The omniORB2 version 2.6
User’s Guide

Sai-Lai Lo
(email: slo@orl.co.uk)
Olivetti & Oracle Research Laboratory

30 Sept, 1998

Changes and Additions, 30 Sept 1998

Chapter 1 - updates to features and setup information
Chapter 2 - new example on tie implementation templates

Chapter 4 - updates to command-line options and a new section on initial object
reference bootstrapping.

Chapter 5 - new section on-demand object loading
Chapter 7 - new runtime configuration variable omniORB::maxTcpConnectionPerServer

New chapter - Dynamic Management of Any Values

Contents

1

Introduction 1
1.1 Features e 1
111 CORBA2compliant 1
1.1.2 Multithreading 1
1.1.3 Portability 2
1.1.4 Missingfeatures 0., 2
1.2 Setting Up Your Environment 2
1.3 Platform specificvariables,, 3
The Basics 5
2.1 TheEchoObjectExample 5
2.2 Specifying the EchointerfaceinIDL 5
2.3 GeneratingtheC++stubs, 6
24 AQuick TouroftheC++stubs 7
241 ObjectReference 7
2.4.2 Object Implementation. 9
2.5 Writing the object implementation 10
2.6 Writingtheclient 1
2.7 Example 1 - Colocated Client and Implementation 12
2.7.1 ORB/BOA initialisation 13
2.7.2 Objectinitialisation 13
2.7.3 Clientinvocation 14
274 Objectdisposal 15
2.8 Example 2 - Different AddressSpaces 15
2.8.1 Object Implementation: Generating a Stringified Object Reference 15
2.8.2 Client: Using a Stringified Object Reference 16
2.8.3 Catching System Exceptions 16
2.8.4 Lifetime of an Object Implementation 17
2.9 Example 3 - Using the COS Naming Service 18
2.9.1 Obtaining the Root Context Object Reference 18
2.9.2 The Naming ServiceInterface 18
2.10 Example 4 - Using tie implementationtemplates 19
211 Source Listing 20
2111 echoliCC o o 20
2112 greeting.CC e 21
2113 g1.CC . . . v o 22

2.11.4
2.11.5
2.11.6
2117
2.11.8
2.11.9

eg2.impl.cc
eg2.cltec e
egd.implcc e
eg3cltcc
eg3_tieimplcc
dirmk

IDL to C++ Language Mapping

The omniORB2 API

ORB and BOA initialisation options
Run-time Tracing and Diagnostic Messages
Server Name e
Object Keys e
GIOP Message Size
Initial Object Reference Bootstrapping
Trapping omniORB2 Internal Errors

4.1
4.2
4.3
4.4
4.5
4.6
4.7

The Basic Object Adaptor (BOA)

BOA Initialisation
Object Registration
Object Disposal
BOAShutdown
Unsupported functions
Loading ObjectsOnDemand

5.1
5.2
5.3
5.4
5.5
5.6

Interface Type Checking

Introduction
6.2 Basic Interface Type Checking
Interface Inheritance

6.1

6.3

Connection Management

Background
TheModel
Idle Connection Shutdown L
Interoperability Considerations
Connection Acceptance e

7.1
7.2
7.3
7.4
7.5

Proxy Objects
8.1 System ExceptionHandlers,

8.2

8.11
8.1.2
8.1.3

CORBA:TRANSIENThandlers.
CORBA:COMM_FAILURE
CORBA::SystemException

Proxy Object Factories

8.2.1
8.2.2

Background
AnExample e
8.2.21 Defineanewproxyclass
8.2.2.2 Define anew proxy factoryclass.

8.2.3 Further Considerations

9 Type Any and TypeCode
9.1 Example using type Any
9.1.1 TypeAnyin IDL

9.1.2 Inserting and Extracting Basic TypesfromanAny
9.1.3 Inserting and Extracting Constructed Types froman Any

9.2 Type Any in omniORB2
9.3 TypeCode in omniORB2
9.4 Source Listing

9.4.1 anyExample.implcc

9.4.2 anyExample_clt.cc

10 Dynamic Management of Any Values

10.1 C++ mapping
10.2 The DynAny Interface .

10.2.1 Example: extract data values froman Any
10.2.1.1 Iterate through the components
10.2.1.2 Extract basic type components
10.2.1.3 Extractcomplexcomponents.

10.2.1.4 Clean-up

10.2.2 Example: insert data valuesintoan Any
10.2.2.1 Insert basic typecomponents.
10.2.2.2 Insertcomplexcomponents

10.3 The DynStruct Interface

10.4 The DynSequence lnterface

10.5 The DynArray Interface
10.6 The DynEnum Interface
10.7 The DynUnion Interface

10.7.1 Three Categoriesof Union

10.7.2 Example: extract d

ata values fromaunion

10.7.2.1 Explicitdefaultunion
10.7.2.2 Implicitdefaultunion

10.7.2.3 No defau

ltunion.

10.7.3 Example: insert data values intoaunion
10.7.3.1 Ambiguoususage
10.8 Duplicate DynAny References

10.9 Other Operations

A hosts_access(5)

Chapter 1

Introduction

OmniORB?2 is an Object Request Broker (ORB) that implements the 2.0 specification
of the Common Object Request Broker Architecture (CORBA) [OMG96a]*. This user
guide tells you how to use omniORB2 to develop CORBA applications. It assumes a
basic understanding of CORBA.

In this chapter, we give an overview of the main features of omniORB2 and what
you need to do to setup your environment to run omniORB2.

1.1 Features

1.1.1 CORBA 2 compliant

OmniORB2 implements the Internet Inter-ORB Protocol (11OP). This protocol provides
omniORB2 the means of achieving interoperability with the ORBs implemented by
other vendors. In fact, this is the native protocol used by omniORB2 for the commu-
nication amongst its objects residing in different address spaces. Moreover, the IDL
to C++ language mapping provided by omniORB2 conforms to the latest revision of
the CORBA specification. Type Any and TypeCode are now supported (introduced in
version 2.5.0). DynAny is supported since 2.6.0.

1.1.2 Multithreading

OmniORB?2 is fully multithreaded. To achieve low IIOP call overhead, unnecessary
call-multiplexing is eliminated. At any time, there is at most one call in-flight in each
communication channel between two address spaces. To do so without limiting the
level of concurrency, new channels connecting the two address spaces are created on
demand and cached when there are more concurrent calls in progress. Each channel
is served by a dedicated thread. This arrangement provides maximal concurrency
and eliminates any thread switching in either of the address spaces to process a call.
Furthermore, to maximise the throughput in processing large call arguments, large
data elements are sent as soon as they are processed while the other arguments are
being marshalled.

1The DynAny implmentation introduced in version 2.6.0 implements the facility in the 2.2 specifica-
tion.

2 CHAPTER 1. INTRODUCTION

1.1.3 Portability

At ORL, the ability to target a single source tree to multiple platforms is very impor-
tant. This is difficult to achieve if the IDL to C++ mapping for these platforms are
different. We avoid this problem by making sure that only one IDL to C++ mapping is
used. We run several flavours of Unices, Windows NT, Windows 95 and our in-house
developed systems for our own hardware. OmniORB2 have been ported to all these
platforms. The IDL to C++ mapping for these targets are all the same.

OmniORB2 uses real C++ exceptions and nested classes. We stay with the CORBA
specification’s standard mapping as much as possible and do not use the alternative
mappings for C++ dialects. The only exception is the mapping of modules.

Starting with 2.6.0, the code generated by the IDL compiler of omniORB2 can be
compiled using C++ classes or namespaces to represent IDL modules depending on
the availability of namespace support in the compiler.

