calling the get operations when the current component pointer is known to be
invalid.



94 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

1. A DynAny reference (DynAny ptr ) is like any CORBA object or psuedo object
reference and should be handled in the same way. In particular, one has to call
the CORBA::release operation to indicate that a DynAny reference will no
longer be accessed. In the example, this is done automatically by DynAny var .

2. A DynAny object and its references are separate entities, just as a CORBA
object implementation and its object references are different entities. While
CORBA::release will release any resource associated with a DynAny ptr , one
has to separately destroy the DynAny object to avoid any memory leak. This is
done by calling the destroy() operation.

In the example, the DynAny object can be destroyed as follows:

// C++
...
CORBA::DynAny_var dv = orb->create_dyn_any(v);
...
dv->destroy();

// From now on, one should not invoke any operation in dv. Oth-
erwise the

// behavior is undefined.

10.2.2 Example: insert data values into an Any

Using the DynAny interface, one can create an Any value from scratch. In this ex-
ample, we are going to create an Any containing the value of the exampleStruct1
type.

Firstly, we have to create a DynAny to store the value using one of the cre-
ate dyn functions. Because exampleStruct1 is a struct type, we use the cre-
ate dyn struct() operation.

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

// create the TypeCode for exampleStruct.
StructMemberSeq tc_members;
tc_members.length(3);
tc_members[0].name = (const char*)"s";
tc_members[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_string);
tc_members[0].type_def = CORBA::IDLType::_nil();
tc_members[1].name = (const char*)"d";
tc_members[1].type = CORBA::TypeCode::_duplicate(CORBA::_tc_double);
tc_members[1].type_def = CORBA::IDLType::_nil();
tc_members[2].name = (const char*)"l";
tc_members[2].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);
tc_members[2].type_def = CORBA::IDLType::_nil();
CORBA::TypeCode_var tc = orb->create_struct_tc("IDL:exampleStruct1:1.0",

"exampleStruct1",



10.2. THE DYNANY INTERFACE 95

tc_members);

// create the DynAny object to represent the any value
CORBA::DynAny_var dv = orb->create_dyn_struct(tc);

10.2.2.1 Insert basic type components

Once the DynAny object is created, we can use the DynAny interface to insert the
components. The DynAny interface provides a number of insert operations to insert
basic types into the any value. In our example, the component values can be inserted
as follows:

CORBA::String_var s = (const char*)"Hello";
CORBA::Double d = 3.1416;
CORBA::Long l = 1;

dv->insert_string(s);
dv->insert_double(d);
dv->insert_long(l);

Each insert basic type operation has the side-effect of advancing the current com-
ponent pointer. For instance:

dv->insert_string(s);

is equivalent to:

CORBA::DynAny_var temp = dv->current_component();
temp->insert_string(s);
dv->next();

The insert operations ensure that the current component is of the same type as the
inserted value. Otherwise, the object throws a InvalidValue exception. If the current
component pointer is invalid when an insert operation is called, the object also throws
a InvalidValue exception3.

Sometimes, one may just want to modify one component in an Any value. For
instance, one may just want to change the value of the double member in exam-
pleStruct1 . This can be done as follows:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

Any v;
... // Initialise v to contain a value of type exampleStruct1.

CORBA::Double d = 6.28;

3The CORBA 2.2 specification does not define the behavior of this error condition. To ensure porta-
bility, it is best to avoid calling the insert operations when the current component pointer is known to be
invalid.



96 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

CORBA::DynAny_var dv = orb->create_dyn_any(v);

dv->seek(1);
dv->insert_double(d); // Change the value of the member d.

Finally, the any value can be obtained from the DynAny object using the to any()
operation:

CORBA::Any_var v = dv->to_any(); // Obtain the any value.

10.2.2.2 Insert complex components

When a component is not one of the basic data types, it is not possible to insert its
value using the insert operations. Instead, a DynAny object has to be created through
which the component can be inserted.

In our example, one can insert component values into exampleStruct2 as fol-
lows:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var tc;
// create the TypeCode for exampleStruct2.
...
// create the DynAny object to represent the any value
CORBA::DynAny_var dv = orb->create_dyn_struct(tc);

CORBA::String_var m1 = (const char*)"Greetings";
CORBA::String_var m2s = (const char*)"Hello";
CORBA::Double m2d = 3.1416;
CORBA::Long m2l = 1;

dv->insert_string(m1); // insert member m1
CORBA::DynAny_var dm = dv->current_component(); // DynAny refer-

ence to m2
dm->insert_string(m2s); // insert member m2.s
dm->insert_double(m2d); // insert member m2.d
dm->insert_long(m2l); // insert member m2.l

CORBA::Any_var v = dv->to_any(); // obtain the any value

dv->destroy(); // destroy the DynAny object.
// No operation should be invoked on dv
// from this point on ex-

cept CORBA::release.

In addition to the DynAny interface, a number of derived interfaces are defined.
These interfaces are specialisation of the DynAny interface to facilitate the handling
of any values containing non-basic types: struct, sequence, array, enum and union4.
The next few sections will provide more details on these interfaces.

4In the CORBA 2.2 specification, the DynFixed interface is defined to handle the fixed data type. This
is not supported in this implementation.



10.3. THE DYNSTRUCT INTERFACE 97

10.3 The DynStruct Interface

When a DynAny object is created through the create dyn any() operation and
the any value contains a struct type, a DynStruct object is created. The Dy-
nAny reference returned can be narrowed to a DynStruct reference using the
CORBA::DynStruct:: narrow() operation.

In the previous example, the components are extracted using the get op-
erations. Alternatively, the DynStruct interface provides an addition operation
(get members() ) to return all the components in a single call. The returned value
is a sequence of name value pair. The member name is given in the name field and
its value is returned as an Any value. For example, an alternative way to extract the
components in the previous example is as follows:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.
Any v;
... // Initialise v to contain a value of type exampleStruct1.
CORBA::DynAny_var dv = orb->create_dyn_any(v);

CORBA::DynStruct_var ds = CORBA::DynStruct::_narrow(dv);

CORBA::NameValuePairSeq* sq = ds->get_members();

char* s;
CORBA::Double d;
CORBA::Long l;

(*sq)[0].value >>= s; // 1st element contains member s
(*sq)[1].value >>= d; // 2nd element contains member d
(*sq)[2].value >>= l; // 3rd element contains member l

Similarly, the DynStruct interface provides an addition operation
(set members() ) to insert all the components in a single call. The following is
an alternative way to insert the components of the type exampleStruct1 into an
Any value:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var tc;
// create the TypeCode for exampleStruct1.
...
// create the DynAny object to represent the any value
CORBA::DynAny_var dv = orb->create_dyn_struct(tc);

CORBA::String_var s = (const char*)"Hello";
CORBA::Double d = 3.1416;
CORBA::Long l = 1;



98 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

CORBA::NameValuePairSeq sq;
sq.length(3);
sq[0].id = (const char*)"s";
sq[0].value <<= CORBA::Any::from_string(s,0);

// 1st element contains member s
sq[1].id = (const char*)"d";
sq[1].value <<= d; // 2nd element contains member d
sq[2].id = (const char*)"l";
sq[2].value <<= l; // 3rd element contains member l

dv->set_members(sq);

Notice that the name-value pairs in the argument to set members() must match
the members of the struct exactly or the object would throw the InvalidSeq exception.

In addition to the current component() operation, the DynStruct interface pro-
vides two operations: current member name() and current member kind() , to
return information about the current component.

10.4 The DynSequence Interface

Like struct values, sequence values can be traversed using the operations introduced
in section 10.2. The first sequence element can be accessed as the first DynAny com-
ponent, the second sequence element as the second DynAny component and so on.

To extract component values from an Any containing a sequence, the length of the
sequence can be obtained using the get length operation in the DynSequence interface.
Here is an example to extract the components of a sequence of long:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.
Any v;
... // Initialise v to contain a value of a se-

quence of long
CORBA::DynAny_var dv = orb->create_dyn_any(v);

CORBA::DynSequence_var ds = CORBA::DynSequence::_narrow(dv);
CORBA::ULong len = ds->length(); // ex-

tract the length of the sequence
CORBA::ULong index;
for (index = 0; index < len; index++) {

CORBA::Long v = ds->get_long();
cerr << "[" << index << "] = " << v << endl;

}

Conversely, the set length operation is provided to set the length of the sequence.
Here is an example to insert the components of a sequence of long:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.



10.5. THE DYNARRAY INTERFACE 99

CORBA::TypeCode_var tc;
// create the TypeCode for a sequence of long.
...
// create the DynAny object to represent the any value
CORBA::DynSequence_var ds = orb->create_dyn_sequence(tc);

CORBA::ULong len = 3;

ds->length(len); // set the length of the sequence

CORBA::ULong index;
for (index = 0; index < len; index++) {

ds->insert_long(index); // insert a sequence element
}

Similar to the DynStruct interface, the get elements() operation is provided to
return all the sequence elements and the set elements() operation is provided to
insert all the sequence elements.

10.5 The DynArray Interface

Array values are handled by the DynArray interface. The DynArray interface is the
same as the DynSequence interface except that the former does not provide the set
length and get length operations.

10.6 The DynEnum Interface

Enum values are handled by the DynEnum interface. A DynEnum object contains a
single component which is the enum value. This value cannot be extracted or inserted
using the get and insert operations of the DynAny interface. Instead, two pairs of
operations are provided to handle this value.

The value as string operations allow the enum value to be extracted or in-
serted as a string. The value as ulong operations allow the enum value to be ex-
tracted or inserted as an unsigned long.

10.7 The DynUnion Interface

Union values are handled by the DynUnion interface. Unfortunately, the CORBA 2.2
specification does not define the DynUnion interface in sufficent details to nail down
its intended usage5. In this section, we try to fill in the gaps and describe a sensible
way to use the DynUnion interface. Where necessary, the semantics of the operations
is clarified. It is possible that the behavior of this interface in another ORB is different
from this implmentation. Where appropriate, we give warnings on usage that might
cause problems with portability.

5This interface is currently an open issue with the ORB revision task force.



100 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

In relation to the current component pointer (10.2.1.1), a DynUnion object contains
two components. The first component (with the index value equals 0) is the discrimi-
nator value, the second one is the member value. Therefore, one can use the seek()
and current component() operations to obtain a reference to the DynAny objects
that handle the two components. However, it is better to use the operations defined
in the DynUnion interface to manipulate these components as the semantics of the
operations is easier to understand.

10.7.1 Three Categories of Union

Before we continue, it is important to understand that unions can be classified into the
following categories:

1. One that has a default branch defined in the IDL. This will be called explicit
default union in the rest of this section.

2. One that has no default branch and not all the possible values of the discrimina-
tor type are covered by the branch labels in the IDL. This will be called implicit
default union.

3. One that has no default branch but all the possible values of the discriminator
type are covered. This will be called no default union.

Of the three categories, the implicit default union is interesting because by defini-
tion if the discriminator value is not equal to any of the branch labels, the union has
no member. That is, the union value consists solely of the discriminator value.

10.7.2 Example: extract data values from a union

10.7.2.1 Explicit default union

Consider a union of the following type:

// IDL

union exampleUnion1 switch(boolean) {
case TRUE: long l;
default: double d;
};

The most straightforward way to extract the member value is as follows:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

Any v;
... // Initialise v to contain a value of type exampleUnion1.

CORBA::DynAny_var dv = orb->create_dyn_any(v);
CORBA::DynUnion_var du = CORBA::DynUnion::_narrow(dv);



10.7. THE DYNUNION INTERFACE 101

CORBA::String_var di = du->member_name();
CORBA::DynAny_var dm = du->member();

if (strcmp((const char*)di,"l") == 0) {
// branch label is TRUE
CORBA::Long v = dm->get_long();
cerr << "l = " << v << endl;

}

if (strcmp((const char*)di,"d") == 0) {
// Is default branch
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl;

}

In the example, the operation member name() is used to determine which branch
the union has been instantiated. The operation member() is used to obtain a reference
to the DynAny object that handles the member.

Alternatively, the branch can be determined by reading the discriminator value:

// C++

CORBA::DynAny_var di = du->discriminator();
CORBA::DynAny_var dm = du->member();

CORBA::Boolean di_v = di->get_boolean();

switch (di_v) {
case 1:

CORBA::Long v = dm->get_long();
cerr << "l = " << v << endl;
break;

default:
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl;

}

The operation discriminator() is used to obtain the value of the discriminator.
Finally, the third way to determine the branch is to test if the default is selected:

// C++

switch (dv->set_as_default()) {
case 1:

CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl;
break;

default:
CORBA::Long v = dm->get_long();
cerr << "l = " << v << endl;

}



102 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

The operation set as default() returns TRUE (1) if the discriminator has been
assigned a valid default value.