OmniORB2 relies on the native thread libraries to provide the multithreading ca-
pability. A small class library (omnithread [Richardson96a]) is used to encapsulated
the (possibly different) APIs of the native thread libraries. In the application code, it
is recommended but not mandatory to use this class library for thread management.
It should be easy to port omnithread to any platform that either supports the POSIX
thread standard or has a thread package that supports similar capabilities.

1.1.4 Missing features

OmniORB?2 is not (yet) a complete implementation of the CORBA core. The following
is a list of the missing features.

e The BOA only support the persistent server activation policy. Other dynamic
activation and deactivation policies are not supported.

e The Dynamic Invocation Interface is not supported.
e The Dynamic Skeleton Interface is not supported.

e OmniORB2 does not has its own Interface Repository.

These features may be implemented in the short to medium term.
It is best to check out the latest status on the omniORB2 home page
(http://intranet.cam-orl.co.uk/ ~omni/).

1.2 Setting Up Your Environment

At ORL, you should wuse the OMNI Development Environment
(ODE) [Richardson96b] and the OMNI tree version 5.0 or above to compile your
programs. If this is the case, there is no extra setup you have to do other than those
described in the ODE documentation.

If you are running omniORB2 at other sites, you (or your system administrator)
should install omniORB2 by following the instructions in the installation notes.

1.3. PLATFORM SPECIFIC VARIABLES 3

e On Unix platforms, the omniORB2 runtime looks for the environment variable
OMNIORBCONFIG If this variable is defined, it contains the pathname of the
omniORB2 configuration file. If the variable is not set, omniORB2 will use the
compiled-in pathname to locate the file.

e On ARM/ATMos, the omniORB2 runtime looks for configuration information
in the file omniORB.cfg .

e On Win32 platforms (Windows NT, Windows ’95), omniORB2 first checks
the environment variable (OMNIORBZCONFIQ to obtain the pathname of the
configuration file. If this is not set, it then attempts to obtain configura-
tion data in the system registry. It searches for the data under the key
HKEYLOCALMACHINESOFTWARM®RL omniORB\2.0

The configuration file is used to obtain an object reference for the COSS Naming
Service. The entry in the configuration file should be specified in the following form:

NAMESERVICE <stringified IOR for the COSS Naming Service>
Comments in the configuration file should be prefixed with a #.

On Win32 platforms, the stringified IOR can be placed in the
system registry, in the (string) value NAMESERVICE under the key
HKEYLOCALMACHINESOFTWARMPRL 0mniORB\2.0 .

Since 2.6.0, two other entries are supported:

ORBInitialHost <hostname string>
ORBInitialPort <port number (1-65535)>

The corresponding entries under the Win32 system registry is the key with name
ORBInitialHost and ORBInitialPort

The two entries provide information to the ORB to locate a bootstrap service at
runtime. The bootstrap service is able to return the initial object reference for the
COSS Naming Service and others. This is now the recommended way to configure
omniORB2. More details are provided in section 4.6.

1.3 Platform specific variables

To compile omniORB2 programs correctly, several C++ preprocessor defines must be
specified to identify the target platform.

4 CHAPTER 1. INTRODUCTION

Platform CPP defines

Sun Solaris 2.5 __sparc____sunos__ _ OSVERSION__ =5

Digital Unix 3.2 _alpha_ __osfl _ OSVERSION_ =3

HPUX 10.x _hppa__ __hpux__ __ OSVERSION__ =10

IBM AIX 4.x _aix__ _ powerpc__ _ OSVERSION__ =4

Linux 2.0 (x86) _ X86__ _linux__ _ OSVERSION__=2

Linux 2.0 (alpha) __alpha__ _linux_ _ OSVERSION__=2

Windows/NT 3.5 _ Xx86__ _ NT__ __OSVERSION__=3 _ WIN32__
Windows/NT 4.0 _ Xx86__ _ NT__ __OSVERSION__=4 _ WIN32__
Windows/95 _ X86__ WIN32__

OpenVMS 6.x (alpha) | __ alpha___ _vms __ OSVERSION__ =6

OpenVMS 6.x (vax) _vax__ _vms __OSVERSION__ =6

SGI Irix 6.2 __mips__ _irix__ __OSVERSION__=6

Reliant Unix 5.43 __mips__ _ SINIX__ _ _OSVERSION__=5

ATMos 4.0 _arm__ _atmos__ _ OSVERSION__ =4

NextStep 3.x __m68k__ __ nextstep_ _ OSVERSION__ =3

The preprocessor defines for new platform ports not listed above can be found in
the corresponding platform configuration files. For instance, the platform configura-
tion file for Sun Solaris 2.6 is in mk/platforms/sun4 _sosV _5.6.mk . The preprocess
defines to identify a platform is the value of the make variable IMPORTCPPFLAGS

In a single source multi-target environment, you can put the preprocessor defines
as the command-line arguments for the compiler. Alternately, you could create a sit-
edef.h file in the same directory as omniORB2/CORBA.h. Write into the file the ap-
propriate set of preprocessor defines and add #include <omniORB2/sitedef.h>
at the beginning of omniORB2/CORBAsysdep.h

Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps to use
omniORB2. By going through the source code of each example, the essential concepts
and APIs are introduced. If you have no previous experience with using CORBA, you
should study this chapter in detail. There are pointers to other essential documents
you should be familiar with.

If you have experience with using other ORBs, you should still go through this
chapter because it provides important information about the features and APIs that
are necessarily omniORB2 specific. For instance, the object implementation skeleton
is covered in section 2.4.2.

2.1 The Echo Object Example

Our example is an object which has only one method. The method simply echos the
argument string. We have to:

1. define the object interface in IDL;
2. use the IDL compiler to generate the stub code?’;
3. provide the object implementation;

4. write the client code.

The source code of this example is included in the last section of this chap-
ter. A makefile written to be used under the OMNI Development Environment
(ODE) [Richardson96b] is also included.

2.2 Specifying the Echo interface in IDL

We define an object interface, called Echo, as follows:

1The stub code is the C++ code that provides the object mapping as defined in the CORBA 2.0 speci-
fication.

6 CHAPTER 2. THE BASICS

interface Echo {
string echoString(in string mesg);

h

If you are new to IDL, you can learn about its syntax in Chapter 3 of the CORBA
specification 2.0 [OMG96a].

For the moment, you only need to know that the interface consists of a single
operation, echoString, which takes a string as an argument and returns a copy of the
same string.

The interface is written in a file, called echo.idl . If you are using ODE, all IDL
files should have the same extension- .idl and should be placed in the idl directory
of your export tree. This is done so that the stub code will be generated automatically
and kept up-to-date with your IDL file.

For simplicity, the interface is defined in the global IDL namespace. This practice
should be avoided for the sake of object reusuability. If every CORBA developer de-
fines their interfaces in the global IDL namespace, there is a danger of name clashes
between two independently defined interfaces. Therefore, it is better to qualify your
interfaces by defining them inside module names. Of course, this does not eliminate
the chance of a name clash unless some form of naming convention is agreed globally.
Nevertheless, a well-chosen module name can help a lot.

2.3 Generating the C++ stubs
From the IDL file, we use the IDL compiler to produce the C++ mapping of the in-
terface. The IDL compiler for omniORB2 is called omniidl2 . Given the IDL file,

omniidl2 produces two stub files: a C++ header file and a C++ source file. For ex-
ample, from the file echo.idl , the following files are produced:

e echo.hh

e echoSK.cc

If you are using ODE, you don’t need to invoke omniidI2 explicitly. In the example
file dir.mk , we have the following line:

CORBA_INTERFACES = echo

That is all we need to instruct ODE to generate the stubs. Remember, you won’t
find the stubs in your working directory because all stubs are written into the stub
directory at the top level of your build tree.