10.7.2.2 Implicit default union

Consider a union of the following type:

// IDL

union exampleUnion2 switch(long) {
case 1: long l;
case 2: double d;
};

This example is similar to the previous one but there is no default branch. The
description above also applies to this example. However, the discriminator may be
set to neither 1 nor 2. Under this condition, the implicit default is selected and the
union value contains the discriminator only!

When the discriminator contains an implicit default value, one might ask what
is the value returned by the member name() and member() operation. Since there
is no member in the union value, omniORB2 returns a null string and a nil DynAny
reference respectively. This behavior is not specified in the CORBA 2.2 specification.
To ensure that your application is portable, it is best to avoid calling these operations
when the DynUnion object might contain an implicit default value.

10.7.2.3 No default union

This is the last union category. For instance:

// IDL

union exampleUnion3 switch(boolean) {
case TRUE: long l;
case FALSE: double d;
};

In this example, all the possible values of the discriminator are used as union la-
bels. There is no default branch. The only difference between this category and the
explicit default union is that the set as default() operation always returns FALSE
(0).

10.7.3 Example: insert data values into a union

Writing into a union involves selecting the union branch with the appropriate dis-
criminator value and then writing the member value. There are three ways to set the
discriminator value:

1. Use the member name() write operation to specify the union branch by speci-
fying the union member directly. This operation has the side effect of setting the
discriminator to the label value of the branch.



10.7. THE DYNUNION INTERFACE 103

2. Write the label value of a union branch into the DynAny object that handles the
discriminator.

3. If the union has a default branch, either explicitly or implicitly, use the
set as default() write operation to set the discriminator to a valid default
value.

The following example shows the three ways of writing into a union:

// C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var tc;
// create the TypeCode for exampleUnion1.
...
// create the DynAny object to represent the any value
CORBA::DynUnion_var dv = orb->create_dyn_union(tc);

CORBA::Any_var v;
DynAny_ptr dm;

// Use member_name to select the union branch
dv->member_name("l");
dm = dv->member();
dm->insert_long(10);
v = dv->to_any(); // transfer to an Any
CORBA::release(dm);

// Setting the discriminator value to select the union branch
CORBA::DynAny_var di = dv->discriminator();
di->insert_boolean(1); // set discriminator to label TRUE
dm = dv->member();
dm->insert_long(20);
v = dv->to_any(); // transfer to an Any
CORBA::release(dm);

// Use set_as_default to select the default union branch
dv->set_as_default(1);
dm = dv->member();
dm->insert_double(3.14);
v = dv->to_any(); // transfer to an Any
CORBA::release(dm);

dv->destroy();

10.7.3.1 Ambiguous usage

1. When the discriminator is set to a different value, a different member branch is
selected. Suppose the application has previously obtained a DynAny reference
to a union member when it changes the discriminator value. As a result of the



104 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

value change, the union is now instantiated to another union branch, i.e. a call
to the member() operation will now return a reference to a different DynAny
object. If the application continues to access the DynAny object of the old union
member, the behavior of the ORB under this condition is not defined by the
CORBA 2.2 specification. With omniORB2, the DynAny object of the old union
member is detached from the union when a new union branch is selected. There-
fore reading or writing this object will not have any relation to the current value
of the union. To avoid this ambiguity, the reference to the old union member
should be released before a different union branch is selected.

2. The write operation set as default() takes a boolean argument. It is am-
biguous to call this function with the argument set to FALSE (0). With om-
niORB2, such a call will be silently ignored.

3. It is also ambiguous to pass the value TRUE (1) to the set as default() op-
eration when the union is a no default union (10.7.1). With omniORB2, such a
call will be silently ignored.

4. When the discriminator value is not set, calling the member() operation is am-
biguous. With omniORB2, such a call will return a nil DynAny reference. Sim-
ilarly, a call to the member kind() operation under this condition will return
tk null .

To ensure portability, it is best to avoid using the DynUnion interface and not to
rely on the ORB to behave as omniORB2 does under these ambiguous conditions.

10.8 Duplicate DynAny References

Like any CORBA object and psuedo object references, a DynAny reference can be du-
plicated using the duplicate() operations. When an application has obtained mul-
tiple DynAny references to the same DynAny object, it should be noted that a change
made to the object by invoking on one reference is also visible through the other refer-
ences. In particular, if a call through one reference has caused the current component
pointer to be changed, subsequent calls through other references will operate on the
new current component pointer.

10.9 Other Operations

The following is a short summary of the other operations in the DynAny interface
which have not been covered in previous sections:

assign() initialises a DynAny object with another DynAny object. The two objects
must have the same typecode.

from any() initialises a DynAny object from the value in an any. The typecode in
the two objects must be the same.



10.9. OTHER OPERATIONS 105

copy() creates a new DynAny object whose value is a deep copy of the current ob-
ject.

type() returns the typecode associated with the DynAny object.



106 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES



Chapter 11

The Dynamic Invocation Interface

The Dynamic Invocation Interface (or DII) allows applications to invoke operations
on CORBA objects about which they have no static information. That is to say the
application has not been linked with stub code which performs the remote operation
invocation. Thus using the DII applications may invoke operations on any CORBA
object, possibly determining the object’s interface dynamically by using an Interface
Repository.

This chapter presents an overview of the Dynamic Invocation Interface. An
toy example use of the DII can be found in the omniORB2 distribution in the
<top>/src/examples/dii directory. The DII makes extensive use of the type
Any, so ensure that you have read chapter 9. For more information refer to the
Dynamic Invocation Interface and C++ Mapping sections of the CORBA 2 specifi-
cation [OMG99a].

11.1 Overview

To invoke an operation on a CORBA object an application needs an object reference,
the name of the operation and a list of the parameters. In addition the application must
know whether the operation is one-way, what user-defined exceptions it may throw,
any user-context strings which must be supplied, a ’context’ to take these values from
and the type of the returned value. This information is given by the IDL interface
declaration, and so is normally made available to the application via the stub code. In
the DII this information is encapsulated in the CORBA::Request pseudo-object.

To perform an operation invocation the application must obtain an instance of a
Request object, supply the information listed above and call one of the methods to
actually make the invocation. If the invocation causes an exception to be thrown then
this may be retrieved and inspected, or the return value on success.