24. A QUICK TOUR OF THE C++ STUBS 7

2.4 A Quick Tour of the C++ stubs

The C++ stubs conform to the mapping defined in the CORBA 2.0 specification (chap-
ter 16-18). It is important to understand the mapping before you start writing any
serious CORBA applications.

Before going any further, it is worth knowing what the mapping looks like.

2.4.1 Object Reference

The use of an object interface denotes an object reference. For the example interface
Echo, the C++ mapping for its object reference is Echo _ptr . The type is defined in
echo.hh. The relevant section of the code is reproduced below:

class Echo;
typedef Echo* Echo_ptr;

class Echo : public virtual omniObject, public virtual CORBA::Object {
public:

virtual char * echoString (const char * mesg) = 0;
static Echo_ptr _nil();

static Echo_ptr _duplicate(Echo_ptr);

static Echo_ptr _narrow(CORBA::Object_ptr);

... /I methods generated for internal use

3

In a compliant application, the operations defined in an object interface should
only be invoked via an object reference. This is done by using arrow (“—”) on an
object reference. For example, the call to the operation echoString would be written
as obj —echoString(mesg)

It should be noted that the concrete type of an object reference is opaque, i.e. you
must not make any assumption about how an object reference is implemented. In
our example, even though Echo ptr is implemented as a pointer to the class Echo, it
should not be used as a C++ pointer, i.e. conversion to void*, arithmetic operations,
and relational operations, including test for equality using operation== must not be
performed on the type.

In addition to echoString , the mapping also defines three static member func-
tions in the class Echo: _nil , _duplicate , and _narrow . Note that these are opera-
tions on an object reference.

The _nil function returns a nil object reference of the Echo interface. The following
call is guaranteed to return TRUE:

CORBA::Boolean true_result = CORBA::is_nil(Echo::_nil());

8 CHAPTER 2. THE BASICS

Remember, CORBA:is nil() is the only compliant way to check if an object
reference is nil. You should not use the equality operator==.

The _duplicate function returns a new object reference of the Echo interface.
The new object reference can be used interchangeably with the old object reference to
perform an operation on the same object.

All CORBA objects inherit from the generic object CORBA::Object
CORBA::Object ptr is the object reference for CORBA::Object . Any object
reference is therefore conceptually inherited from CORBA::Object _ptr . In other
words, an object reference such as Echo_ptr can be used in places where a
CORBA::Object ptr is expected.

The _narrow function takes an argument of the type CORBA::Object _ptr and
returns a new object reference of the Echo interface. If the actual (runtime) type of the
argument object reference can be widened to Echo _ptr , _narrow will return a valid
object reference. Otherwise it will return a nil object reference.

To indicate that an object reference will no longer be accessed, you can call the
CORBA::release operation. Its signature is as follows:

class CORBA {
static void release(CORBA::Object _ptr obj);
... /I other methods

You should not use an object reference once you have called CORBA::release
This is because the associated resources may have been deallocated. Notice that we
are referring to the resources associated with the object reference and not the object
implementation. Here is a concrete example, if the implementation of an object re-
sides in a different address space, then a call to CORBA::release will only caused
the resources associated with the object reference in the current address space to be
deallocated. The object implementation in the other address space is unaffected.

As described above, the equality operator== should not be used on object ref-
erences. To test if two object references are equivalent, the member function
_is _equivalent of the generic object CORBA::Object can be used. Here is an ex-
ample of its usage:

Echo_ptr A;

/I initialised A to a valid object reference
Echo _ptr B = A;
CORBA::Boolean true_result = A->_is_equivalent(B);
/I Note: the above call is guaranteed to be TRUE

You have now been introduced to most of the operations that can be invoked
via Echo_ptr . The generic object CORBA::Object provides a few more operations
and all of them can be invoked via Echo_ptr . These operations deal mainly with
CORBA’s dynamic interfaces. You do not have to understand them in order to use the
C++ mapping provided via the stubs. For details, please read the CORBA specifica-
tion [OMG96a] chapter 17.

24. A QUICK TOUR OF THE C++ STUBS 9

Since object references must be released explicitly, their usage is prone to error and
can lead to memory leakage. The mapping defines the object reference variable type
to make life easier. In our example, the variable type Echo_var is defined?.

The Echo _var is more convenient to use because it will automatically release its
object reference when it is deallocated or when assigned a new object reference. For
many operations, mixing data of type Echo_var and Echo_ptr is possible without
any explicit operations or castings 3. For instance, the operation echoString can be
called using the arrow (“—") on a Echo_var , as one can do with a Echo_ptr .

The usage of Echo_var is illustrated below:

Echo_var a;

Echo ptr p = .. /I somehow obtain an object reference

a=p; /I a assumes ownership of p, must not use p anymore
Echo var b = a; /I implicit _duplicate

p = .. /I somehow obtain another object reference

a = Echo::_duplicate(p); /I release old object reference

/l a now holds a copy of p.

2.4.2 Object Implementation

Unlike the client side of an object, i.e. the use of object references, the CORBA spec-
ification 2.0 deliberately leave many of the necessary functionalities to implement an
object unspecified. As a consequence, it is very unlikely the implementation code of
an object on top of two different ORBs can be identical. However, most of the code are
expected to be portable. In particular, the body of an operation implementation can
normally be ported with no or little modification.

OmniORB2 uses C++ inheritance to provide the skeleton code for object imple-
mentation. For each object interface, a skeleton class is generated. In our example,
the skeleton class _sk _Echo is generated for the Echo IDL interface. An object imple-
mentation can be written by creating an implementation class that derives from the
skeleton class.

The skeleton class _sk _Echo is defined in echo.hh . The relevant section of the
code is reproduced below.

class _sk Echo : public virtual Echo {

public:
_sk_Echo(const omniORB::objectKey& Kk);
virtual char * echoString (const char * mesg) = 0;
Echo_ptr _this();

2In omniORB2, all object reference variable types are instantiated from the template type
_CORBA._ObjRef_Var.

®However, the implementation of the type conversion operator() between Echo_var and Echo.ptr
varies slightly among different C++ compilers, you may need to do an explicit casting when the compiler
complains about the conversion being ambiguous.

10 CHAPTER 2. THE BASICS

void _obj_is_ready(BOA_ptr);
void _dispose();
BOA ptr _boa();

omniORB::objectKey _key();
... Il methods generated for internal use

3

The code fragment shows the only member functions that can be used in the ob-
ject implementation code. Other member functions are generated for internal use only.
Unless specified otherwise, the description below is omniORB2 specific. The func-
tions are:

echoString it is through this abstract function that an implementation class provides
the implementation of the echoString operation. Notice that its signature is
the same as the echoString function that can be invoked via the Echo_ptr
object reference. The signature of this function is specified by the CORBA
specification.

_this this function returns an object reference for the target object. The returned value
must be deallocated via CORBA::release . See 2.7 for an example of how this
function is used.

_obj_is_ready this function tells the Basic Object Adaptor* (BOA) that the object is
ready to serve. Until this function is called, the BOA would not serve any in-
coming calls to this object. See 2.7 for an example of how this function is used.

_dispose this function tells the BOA to dispose of the object. The BOA will stop serv-
ing incoming calls of this object and remove any resources associated with it.
See 2.7 for an example of how this function is used.

_boa this function returns a reference to the BOA that serves this object.

_key this function returns the key that the ORB used to identify this object. The
type omniORB::objectKey is opaque to application code. The function
omniORB::keyToOctetSequence can be used to convert the key to a se-
guence of octets.