11.2 Pseudo Objects

The DII defines a number of psuedo-object types, all defined in the CORBA names-
pace. These objects behave in many ways like CORBA objects. They should only be
accessed by reference (through foo ptr or foo var ), may not be instantiated directly

107



108 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

and should be released by calling CORBA::release() 1. A nil reference should only
be represented by foo:: nil() .

These pseudo objects, although defined in pseudo-IDL in the specification do not
follow the normal mapping for CORBA objects. In particular the memory manage-
ment rules are different - see the CORBA 2 specification [OMG99a] for more details.
New instances of these objects may only be created by the ORB. A number of methods
are defined in CORBA::ORBto do this.

11.2.1 Request

A Request encapsulates a single operation invocation. It may not be re-used - even
for another call with the same arguments.

class Request {
public:

virtual Object_ptr target() const;
virtual const char* operation() const;
virtual NVList_ptr arguments();
virtual NamedValue_ptr result();
virtual Environment_ptr env();
virtual ExceptionList_ptr exceptions();
virtual ContextList_ptr contexts();
virtual Context_ptr ctxt() const;
virtual void ctx(Context_ptr);

virtual Any& add_in_arg();
virtual Any& add_in_arg(const char* name);
virtual Any& add_inout_arg();
virtual Any& add_inout_arg(const char* name);
virtual Any& add_out_arg();
virtual Any& add_out_arg(const char* name);

virtual void set_return_type(TypeCode_ptr tc);
virtual Any& return_value();

virtual Status invoke();
virtual Status send_oneway();
virtual Status send_deferred();
virtual Status get_response();
virtual Boolean poll_response();

static Request_ptr _duplicate(Request_ptr);
static Request_ptr _nil();

};

11.2.2 NamedValue

A pair consisting of a string and a value - encapsulated in an Any. The name is op-
tional. This type is used to encapsulate parameters and returned values.

1if not managed by a var type.



11.2. PSEUDO OBJECTS 109

class NamedValue {
public:

virtual const char* name() const;
// Retains ownership of return value.

virtual Any* value() const;
// Retains ownership of return value.

virtual Flags flags() const;

static NamedValue_ptr _duplicate(NamedValue_ptr);
static NamedValue_ptr _nil();

};

11.2.3 NVList

A list of NamedValue objects.

class NVList {
public:

virtual ULong count() const;
virtual NamedValue_ptr add(Flags);
virtual NamedValue_ptr add_item(const char*, Flags);
virtual NamedValue_ptr add_value(const char*, const Any&, Flags);
virtual NamedValue_ptr add_item_consume(char*,Flags);
virtual NamedValue_ptr add_value_consume(char*, Any*, Flags);
virtual NamedValue_ptr item(ULong index);
virtual Status remove (ULong);

static NVList_ptr _duplicate(NVList_ptr);
static NVList_ptr _nil();

};

11.2.4 Context

Represents a set of context strings. User contexts are not supported by the omniidl2
IDL compiler - and so cannot be used with statically defined operations. However
they are supported in the DII.

class Context {
public:

virtual const char* context_name() const;
virtual CORBA::Context_ptr parent() const;
virtual CORBA::Status create_child(const char*, Context_out);
virtual CORBA::Status set_one_value(const char*, const CORBA::Any&);
virtual CORBA::Status set_values(CORBA::NVList_ptr);
virtual CORBA::Status delete_values(const char*);
virtual CORBA::Status get_values(const char* start_scope,

CORBA::Flags op_flags,
const char* pattern,
CORBA::NVList_out values);

// Throws BAD_CONTEXT if <start_scope> is not found.



110 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

// Returns a nil NVList in <values> if no matches are found.

static Context_ptr _duplicate(Context_ptr);
static Context_ptr _nil();

};

11.2.5 ContextList

A ContextList is a list of strings, and is used to specify which strings from the
’context’ should be sent with an operation.

class ContextList {
public:

virtual ULong count() const;
virtual void add(const char* ctxt);
virtual void add_consume(char* ctxt);
// consumes ctxt

virtual const char* item(ULong index);
// retains ownership of return value

virtual Status remove(ULong index);

static ContextList_ptr _duplicate(ContextList_ptr);
static ContextList_ptr _nil();

};

11.2.6 ExceptionList

ExceptionList s contain a list of TypeCodes - and are used to specify which user-
defined exceptions an operation may throw.

class ExceptionList {
public:

virtual ULong count() const;
virtual void add(TypeCode_ptr tc);
virtual void add_consume(TypeCode_ptr tc);
// Consumes <tc>.

virtual TypeCode_ptr item(ULong index);
// Retains ownership of return value.

virtual Status remove(ULong index);

static ExceptionList_ptr _duplicate(ExceptionList_ptr);
static ExceptionList_ptr _nil();

};

11.2.7 UnknownUserException

When a user-defined exception is thrown by an operation it is unmarshalled into a
value of type Any. This is encapsulated in an UnknownUserException . This type



11.3. CREATING REQUESTS 111

follows all the usual rules for user-defined exceptions - it is not a pseudo object, and
its resources may be released by using delete .

class UnknownUserException : public UserException {
public:

UnknownUserException(Any* ex);
// Consumes <ex> which MUST be a UserException.

virtual ˜UnknownUserException();

Any& exception();

virtual void _raise();
static const UnknownUserException* _downcast(const Exception*);
static UnknownUserException* _downcast(Exception*);
static UnknownUserException* _narrow(Exception*);
// _narrow is a deprecated function from CORBA 2.2,
// use _downcast instead.

};

11.2.8 Environment

An Environment is used to hold an instance of a system exception or an Un-
knownUserException .

class Environment {
virtual void exception(Exception*);
virtual Exception* exception() const;
virtual void clear();

static Environment_ptr _duplicate(Environment_ptr);
static Environment_ptr _nil();

};

11.3 Creating Requests

CORBA::Object defines three methods which may be used to create a Request ob-
ject which may be used to perform a single operation invocation on that object:

class Object {
...
Status _create_request(Context_ptr ctx,

const char* operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags);

Status _create_request(Context_ptr ctx,
const char* operation,
NVList_ptr arg_list,



112 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

NamedValue_ptr result,
ExceptionList_ptr exceptions,
ContextList_ptr ctxlist,
Request_out request,
Flags req_flags);

Request_ptr _request(const char* operation);
...

};

operation is the name of the operation - which is the same as the name given in
IDL. To access attributes the name should be prefixed by get or set .

In the first two cases above the list of parameters may be supplied. If the param-
eters are not supplied in these cases, or request() is used then the parameters (if
any) may be specified using the add * arg() methods on the Request . You must
use one method or the other - not a mixture of the two. For in/inout arguments the
value must be initialised, for out arguments only the type need be given. Similarly the
type of the result may be specified by passing a NamedValue which contains an Any
which has been initialised to contain a value of that type, or it may be specified using
the set return type() method of Request .

When using create request() , the management of any pseudo-object refer-
ences passed in remains the responsibility of the application. That is, the values are
not consumed - and must be released using CORBA::release() . The CORBA spec-
ification is unclear about when these values may be released, so to be sure of porta-
bility do not release them until after the request has been released. Values which are
not needed need not be supplied - so if no parameters are specified then it defaults to
an empty parameter list. If no result type is specified then it defaults to void. A Con-
text need only be given if a non-empty ContextList is specified. The req flags
argument is not used in the C++ mapping.

11.3.1 Examples

An operation might be specified in IDL as:

short anOpn(in string a);

An operation invocation may be created as follows:

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "omniORB2");
...
CORBA::NVList_var args;
orb->create_list(1, args);
*(args->add(CORBA::ARG_IN)->value()) <<= (const char*) "Hello World!";

CORBA::NamedValue_var result;
orb->create_named_value(result);
result->value()->replace(CORBA::_tc_short, 0);

CORBA::Request_var req = obj->_create_request(CORBA::Context::_nil(),
"anOpn", args, result, 0);



11.4. INVOKING OPERATIONS 113

or alternatively and much more concisely:

CORBA::Request_var req = obj->_request("anOpn");
req->add_in_arg() <<= (const char*) "Hello World!";
req->set_return_type(CORBA::_tc_short);

11.4 Invoking Operations

Once the Request object has been properly constructed the operation may be invoked
by calling one of the following methods on the request object:

invoke() blocks until the request has completed. The application should then test to
see if an exception was raised. Since the CORBA spec is not clear about whether or
not system exceptions should be thrown from this method, a runtime configuration
variable is supplied so that you can specify the behavior:

namespace omniORB {
...
CORBA::Boolean diiThrowsSysExceptions;
...

};

If this is FALSE, and the application should call the env() method of the re-
quest to retrieve an exception (it returns 0 (nil) if no exception was generated).
If it is TRUE then system exceptions will be thrown out of invoke() . User-
defined exceptions are always passed via env() , which will return a pointer to a
CORBA::UnknownUserException . The application can determine which type of
exception was returned by env() by calling the narrow() method defined for each
exception type.

WARNING!! In pre-omniORB 2.8.0 releases, the default value of diiThrowsSy-
sExceptions is FALSE. From omniORB 2.8.0 onwards, the default value is TRUE.

After determining that no exception was thrown the application may retrieve any
returned values by calling return value() and arguments() .

send oneway() has the same semantics as a oneway IDL operation. It is important
to note that oneway operations have at-most-once semantics, and it is not guaranteed
that they will not block. Any operation may be invoked ’oneway’ using the DII, even
if it was not declared as ’oneway’ in IDL. A system exception may be generated, in
which case it will either be thrown or may be retrieved using env() depending on
diiThrowsSysExceptions as above.

send deferred() initiates the invocation, and then returns without waiting for the
result. At some point in the future the application must retrieve the result of the
operation - but other than testing for completion of the operation the application must
not call any of the request’s methods in the meantime.

� get response() blocks until the reply is received.



114 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

� poll response() returns TRUE if the reply has been received, and FALSE if
not. It does not block.

Once poll response() has returned TRUE, or get response() has been called
and returned, the application may test for an exception and retrieve returned values
as above. If diiThrowsSysExceptions is true, then a system exception may be
thrown from get response() . From omniORB 2.8.0 onwards, poll response()
will raise a system exception if one has occured during the invocation. Previously,
poll response() will not raise an exception, so if polling, the application must also
call another method to give the request an opportunity to raise the exception. This can
be one of the methods to retrieve values from the request, or get response() .

11.5 Multiple Requests

The following methods are provided by the ORB to enable multiple requests to be
invoked asynchronously.

namespace CORBA {
...
class ORB {
public:

...
Status send_multiple_requests_oneway(const RequestSeq&);
Status send_multiple_requests_deferred(const RequestSeq&);
Boolean poll_next_response();
Status get_next_response(Request_out);
...

};
...

};

send multiple requests oneway() is used to invoke a number of oneway requests.
An attempt will be made to invoke each of the requests, even if one or more of the early
requests fails. The application may check for failure of any of the requests by testing
the request’s env() method. System exceptions are never raised by this method.

send multiple requests deferred() will initiate an invocation of each of the given
requests, and return without waiting for the reply. At some point in the future the
application must retrieve the reply by calling get next response() , which returns
a completed request. If no requests have yet completed it will block. This method
never throws exceptions - the request’s env() method must be used to determine if
an exception was generated. If not then any returned values may then be queried.

poll next response() returns TRUE if there are any completed requests,
and FALSE otherwise, without blocking. If this returns true then the next call to
get next response() will not block. However, if another thread may also be call-
ing get next response() then it could retrieve the completed message first - in
which case this thread might block.



11.5. MULTIPLE REQUESTS 115

There are no guarantee as to the order in which replies will be received. If multiple
threads are using this interface then it is not even guaranteed that a thread will receive
replies to the requests it sent. Any thread may receive replies to requests sent by any
other thread. It is legal to call get next response() even if no requests have yet
been invoked - in which case the calling thread blocks until another thread invokes a
request and the reply is received.



116 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE



Chapter 12

The Dynamic Skeleton Interface

The Dynamic Skeleton Interface (or DSI) allows applications to provide implemen-
tations of the operations on CORBA objects without static knowledge of the object’s
interface. It is the server-side equivalent of the Dynamic Invocation Interface.

This chapter presents the Dynamic Skeleton Interface and explains how to use
it. An toy example use of the DSI can be found in the omniORB2 distribution
in the <top>/src/examples/dsi directory. For further information refer to the
Dynamic Skeleton Interface and C++ Mapping sections of the CORBA 2 specifica-
tion [OMG99a].

The DSI interface has changed in CORBA 2.3. The implementation described be-
low conforms to CORBA 2.1 or 2.2.