2.5 Writing the object implementation

You define an implementation class to provide the object implementation. There is

little constraint on how you design your implementation class except that it has to in-

herit from the stubs’ skeleton class and to implement all the abstract functions defined

in the skeleton class. Each of these abstract functions corresponds to an operation of

the interface. They are hooks for the ORB to perform upcalls to your implementation.
Here is a simple implementation of the Echo object.

*The interface of a BOA is described in chapter 8 of the CORBA specification.

2.6. WRITING THE CLIENT

class Echo_i : public virtual _sk _Echo {
public:

Echo_i() {}

virtual "Echo_i() {}

virtual char * echoString(const char *mesg);

3

char *

Echo_i::echoString(const char *mesg) {
char *p = CORBA::string_dup(mesg);
return p;

}

There are three points to note here:

Storage Responsibilities A string, which is used as an IN argument and the return
value of echoString , is a variable size data type. Other examples of variable

11

size data types include sequences, type “any”, etc. For these data types, you
must be clear about who’s responsibility to allocate and release their associated
storage. As a rule of thumb, the client (or the caller to the implementation func-
tions) owns the storage of all IN arguments, the object implementation (or the
callee) must copy the data if it wants to retain a copy. For OUT arguments and
return values, the object implementation allocates the storage and passes the
ownership to the client. The client must release the storage when the variables
will no longer be used. For details, please refer to Table 24-27 of the CORBA
specification.

Multi-threading As omniORB2 is fully multithreaded, multiple threads may perform

the same upcall to your implementation concurrently. It is up to your implemen-
tation to synchronise the threads’ accesses to shared data. In our simple exam-
ple, we have no shared data to protect so no thread synchronisation is necessary.

Instantiation You must not instantiate an implementation as automatic variables. In-

stead, you should always instantiate an implementation using the new operator,
i.e. its storage is allocated on the heap. The reason behind this restriction will
become clear in section 2.7.

2.6 Writing the client

Here is an example of how a Echo _ptr object reference is used.

void
hello(CORBA::Object_ptr obj)
{

Echo_var e = Echo::_narrow(obj);

if (CORBA::is_nil(e)) {

cerr << "hello: cannot invoke on a nil object reference.\n" << endl;

return;

}

12 CHAPTER 2. THE BASICS

CORBA::String_var src = (const char*) "Hello!; // line 3
CORBA::String_var dest; Il line 4

dest = e->echoString(src); /I line 5

cerr << "l said\"" << src << "\"."
<< " The Object said\"™ << dest <<"\"" << endl;

Briefly, the function hello accepts a generic object reference. The object reference
(obj) is narrowed to Echo ptr . If the object reference returned by Echo:: _narrow
is not nil, the operation echoString is invoked. Finally, both the argument to and
the return value of echoString are printed to cerr.

The example also illustrates how T_var types are used. As it was explained in the
previous section, T_var types take care of storage allocation and release automatically
when variables of the type are assigned to or when the variables go out of scope.

In line 1, the variable e takes over the storage responsibility of the object reference
returned by Echo:: _narrow . The object reference is released by the destructor of
e. It is called automatically when the function returns. Line 2 and 5 shows how a
Echo var variable is used. As said earlier, Echo_var type can be used interchange-
ably with Echo_ptr type.

The argument and the return value of echoString are stored in
CORBA::String var variable src and dest respectively. The strings managed by
the variables are deallocated by the destructor of CORBA::String _var . It is called
automatically when the function returns. Line 5 shows how CORBA::String _var
variables are used. They can be used in place of a string (for which the mapping
is char*)°. As used in line 3, assigning a constant string (const char*) to a
CORBA::String var causes the string to be copied. On the otherhand, assigning a
char* to a CORBA:String _var , as used in line 5, causes the latter to assume the
ownership of the string®.

Under the C++ mapping, T_var types are provided for all the non-basic data types.
It is obvious that one should use automatic variables whenever possible both to avoid
memory leak and to maximise performance. However, when one has to allocate data
items on the heap, it is a good practice to use the T_var types to manage the heap
storage.

2.7 Example 1 - Colocated Client and Implementation

Having introduced the client and the object implementation, we can now describe
how to link up the two via the ORB. In this section, we describe an example in which
both the client and the object implementation are in the same address space. In the
next two sections, we shall describe the case where the two are in different address
spaces.

A conversion operator() of CORBA::String_var converts a CORBA::String_var to a char*.
®Please refer to the CORBA specification 16.7 for the details of the String_var mapping. Other T_var
types are also covered in chapter 16.

2.7. EXAMPLE 1 - COLOCATED CLIENT AND IMPLEMENTATION 13

int

The code for this example is reproduced below:

main(int argc, char **argv)

{

CORBA::ORB_ptr orb = CORBA::ORB init(argc,argv,"omniORB2"); /I line 1
CORBA::BOA ptr boa = orb->BOA init(argc,argv,"omniORB2_BOA"); // line 2

Echo_i *myobj = new Echo_i(); /Il line 3
myobj->_obj_is_ready(boa); I/l line 4
boa->impl_is_ready(0,1); /I line 5
Echo_ptr myobjRef = myobj->_this(); /I line 6
hello(myobjRef); I/l line 7
CORBA::release(myobjRef); /I line 8
myobj->_dispose(); /I line 9
return O;

The example illustrates several important interactions among the ORB, the object

implementation and the client. Here are the details:

2.7.1 ORB/BOA initialisation
linel The ORB is initialised by calling the CORBA::ORBinit function. The func-

tion uses the 3rd argument to determine which ORB should be returned. To
use omniORB2, this argument must either be “omniORB2” or NULL. If it is
NULL, there must be an argument, -ORBid “omniORB2”, in argv . Like any
command-line arguments understood by the ORB, it will be removed from argv
when CORBA::ORBInit returns. Therefore, an application is not required to
handle any command-line arguments it does not understand. If the ORB identi-
fier is not “omniORB2”, the initialisation will fail and a nil ORBptr will be re-
turned. If supplied, omniORB2 also reads the configuration file omniORB.cfg .
Among other things, the file provides a list of initial object references. One ex-
ample of these object references is the naming service. Its use will be discussed
in section 2.9.1. If any error occurs during the processing of the configuration
file, the system exception CORBA::INITIALIZE is raised.

line 2 The BOA is initialised by calling the ORB’s BOAIinit . The 3rd argument

must either be “omniORB2_.BOA” or NULL. If it is NULL, then argv must con-
tain an argument, -BOAid “omniORB2_BOA”. If the BOA identifier is not “om-
niORB2_BOA”, the initialisation will fail and a nil BOA_ptr will be returned.
Like ORBInit , any command-line arguments understood by BOAinit will be
removed from argv .

2.7.2 Obiject initialisation

line 3 An instance of the Echo object is initialised using the new operator.

14 CHAPTER 2. THE BASICS

line 4 The object’s _obj _is _ready is called. This function informs the BOA that this
object is ready to serve. Until this function is called, the BOA will not accept any
invocation on the object and will not perform any upcall to the object.

line5 The BOA’s impl _is _ready is called. This function tells the BOA the imple-
mentation is ready. After this call, the BOA will accept IIOP requests from other
address spaces. There are 2 points to note here:

1. boa—impl _is _ready can be called any time after BOAinit is called (line
2). In other words, object instances can be initialised and advertised to the
BOA before or after this function is called.

2. The 2nd argument’ to impl _is _ready tells the ORB whether this call
should be non-blocking. The default value of this argument is FALSE(0)
and the call will block indefinitely within the ORB. If there are more things
the main thread should do after it calls impl _is _ready , as it is the case
in this example, the non-blocking option (TRUE=1) should be specified.
Whether the main thread blocks in this call or not, the ORB is not affected
because its functions are provided by other threads spawned internally.
Notice that the signature of impl _is _ready in the CORBA specification
does not have the 2nd argument®. Therefore, calling impl _is _ready with
the non-blocking option is omniORB2 specific.