12.1 Overview

When an ORB receives an invocation request, the information includes the object ref-
erence and the name of the operation. Typically this information is used by the ORB
to select an instance of an object and call into the implementation of the operation
(which knows how to unmarshal the parameters etc.). The Dynamic Skeleton Inter-
face however makes this information directly available to the application - so that it
can implement the operation (or pass it on to another server) without static knowledge
of the interface. In fact it is not even necessary for the server to always implement the
same interface on any particular object!

To provide an implementation for one or more objects an application must sub-
class DynamicImplementation and override the method invoke() . An instance
of this class is registered with the BOA and is assigned an object reference (see below).
When the ORB receives a request for that object the invoke() method is called and
will be passed a ServerRequest object which provides:

� the operation name

� context strings

� access to the parameters

� a way to set the returned values

117



118 CHAPTER 12. THE DYNAMIC SKELETON INTERFACE

� a way to throw user-defined exceptions.

12.2 DSI Types

12.2.1 DynamicImplementation

This class must be sub-classed by the application to provide an implementation for
DSI objects. The method invoke() will be called for each operation invocation.

namespace CORBA {
...
class BOA {

...
class DynamicImplementation {
public:

DynamicImplementation();
virtual ˜DynamicImplementation();

virtual void invoke(ServerRequest_ptr request,
Environment& env) throw() = 0;

protected:
Object_ptr _this();
// Must only be called from within invoke(). Caller must release
// the reference returned.

BOA_ptr _boa();
// Must only be called from within invoke(). Caller must NOT
// release the reference returned.

};
...

};
...

};

12.2.2 ServerRequest

A ServerRequest object provides the interface between a dynamic implementation
and the ORB.

namespace CORBA {
...
class ServerRequest {
public:

virtual const char* op_name();
virtual OperationDef_ptr op_def();
virtual Context_ptr ctx();
virtual void params(NVList_ptr parameters);
virtual void result(Any* value);
virtual void exception(Any* value);



12.3. CREATING DYNAMIC IMPLEMENTATIONS 119

static ServerRequest_ptr _duplicate(ServerRequest_ptr);
static ServerRequest_ptr _nil();

};
...

};

12.3 Creating Dynamic Implementations

The application must override the invoke() method of DynamicImplementation
to provide an implementation for DSI objects. This method must behave as follows:

� It may be called concurrently by multiple threads of execution, and so must be
thread-safe.

� It may not throw any exceptions. User-defined exceptions are passed in a value
of type Any and given to ServerRequest::exception() . In pre-omniORB
2.8.0 releases, system exceptions may be passed via the env parameter. From
omniORB 2.8.0 onwards, system exceptions can be inserted into an Any and
given to ServerRequest::exception() in the same way as user-defined
exceptions. Since the methods provided by ServerRequest may throw sys-
tem exceptions, the application must catch any such exception, passed it via
ServerRequest::exception() .

� The operations on the ServerRequest object must be carried out in the correct
order, as described below.

12.3.1 Operations on the ServerRequest

op name() will return the name of the operation, and may be called at any time.
For attribute access the operation name is the IDL name of the attribute, prefixed by
get or set . If the operation name is not recognised a CORBA::BAD OPERATION

exception should be passed back through env . This will allow the ORB to then see if
it is one of the standard object operations.

Firstly params() must be called passing a CORBA::NVList 1 which must be ini-
tialised to contain the type and mode of the parameters. The ORB consumes this value
and will release it when the operation is complete. At this point any in/inout argu-
ments will be unmarshalled, and when this operation returns their values will be in
the NVList . The application may set the value of inout/out arguments by modifying
this parameter list.

If the operation has user-context information, then ctx() must be called after
params() to retrieve it.

result() must then be called exactly once if the operation has a non-void return
value (unless an exception is thrown). The value passed should be an Any allocated
with new, and will be freed by the ORB.

At any point in the above sequence exception() may be called to set a user-
defined exception or a system exception. If this happens then no further operations

1obtained by calling CORBA::ORB::create list()



120 CHAPTER 12. THE DYNAMIC SKELETON INTERFACE

should be invoked on the ServerRequest object, and the invoke() method should
return.

Within the invoke() method this() and boa() may be called to obtain the
object reference and BOA reference respectively. These methods may not be used at
any other time.

12.4 Registering Dynamic Objects

To use a DynamicImplementation a CORBA object must be created and associated
with the implementation. The way in which this is done is not defined by the CORBA
2.0 specification, so the following method is omniORB2 specific:

namespace CORBA {
...
class BOA {

...
Object_ptr create_dynamic_object(DynamicImplementation_ptr dir,

const char* intfRepoId);
...

};
...

};

Ownership of the DynamicImplementation object is taken over by the ORB,
and it will be deleted when associated the object is destroyed. The returned object
may then be entered into the object table with a call to BOA::obj is ready() as
usual, and will then start accepting operation invocations.

For some applications it will not be possible to register all DSI objects in advance
of invocations arriving. In this case DSI objects can be created on demand in the same
way as normal objects - see section 5.6.

12.5 Example

This implementation of DynamicImplementation::invoke() is taken from an
example which can be found in the omniORB2 distribution. The operation
“echoString” is declared in IDL as:

string echoString(in string mesg);

Here is the Dynamic Implementation Routine:

void
MyDynImpl::invoke(CORBA::ServerRequest_ptr re-
quest, CORBA::Environment& env)

throw()
{

try {
if( strcmp(request->op_name(), "echoString") )

throw CORBA::BAD_OPERATION(0, CORBA::COMPLETED_NO);



12.5. EXAMPLE 121

CORBA::NVList_ptr args;
orb->create_list(0, args);
CORBA::Any a;
a.replace(CORBA::_tc_string, 0);
args->add_value("", a, CORBA::ARG_IN);

request->params(args);

CORBA::Any& input_any = *(args->item(0)->value());
CORBA::String_var input;
input_any >>= input.out();

CORBA::Any* result = new CORBA::Any();
*result <<= CORBA::Any::from_string(input._retn(), 0);
request->result(result);

}
catch(CORBA::Exception& ex) {

CORBA::Any* v = new CORBA::Any;
::operator<<=(*v,ex);
request->exception(v);

}
// In pre-omniORB 2.8.0, one has to do this:
// catch(CORBA::SystemException& ex){
// env.exception(CORBA::Exception::_duplicate(&ex));
// }
catch(...){

cout << "echo_dsiimpl: MyDynImpl::invoke - caught an"
" unknown exception." << endl;

env.exception(new CORBA::UNKNOWN(0, CORBA::COMPLETED_NO));
}

}



122 CHAPTER 12. THE DYNAMIC SKELETON INTERFACE



Appendix A

hosts access(5)

DESCRIPTION

This manual page describes a simple access control language that is based on client
(host name/address, user name), and server (process name, host name/address) pat-
terns. Examples are given at the end. The impatient reader is encouraged to skip to
the EXAMPLES section for a quick introduction.

An extended version of the access control language is described in the
hosts options(5) document. The extensions are turned on at program build time by
building with -DPROCESS OPTIONS.

In the following text, daemon is the the process name of a network daemon process,
and client is the name and/or address of a host requesting service. Network daemon
process names are specified in the inetd configuration file.

ACCESS CONTROL FILES

The access control software consults two files. The search stops at the first match:

� Access will be granted when a (daemon,client) pair matches an entry in the
/etc/hosts.allow file.

� Otherwise, access will be denied when a (daemon,client) pair matches an entry
in the /etc/hosts.deny file.

� Otherwise, access will be granted.

A non-existing access control file is treated as if it were an empty file. Thus, access
control can be turned off by providing no access control files.

ACCESS CONTROL RULES

Each access control file consists of zero or more lines of text. These lines are processed
in order of appearance. The search terminates when a match is found.

� A newline character is ignored when it is preceded by a backslash character.
This permits you to break up long lines so that they are easier to edit.

123



124 APPENDIX A. HOSTS ACCESS(5)

� Blank lines or lines that begin with a # character are ignored. This permits you
to insert comments and whitespace so that the tables are easier to read.

� All other lines should satisfy the following format, things between [] being op-
tional: daemon list : client list [ : shell command ]

daemon list is a list of one or more daemon process names (argv[0] values) or
wildcards (see below).

client list is a list of one or more host names, host addresses, patterns or wild-
cards (see below) that will be matched against the client host name or address.

The more complex forms daemon@host and user@host are explained in the sec-
tions on server endpoint patterns and on client username lookups, respectively.

List elements should be separated by blanks and/or commas.
With the exception of NIS (YP) netgroup lookups, all access control checks are case

insensitive.

PATTERNS

The access control language implements the following patterns:

� A string that begins with a . character. A host name is matched if the last
components of its name match the specified pattern. For example, the pattern
.tue.nl matches the host name wzv.win.tue.nl .

� A string that ends with a . character. A host address is matched if its first
numeric fields match the given string. For example, the pattern 131.155.
matches the address of (almost) every host on the Eindhoven University net-
work (131.155.x.x ).

� A string that begins with an character is treated as an NIS (formerly YP) net-
group name. A host name is matched if it is a host member of the specified
netgroup. Netgroup matches are not supported for daemon process names or
for client user names.

� An expression of the form n.n.n.n/m.m.m.m is interpreted as a “net/mask”
pair. A host address is matched if “net” is equal to the bitwise
AND of the address and the “mask”. For example, the net/mask pat-
tern 131.155.72.0/255.255.254.0 matches every address in the range
131.155.72.0 through 131.155.73.255 .

WILDCARDS

The access control language supports explicit wildcards:

ALL The universal wildcard, always matches.

LOCAL Matches any host whose name does not contain a dot character.



125

UNKNOWNMatches any user whose name is unknown, and matches any host whose
name or address are unknown. This pattern should be used with care: host
names may be unavailable due to temporary name server problems. A network
address will be unavailable when the software cannot figure out what type of
network it is talking to.

KNOWNMatches any user whose name is known, and matches any host whose name
and address are known. This pattern should be used with care: host names may
be unavailable due to temporary name server problems. A network address will
be unavailable when the software cannot figure out what type of network it is
talking to.

PARANOIDMatches any host whose name does not match its address. When tcpd
is built with -DPARANOID (default mode), it drops requests from such clients
even before looking at the access control tables. Build without -DPARANOID
when you want more control over such requests.

OPERATORS

EXCEPTIntended use is of the form: list 1 EXCEPT list 2; this construct
matches anything that matches list 1 unless it matches list 2. The EXCEPT
operator can be used in daemon lists and in client lists . The EXCEPTop-
erator can be nested: if the control language would permit the use of parenthe-
ses, a EXCEPT b EXCEPT cwould parse as (a EXCEPT (b EXCEPT c)) .

SHELL COMMANDS

If the first-matched access control rule contains a shell command, that command is
subjected to %<letter> substitutions (see next section). The result is executed by a
/bin/sh child process with standard input, output and error connected to /dev/null.
Specify an & at the end of the command if you do not want to wait until it has com-
pleted.

Shell commands should not rely on the PATH setting of the inetd. Instead,
they should use absolute path names, or they should begin with an explicit
PATH=whatever statement.

The hosts options(5) document describes an alternative language that uses the
shell command field in a different and incompatible way.

% EXPANSIONS

The following expansions are available within shell commands:

%a (%A) The client (server) host address.

%c Client information: user@host, user@address, a host name, or just an address,
depending on how much information is available.

%d The daemon process name (argv[0] value).



126 APPENDIX A. HOSTS ACCESS(5)

%h (%H) The client (server) host name or address, if the host name is unavailable.

%n (%N) The client (server) host name (or ”unknown” or ”paranoid”).

%p The daemon process id.

%s Server information: daemon@host, daemon@address, or just a daemon name,
depending on how much information is available.

%u The client user name (or ”unknown”).

%%Expands to a single %character.

Characters in % expansions that may confuse the shell are replaced by under-
scores.

SERVER ENDPOINT PATTERNS

In order to distinguish clients by the network address that they connect to, use pat-
terns of the form:

process name@host pattern : client list ...
Patterns like these can be used when the machine has different internet addresses

with different internet hostnames. Service providers can use this facility to offer FTP,
GOPHER or WWW archives with internet names that may even belong to different
organisations. See also the “twist” option in the hosts options(5) document. Some
systems (Solaris, FreeBSD) can have more than one internet address on one physical
interface; with other systems you may have to resort to SLIP or PPP pseudo interfaces
that live in a dedicated network address space. .sp The host pattern obeys the
same syntax rules as host names and addresses in client list context. Usually,
server endpoint information is available only with connection-oriented services.