2.7.3 Client invocation

line 6 The object reference is obtained from the implementation by calling _this
Like any object reference, the return value of _this must be released by
CORBA::release when itis no longer needed.

line 7 Call hello with this object reference. The argument is widened implicitly to
the generic object reference CORBA::Object _ptr .

line 8 Release the object reference.

One of the important characteristic of an object reference is that it is completely lo-
cation transparent. A client can invoke on the object using its object reference without
any need to know whether the object is colocated in the same address space or resided
in a different address space.

In case of colocated client and object implementation, omniORB2 is able to short-
circuit the client calls to direct calls on the implementation methods. The cost of an
invocation is reduced to that of a function call. This optimisation is applicable not
only to object references returned by the _this function but to any object references
that are passed around within the same address space or received from other address
spaces via IIOP calls.

"The 1st argument is a pointer to the implementation definition and is always ignored by omniORB2.

8The CORBA specification does not specify when impl _is _ready should return. Many ORB vendors
choose to implement impl _is _ready as blocking until a certain time-out value is exceeded. In a single
threaded implementation this is necessary to give the ORB the time to serve incoming requests.

2.8. EXAMPLE 2 - DIFFERENT ADDRESS SPACES 15

2.7.4 Object disposal

line 9 To dispose of an object implementation and release all the resources associated
with it, the _dispose function is called. In fact, this is the only clean way to
get rid of an object implementation. Even though the object is created using
the new operator in the application code, the application should never call the
delete operator on the object directly.

Once an application calls _dispose on an object implementation, the pointer to
the object should not be used any more. At the time the _dispose call is made, there
may be other threads invoking on the object, omniORB2 ensures that all these calls
are completed before removing the object from its internal tables and releasing the
resources associated with it. The storage associated with the object is released by
omniORB2 using the delete operator. This is why all object implementation should be
initialised using the new operator (section 2.5).

The disposal of an object implementation by omniORB2 may also be deferred
when colocated clients continue to hold on to copies of the object’s reference®. This
behavior is to prevent the short-circuited calls from the clients to fail unpredictably.

To summarise, an application can make no assumption as to when the object is
disposed by omniORB2 after the _dispose call returns. If it is necessary to have
better control on when to stop serving incoming requests, the work should be done
by the object implementation itself, such as by keeping track of the current serving
state.

2.8 Example 2 - Different Address Spaces

In this example, the client and the object implementation reside in two different ad-
dress spaces. The code of this example is almost the same as the previous example.
The only difference is the extra work need to be done to pass the object reference from
the object implementation to the client.

The simplest (and quite primitive) way to pass an object reference between two
address spaces is to produce a stringified version of the object reference and to pass
this string to the client as a command-line argument. The string is then converted by
the client into a proper object reference. This method is used in this example. In the
next example, we shall introduce a better way of passing the object reference using
the COS Naming Service.

2.8.1 Object Implementation: Generating a Stringified Object Reference

The main function of the object implementation side is reproduced below. The full
listing (eg2 _impl.cc) can be found at the end of this chapter.

int

main(int argc, char **argv)

®Object references held by clients in other address spaces will not prevent the object implementation
from being disposed of. If these clients invoke on the object after it is disposed, the system exception
INV_OBJREF is raised.

16 CHAPTER 2. THE BASICS

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA ptr boa = orb->BOA _init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p;

p = orb->object to_string(myobjRef); MMine 1

cerr <<

}

<< (char®)p << "™ << endl;

boa->impl_is_ready(); /I block here indefinitely
/I See the explanation in example 1
return O;

The stringified object reference is obtained by calling the ORB’s function
_object _to _string (line 1). This is a sequence starting with the signature “IOR:”
and followed by a hexadecimal string. All CORBA 2.0 compliant ORBs are able to
convert the string into its internal representation of a so-called Interoperable Object
Reference (IOR). The IOR contains the location information and a key to uniquely
identify the object implementation in its own address space'®. From the IOR, an ob-
ject reference can be constructed.

2.8.2 Client: Using a Stringified Object Reference

The stringified object reference is passed to the client as a command-line argument.
The client uses the ORB’s function string _to _object to convert the string into a
generic object reference (CORBA::Object _ptr). The relevant section of the code is
reproduced below. The full listing (eg2 _clt.cc) can be found at the end of this chap-
ter.

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);

catch(CORBA::COMM_FAILURE& ex) {
... Il code to handle communication failure

}

2.8.3 Catching System Exceptions

When omniORB2 detects an error condition, it may raise a system exception. The
CORBA specification defines a series of exceptions covering most of the error condi-
tions that an ORB may encounter. The client may choose to catch these exceptions

Notice that the object key is not globally unique across address spaces.

2.8. EXAMPLE 2 - DIFFERENT ADDRESS SPACES 17

and recover from the error condition'!. For instance, the code fragment, shown in sec-
tion 2.8.2, catches the system exception COMM_FAILURE which indicates that com-
munication with the object implementation in another address space has failed.

All system exceptions inherit from the class CORBA::SystemException . With
compilers that support RTTI*?13 a single catch CORBA::SystemException will
catch all the different system exceptions thrown by omniORB2.

When omniORB2 detects an internal inconsistency that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that involves
the ORB’s runtime. It is best to exit the program immediately. The exception structure
carries by omniORB::fatalException contains the exact location (the file name
and the line number) where the exception is raised. You are strongly encourage to file
a bug report and point out the location.

2.8.4 Lifetime of an Object Implementation

It may be obvious but it has to stated that an object implementation exists only for the
duration of the process’s lifetime. When the same program is run again, a different
instance of the object implementation is created. More significantly, the IOR, and
hence the object reference, of this instance is different from that of the previous
run.

For instance, if you look at the stringified object reference produced by the pro-
gram eg2 _impl in different runs, they are all different. The implication is that you
cannot store away the stringified object reference and expect to be able to use it again
later when the original program run has terminated.

For system services and other applications, it may be desirable to have “persis-
tent” object implementations. The objects are “persistent” in the sense that they can
be contacted using the same IOR when they are instantiated in different program runs.
To provide this functionality, omniORB2 needs to be provided with two pieces of in-
formation: the (network) location and the object key. The details of how this can be
done will be described in the later part of this manual.

Alternatively, an indirection from textual pathnames to object references can be
used. Applications can register object implementations at runtime to a naming ser-
vice and bind them to fixed pathnames. Clients can bind to the object implementa-
tions at runtime by asking the naming service to resolve the pathnames to the object
references. CORBA defines a naming service, which is a component of the Common
Object Services (COS) [OMG96b], that can be used for this purpose. The next section
describes an example of how to use the COS Naming Service.

If a system exception is not caught, the C++ runtime will call the terminate function. This function
is defaulted to abort the whole process and on some system will cause a core file to be produced.

12Run Time Type ldentification

18 noticeable exception is the GNU C++ compiler (version 2.7.2). It doesn’t support RTTI unless the
compilation flag -frtti is specified. The omniORB2 runtime is not compiled with the -frtti flag. It is said
that RTTI will be properly supported in the upcoming version 2.8.

18 CHAPTER 2. THE BASICS

2.9 Example 3 - Using the COS Naming Service

In this example, the object implementation uses the COS Naming Service [OMG96b]
to pass on the object reference to the client. This method is by-far more practical
than using stringified object references. The full listing of the object implementation
(eg3_impl.cc)and the client (eg3_clt.cc) can be found at the end of this chapter.

The object reference is bound to the pathname “test/Echo”'4. The pathname con-
sists of the context test and the object name Echo. Both the context and the object name
has an attribute kind. This attribute is a string that is intended to be used to describe
the name in a syntax-independent way. The naming service does not interpret, assign,
or manage these values. However both the name and the kind attribute must match
for a name lookup to succeed. In this example, the kind values for test and Echo are
chosen to be “my_context” and “Object” respectively. This is an arbitrary choice for
there is no standardised set of kind values.

2.9.1 Obtaining the Root Context Object Reference

The initial contact with the Naming Service can be established via what we called the
root context. The object reference to the root context is provided by the ORB and can be
obtained by calling resolve _initial _references . The following code fragment
shows how it is used:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var rootContext;
rootContext = CosNaming::NamingContext::_narrow(initServ);

Remember, omniORB2 constructs its internal list of initial references at
initialisation time using the information provided in the configuration file
omniORB.cfg . If this file is not present, the internal list will be empty and
resolve _initial references will raise a CORBA::ORB::InvalidName exception.

2.9.2 The Naming Service Interface

Itis beyond the scope of this chapter to describe in detail the Naming Service interface.
You should consult the CORBAservices specification [OMG96b] (chapter 3). The code
listed in eg3_impl.cc and eg3_clt.cc are good examples of how the service can be
used. Please spend time to study the examples carefully.

A pathname, or in the Naming Service’s terminology- a compound name, is a sequence of textual
names. Each name component except the last one is bound to a naming context. A naming context is
analogous to a directory in a filing system, it can contain names of object references or other naming
contexts. The last name component is bound to an object reference. Note: '/’ is purely a notation to
separate two components in the pathname. It does not appear in the compound name that is registered
with the Naming Service.

2.10. EXAMPLE 4 - USING TIE IMPLEMENTATION TEMPLATES 19

2.10 Example 4 - Using tie implementation templates

Since 2.6.0, a new command-line option (-t) has been added to omniidl2 . When this
flag is specified, omniidl2 generates an extra template class for each interface. This
template class can be used to tie a C++ class to the skeleton class of the interface.

The source code in eg3 _tieimpl.cc at the end of this chapter illustrates how the
template class can be used. The code is almost identical to eg3_impl.cc with only a
few changes.

Firstly, the implementation class Echo_i does not inherit from any stub classes.
This is the main benefit of using the template class because there are applications in
which it is difficult to require every implementation class to subclass from CORBA
classes.

Secondly, the instantiation of a CORBA object now involves creating an instance
of the implementation class and an instance of the template. Here is the relevant code
fragment:

class Echo i { ... }

Echo_i *myimpl = new Echo_i();
_tie_Echo<Echo_i,1> *myobj = new _tie_Echo<Echo_i,1>(myimpl);
myobj->_obj_is_ready(boa);

For interface Echo, the name of its tie implementation template is _tie _Echo. The
first template parameter is the implementation class that contains an implementation
of each of the operations defined in the interface. The second template parameter is
a boolean flag. When the flag is TRUE (1), as it is in this example, the ORB would
call delete on the implementation object (myimpl) when _dispose is invoked on
myobj . When the flag is FALSE (0), delete would not be called. Instantiating this
template with the flag set to FALSE is useful when the same implementation class
is used to implement multiple interfaces. In this situation, the same implementation
would be used as the argument to a number of tie template instantiations. Provided
that only one of the instantiation has the flag set to TRUE, the object implementation
would not be deleted more than once!

20 CHAPTER 2. THE BASICS

2.11 Source Listing

2.11.1 echo.i.cc

/I echo_i.cc - This source code demonstrates an implmentation of the

1 object interface Echo. It is part of the three examples
1 used in Chapter 2 "The Basics" of the omniORB2 user guide.
I

#include <string.h>
#include "echo.hh"

class Echo_i : public virtual _sk Echo {
public:

Echo_i() {

virtual "Echo_i() {}

virtual char * echoString(const char *mesg);

3

char *

Echo_i::echoString(const char *mesg) {
char *p = CORBA::string_dup(mesg);
return p;

}

2.11. SOURCE LISTING 21

2.11.2 greeting.cc

/I greeting.cc - This source code demonstrates the use of an object

1
1
1
1

reference by a client to perform an operation on an
object. It is part of the three examples used
in Chapter 2 "The Basics" of the omniORB2 user guide.

#include <iostream.h>
#include "echo.hh"

void
hello(CORBA::Object_ptr obj)

{

Echo_var e = Echo::_narrow(obj);

if (CORBA::is_nil(e)) {
cerr << "hello: cannot invoke on a nil object reference.\n" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!";
CORBA::String_var dest;

dest = e->echoString(src);

cerr << "l said\"" << src << "\"."
<< " The Object said\"™ << dest <<"\"" << endl;

22 CHAPTER 2.

2.11.3 egl.cc

/I egl.cc - This is the source code of example 1 used in Chapter 2
1 "The Basics" of the omniORB2 user guide.

I

/1 In this example, both the object implementation and the
/1 client are in the same process.

I

/I Usage: egl

I

#include <iostream.h>

#include "echo.hh"

#include "echo_i.cc"
#include "greeting.cc"

int

main(int argc, char **argv)

{
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
/I Note: all implementation objects must be instantiated on the
/I heap using the new operator.

myobj->_obj_is_ready(boa);
/I Tell the BOA the object is ready to serve.
/I This call is omniORB2 specific.

I

/I This call is equivalent to the following call sequence:
1 Echo_ptr myobjRef = myobj->_this();

/1 boa->obj_is_ready(myobjRef);

/1 CORBA::release(myobjRef);

boa->impl_is_ready(0,1);

/I Tell the BOA we are ready and to return immediately once it has
/I done its stuff. It is omniORB2 specific to call impl_is_ready()

/I with the extra 2nd argument- CORBA::Boolean NonBlocking,

/Il which is set to TRUE (1) in this case.

Echo_ptr myobjRef = myobj->_this();

/I Obtain an object reference.

/I Note: always use _this() to obtain an object reference from the
/1 object implementation.

hello(myobjRef);

CORBA::release(myobjRef);
/I Dispose of the object reference.

myobj->_dispose();
/I Dispose of the object implementation.

THE BASICS

2.11. SOURCE LISTING

/I This call is omniORB2 specific.
/I Note: *never* call the delete operator or the dtor of the object

/1 directly because the BOA needs to be informed.
1

/I This call is equivalent to the following call sequence:

1 Echo_ptr myobjRef = myobj->_this();

1 boa->dispose(myobjRef);

/1 CORBA::release(myobjRef);

return O;

23

24 CHAPTER 2. THE BASICS

2.11.4 eg2_.impl.cc

/I eg2_impl.cc - This is the source code of example 2 used in Chapter 2
1 "The Basics" of the omniORB2 user guide.

I

/1 This is the object implementation.

I

/I Usage: eg2_impl

I

/1 On startup, the object reference is printed to cerr as a

/1 stringified IOR. This string should be used as the argument to
/1 eg2_clt.

I

#include <iostream.h>

#include "omnithread.h"

#include "echo.hh"

#include "echo_i.cc"

int
main(int argc, char **argv)
{
CORBA::ORB_ptr orb
CORBA::BOA ptr boa

= CORBA::ORB init(argc,argv,"omniORB2");
= orb->BOA_init(argc,argv,"omniORB2_BOA");
Echo_i *myobj = new Echo_i();

myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
CORBA::String_var p = orb->o0bject_to_string(myobjRef);
cerr << " << (char®)p << "™ << endl;

}

boa->impl_is_ready();
/I Tell the BOA we are ready. The BOA’s default behaviour is to block
/I on this call indefinitely.

return O;

2.11. SOURCE LISTING

2115 eg2.clt.cc

1
1
1
1
1
1
1
1

eg2_clt.cc - This is the source code of example 2 used in Chapter 2
"The Basics" of the omniORB2 user guide.