CLIENT USERNAME LOOKUP

When the client host supports the RFC 931 protocol or one of its descendants (TAP,
IDENT, RFC 1413) the wrapper programs can retrieve additional information about
the owner of a connection. Client username information, when available, is logged
together with the client host name, and can be used to match patterns like:

daemon list : ... user pattern@host pattern ...
The daemon wrappers can be configured at compile time to perform rule-driven

username lookups (default) or to always interrogate the client host. In the case of rule-
driven username lookups, the above rule would cause username lookup only when
both the daemon list and the host pattern match.

A user pattern has the same syntax as a daemon process pattern, so the same wild-
cards apply (netgroup membership is not supported). One should not get carried
away with username lookups, though.

� The client username information cannot be trusted when it is needed most,
i.e. when the client system has been compromised. In general, ALL and
(UN)KNOWN are the only user name patterns that make sense.



127

� Username lookups are possible only with TCP-based services, and only when
the client host runs a suitable daemon; in all other cases the result is “unknown”.

� A well-known UNIX kernel bug may cause loss of service when username
lookups are blocked by a firewall. The wrapper README document describes
a procedure to find out if your kernel has this bug.

� Username lookups may cause noticeable delays for non-UNIX users. The de-
fault timeout for username lookups is 10 seconds: too short to cope with slow
networks, but long enough to irritate PC users.

Selective username lookups can alleviate the last problem. For example, a rule
like:

daemon list : @pcnetgroup ALL@ALL

would match members of the pc netgroup without doing username lookups, but
would perform username lookups with all other systems.

DETECTING ADDRESS SPOOFING ATTACKS

A flaw in the sequence number generator of many TCP/IP implementations allows
intruders to easily impersonate trusted hosts and to break in via, for example, the
remote shell service. The IDENT (RFC931 etc.) service can be used to detect such and
other host address spoofing attacks.

Before accepting a client request, the wrappers can use the IDENT service to find
out that the client did not send the request at all. When the client host provides IDENT
service, a negative IDENT lookup result (the client matches UNKNOWN@host) is strong
evidence of a host spoofing attack.

A positive IDENT lookup result (the client matches KNOWN@host) is less trustwor-
thy. It is possible for an intruder to spoof both the client connection and the IDENT
lookup, although doing so is much harder than spoofing just a client connection. It
may also be that the client’s IDENT server is lying.

Note: IDENT lookups don’t work with UDP services.

EXAMPLES

The language is flexible enough that different types of access control policy can be
expressed with a minimum of fuss. Although the language uses two access control
tables, the most common policies can be implemented with one of the tables being
trivial or even empty.

When reading the examples below it is important to realise that the allow table is
scanned before the deny table, that the search terminates when a match is found, and
that access is granted when no match is found at all.

The examples use host and domain names. They can be improved by including
address and/or network/netmask information, to reduce the impact of temporary
name server lookup failures.



128 APPENDIX A. HOSTS ACCESS(5)

MOSTLY CLOSED

In this case, access is denied by default. Only explicitly authorised hosts are permitted
access.

The default policy (no access) is implemented with a trivial deny file:

/etc/hosts.deny:
ALL: ALL

This denies all service to all hosts, unless they are permitted access by entries in
the allow file.

The explicitly authorised hosts are listed in the allow file. For example:

/etc/hosts.allow:
ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

The first rule permits access from hosts in the local domain (no . in the host name)
and from members of the some netgroup netgroup. The second rule permits access
from all hosts in the foobar.edu domain (notice the leading dot), with the exception
of terminalserver.foobar.edu .

MOSTLY OPEN

Here, access is granted by default; only explicitly specified hosts are refused service.
The default policy (access granted) makes the allow file redundant so that it can be

omitted. The explicitly non-authorised hosts are listed in the deny file. For example:

/etc/hosts.deny:
ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

The first rule denies some hosts and domains all services; the second rule still
permits finger requests from other hosts and domains.

BOOBY TRAPS

The next example permits tftp requests from hosts in the local domain (notice the
leading dot). Requests from any other hosts are denied. Instead of the requested file,
a finger probe is sent to the offending host. The result is mailed to the superuser.

/etc/hosts.allow:
in.tftpd: LOCAL, .my.domain

/etc/hosts.deny:
in.tftpd: ALL: (/some/where/safe\_finger -l @%h | \

/usr/ucb/mail -s %d-%h root) &



129

The safe finger command comes with the tcpd wrapper and should be in-
stalled in a suitable place. It limits possible damage from data sent by the remote
finger server. It gives better protection than the standard finger command.

The expansion of the %h (client host) and %d (service name) sequences is de-
scribed in the section on shell commands.

Warning: do not booby-trap your finger daemon, unless you are prepared for infi-
nite finger loops.

On network firewall systems this trick can be carried even further. The typical
network firewall only provides a limited set of services to the outer world. All other
services can be ”bugged” just like the above tftp example. The result is an excellent
early-warning system.

DIAGNOSTICS

An error is reported when a syntax error is found in a host access control rule; when
the length of an access control rule exceeds the capacity of an internal buffer; when
an access control rule is not terminated by a newline character; when the result of
expansion would overflow an internal buffer; when a system call fails that shouldnt́.
All problems are reported via the syslog daemon.

FILES

/etc/hosts.allow , (daemon,client) pairs that are granted access.
/etc/hosts.deny , (daemon,client) pairs that are denied access.

SEE ALSO

tcpd(8) tcp/ip daemon wrapper program.
tcpdchk(8), tcpdmatch(8), test programs.

BUGS

If a name server lookup times out, the host name will not be available to the access
control software, even though the host is registered.

Domain name server lookups are case insensitive; NIS (formerly YP) netgroup
lookups are case sensitive.

AUTHOR

Wietse Venema (wietse@wzv.win.tue.nl)
Department of Mathematics and Computing Science
Eindhoven University of Technology
Den Dolech 2, P.O. Box 513,
5600 MB Eindhoven, The Netherlands



130 APPENDIX A. HOSTS ACCESS(5)



Bibliography

[OMG99a] The Common Object Request Broker: Architecture and Specification, Revision
2.3, OMG, Final publication expected in 1999.

[OMG99b] CORBAservices: Common Object Services Specification, OMG, Updated July
1996.

[Richardson96a] The OMNI Thread Abstraction, Tristan Richardson, ORL, 22 October
1996.

[Richardson96b] The OMNI Development Environment Version 4.0, Tristan Richardson,
ORL, 5 November 1996.

131