This is the client. The object reference is given as a
stringified IOR on the command line.

Usage: eg2_clt <object reference>

#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"

extern void hello(CORBA::Object_ptr obj);

int

main (int argc, char **argv)

{

CORBA::ORB_ptr orb
CORBA::BOA ptr boa

= CORBA::ORB init(argc,argv,"omniORB2");
= orb->BOA init(argc,argv,"omniORB2_BOA");
if (argc < 2) {

cerr << "usage: eg2_clt <object reference>" << endl;

return 1,

}

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;
}

catch(omniORB::fatalException& ex) {
cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << exline() << "\n"
<< "The error message is: " << ex.errmsg() << endl;
}
catch(...) {
cerr << "Caught a system exception." << endl;

}

return O;

25

26 CHAPTER 2. THE BASICS

2.11.6 eg3.impl.cc

/I eg3_impl.cc - This is the source code of example 3 used in Chapter 2

1 "The Basics" of the omniORB2 user guide.

I

/1 This is the object implementation.

I

/I Usage: eg3_impl

I

1 On startup, the object reference is registered with the
/1 COS naming service. The client uses the naming service to
/1 locate this object.

I

1 The name which the object is bound to is as follows:
1 root [context]

I |

/1 text [context] kind [my_context]

I |

/1 Echo [object] kind [Object]

I

#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

#include "echo_i.cc"
static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

int

main(int argc, char **argv)

{
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA ptr boa = orb->BOA _init(argc,argv,"omniORB2_BOA");

Echo_i *myobj = new Echo_i();
myobj->_obj_is_ready(boa);

{
Echo_var myobjRef = myobj->_this();
if ('bindObjectToName(orb,myobjRef)) {
return 1;
}
}

boa->impl_is_ready();
/I Tell the BOA we are ready. The BOA’s default behaviour is to block
/I on this call indefinitely.

return O;

2.11. SOURCE LISTING

static

CORBA::Boolean

bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
/l Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

/I Narrow the object returned by resolve_initial_references()
/l to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))
{
cerr << "Failed to narrow naming context." << endl;
return O;
}
}
catch(CORBA::ORB::InvalidName& ex) {
cerr << "Service required is invalid [does not exist]." << endl;
return O;

}

try {
/I Bind a context called "test" to the root context:

CosNaming::Name contextName;

contextName.length(2);

contextName[0].id = (const char*) "test"; /I string copied
contextName[0].kind = (const char*) "my_context"; // string copied
/l Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {
/I Bind the context to root, and assign testContext to it:
testContext = rootContext->bind_new_context(contextName);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
/I If the context already exists, this exception will be raised.
/I In this case, just resolve the name and assign testContext
/I to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return O;

}

27

28

}

CHAPTER 2. THE BASICS

}

/I Bind the object (obj) to testContext, naming it Echo:
CosNaming::Name objectName;

objectName.length(1);

objectName[0].id = (const char*) "Echo"; /I string copied
objectName[0].kind = (const char*) "Object"; // string copied

/I Bind obj with name Echo to the testContext:

try {
testContext->bind(objectName,obj);
}

catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName,obj);
}

/I Note: Using rebind() will overwrite any Object previously bound
I to /test/Echo with obj.

I Alternatively, bind() can be used, which will raise a
I CosNaming::NamingContext::AlreadyBound exception if the name
I supplied is already bound to an object.

/I Amendment: When using OrbixNames, it is necessary to first try bind

/l and then rebind, as rebind on it's own will throw a NotFoundexception if
/l the Name has not already been bound. [This is incorrect behaviour -
/it should just bind].

catch (CORBA::COMM_FAILURE& ex) {

}

cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "naming service." << endl;
return O;

catch (omniORB::fatalException& ex) {

}

throw;

catch (...) {

}

cerr << "Caught a system exception while using the naming service."<< endl;
return O;

return 1;

2.11. SOURCE LISTING 29

2.11.7 eg3.clt.cc

/I eg3_clt.cc - This is the source code of example 3 used in Chapter 2

1 "The Basics" of the omniORB2 user guide.

I

/1 This is the client. It uses the COSS naming service
/1 to obtain the object reference.

I

/I Usage: eg3 clt

I

I

/1 On startup, the client lookup the object reference from the
/1 COS naming service.

I

1 The name which the object is bound to is as follows:

1 root [context]

I |

/1 text [context] kind [my_context]

I |

1 Echo [object] kind [Object]

I

#include <iostream.h>
#include "echo.hh"

#include "greeting.cc"

extern void hello(CORBA::Object_ptr obj);

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);
int

main (int argc, char **argv)

{
CORBA::ORB_ptr orb

CORBA::BOA ptr boa

CORBA::ORB _init(argc,argv,"omniORB2");
orb->BOA_init(argc,argv,"omniORB2_BOA");

try {
CORBA::Object_var obj = getObjectReference(orb);

hello(obj);

catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;
}

catch(omniORB::fatalException& ex) {
cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;

}
catch(...) {

CHAPTER 2.

cerr << "Caught a system exception." << endl;

}

return O;

static
CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)

CosNaming::NamingContext_var rootContext;

try {
/I Obtain a reference to the root context of the Name service:

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

/I Narrow the object returned by resolve_initial_references()
/l to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))
{
cerr << "Failed to narrow naming context." << endl;
return CORBA::Object::_nil();
}
}
catch(CORBA::ORB::InvalidName& ex) {
cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();

}

/I Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0]l.id = (const char*) "test"; /I string copied
name[0].kind = (const char*) "my_context"; // string copied
name[l].id = (const char*) "Echo";

name[1].kind = (const char*) "Object";

/I Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

CORBA::Object_ptr obj;
try {

THE BASICS

/Il Resolve the name to an object reference, and assign the reference

/I returned to a CORBA::Object:
obj = rootContext->resolve(name);

}

catch(CosNaming::NamingContext::NotFound& ex)

{

2.11. SOURCE LISTING 31

/I This exception is thrown if any of the components of the
/I path [contexts or the object] aren’'t found:
cerr << "Context not found." << endl;
return CORBA::Object::_nil();
}
catch (CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "naming service." << endl;
return CORBA::Object::_nil();

}

catch(omniORB::fatalException& ex) {
throw;

}

catch (...) {
cerr << "Caught a system exception while using the naming service."<< endl;
return CORBA::Object::_nil();

}

return obj;

32 CHAPTER 2. THE BASICS

2.11.8 eg3_tieimpl.cc

/I eg3_tieimpl.cc - This example is similar to eg3_impl.cc except that

1 the tie implementation skeleton is used.
I

/1 This is the object implementation.

I

/Il Usage: eg3_tieimpl

I

1 On startup, the object reference is registered with the
/1 COS naming service. The client uses the naming service to
/1 locate this object.

I

1 The name which the object is bound to is as follows:
1 root [context]

I |

/1 text [context] kind [my_context]

I |

/1 Echo [object] kind [Object]

I

#include <iostream.h>
#include "omnithread.h"
#include "echo.hh"

/I Real implementation, notice that it does not inherit from any stub class
class Echo i {
public:

Echo_i() {}

virtual "Echo_i() {}

virtual char * echoString(const char *mesg);

h

char *

Echo_i::echoString(const char *mesg) {
char *p = CORBA::string_dup(mesg);
return p;

}

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

int
main(int argc, char **argv)
{
CORBA::ORB_ptr orb
CORBA::BOA ptr boa

= CORBA:ORB_init(argc,argv,"omniORB2");
= orb->BOA_init(argc,argv,"omniORB2_BOA");
Echo_i *myimpl = new Echo_i();

_tie_Echo<Echo_i,1> *myobj = new _tie_Echo<Echo_i,1>(myimpl);
myobj->_obj_is_ready(boa);

2.11. SOURCE LISTING

{
Echo_var myobjRef = myobj->_this();
if ('bindObjectToName(orb,myobjRef)) {
return 1,
}
}

boa->impl_is_ready();
/Il Tell the BOA we are ready. The BOA’s default behaviour is to block
/I on this call indefinitely.

return O;

static

CORBA::Boolean

bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
/I Obtain a reference to the root context of the Name service:
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

/I Narrow the object returned by resolve_initial_references()
/I to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))
{
cerr << "Failed to narrow naming context." << endl,
return O;
}
}
catch(CORBA::ORB::InvalidName& ex) {
cerr << "Service required is invalid [does not exist]." << endl;
return O;

}

try {
/l Bind a context called "test" to the root context:

CosNaming::Name contextName;

contextName.length(2);

contextName[0].id = (const char*) "test"; /I string copied
contextName[0].kind = (const char*) "my_context"; // string copied
/I Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;

33

34

}

CHAPTER 2. THE BASICS

try {
/I Bind the context to root, and assign testContext to it:

testContext = rootContext->bind_new_context(contextName);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
/I If the context already exists, this exception will be raised.
/I In this case, just resolve the name and assign testContext
/I to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return O;

}
}

/I Bind the object (obj) to testContext, naming it Echo:
CosNaming::Name objectName;

objectName.length(2);
objectName[0].id =
objectName[0].kind =

~—~

const char*) "Echo"; /I string copied
const char*) "Object"; // string copied

—~

/I Bind obj with name Echo to the testContext:

try {
testContext->bind(objectName,obj);

}

catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName,obj);

}

/I Note: Using rebind() will overwrite any Object previously bound

/i to /test/Echo with obj.

I Alternatively, bind() can be used, which will raise a
I CosNaming::NamingContext::AlreadyBound exception if the name
I supplied is already bound to an object.

/I Amendment: When using OrbixNames, it is necessary to first try bind

/I and then rebind, as rebind on it's own will throw a NotFoundexception if
/l the Name has not already been bound. [This is incorrect behaviour -
/it should just bind].

catch (CORBA::COMM_FAILURE& ex) {

}

cerr << "Caught system exception COMM_FAILURE, unable to contact the
<< "naming service." << endl;
return O;

catch (omniORB::fatalException& ex) {

throw;

}
catch (...) {

cerr << "Caught a system exception while using the naming service."<< endl;
return O;

2.11. SOURCE LISTING

}

return 1;

}

35

36 CHAPTER 2. THE BASICS

2.11.9 dirmk

dirmk - This is the makefile to compile all the example programs used in

Chapter 2 The Basics.

This makefile is to be used under the OMNI development environment.
#

CXXSRCS = greeting.cc egl.cc \
eg2_impl.cc eg2_clt.cc \
eg3_impl.cc eg3_clt.cc

DIR_CPPFLAGS = $(CORBA_CPPFLAGS)

CORBA_INTERFACES = echo

egl = $(patsubst %,$(BinPattern),egl)
eg2_impl = $(patsubst %,$(BinPattern),eg2_impl)
eg2 clt = $(patsubst %,$(BinPattern),eg2_clt)
eg3 impl = $(patsubst %,$(BinPattern),eg3_impl)
eg3 clt = $(patsubst %,$(BinPattern),eg3 clt)

all:: $(egl) $(eg2_impl) $(eg2_clt) $(eg3_impl) $(eg3_clt)

clean::
$(RM) $(egl) $(eg2_impl) $(eg2 clt) $(eg3 impl) $(eg3 clt)

$(egl): egl.0 $(CORBA_STUB_OBJS) $(CORBA _LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg2_impl): eg2_impl.o $(CORBA_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg2_clt): eg2_clt.o $(CORBA_STUB_OBJS) $(CORBA _LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg3_impl): eg3_impl.o $(CORBA STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

$(eg3_clt): eg3 clt.o $(CORBA_STUB_OBJS) $(CORBA _LIB_DEPEND)
@(libs="$(CORBA_LIB)"; $(CXXExecutable))

Chapter 3

IDL to C++ Language Mapping

Now that you are familiar with the basics, it is important to familiar yourselves with
the IDL to C++ language. The mapping is described in detail in [OMG96a]. If you
have not done so, you should obtain a copy of the document and use that as the
programming guide to omniORB2.

37

38

CHAPTER 3. IDL TO C++ LANGUAGE MAPPING

Chapter 4

The omniIORB2 API

In this chapter, we introduce the omniORB2 API. The purpose of this API is to provide
access points to omniORB2 specific functionalities that are not covered by the CORBA
specification. Obviously, if you use this API in your application, that part of your
code is not going to be portable to run unchanged on other vendors’ ORBs. To make
it easier to identify omniORB2 dependent code, this API is defined under the name
space “omniORB™.

4.1 ORB and BOA initialisation options

CORBA::ORBinit accepts the following command-line arguments:
-ORBid “omniORB2” The identifier supplied must be “omniORB2”.
-ORBtracelLevel <level> See section 4.2.

-ORBserverName <string> See section 4.3.

-ORBtcAliasExpand <0 or 1> See section 9.2.

-ORBgiopMaxMsgSize <size in bytes> See section 4.5.
-ORBInitialHost <string> See section 4.6.
-ORBInitialPort <1-65535> See section 4.6.

BOAInit accepts the following command-line arguments:

-BOAIid “omniORB2 _BOA” The identifier supplied must be “omniORB2_BOA”.

-BOAiiop _port <port number> This option tells the BOA which TCP/IP port to
use to accept 1OP calls. If this option is not specified, the BOA will use an
arbitrary port assigned by the operating system.

-BOAnNno_bootstrap _agent See section 4.6.

1omniORB is a class name if the C++ compiler does not support the namespace keyword.

39

40 CHAPTER 4. THE OMNIORB2 API

By default, the BOA can work out the IP address of the host machine. This address
is recorded in the object references of the local objects. However, when the host has
multiple network interfaces and multiple IP addresses, it may be desirable for the
application to control what address the BOA should use. This can be done by defining
the environment variable OMNIORBJSEHOSTNAM¥ARto contain the preferred host
name or IP address in dot-numeric form.

As defined in the CORBA specification, any command-line arguments understood
by the ORB/BOA will be removed from argv when the initialisation functions return.
Therefore, an application is not required to handle any command-line arguments it
does not understand.

4.2 Run-time Tracing and Diagnostic Messages

OmniORB2 uses the C++ iostream cerr to output any tracing and diagnostic mes-
sages. Some or all of these messages can be turned-on/off by setting the variable
omniORB::traceLevel . The type definition of the variable is:

CORBA::ULong omniORB::traceLevel = 1; // The default value is 1
At the moment, the following trace levels are defined:

level 0 turn off all tracing and informational messages
level 1 informational messages only
level 2 the above plus configuration information

level 5 the above plus notifications when server threads are created or communica-
tion endpoints are shutdown

level 10-20 the above plus execution traces

The variable can be changed by assignment inside your applications. It can also be
changed by specifying the command-line option: -ORBtracelLevel <level> . For
instance:

$ eg2_impl -ORBtraceLevel 5

4.3 Server Name

Applications can optionally specified a name to identify the server process. At the mo-
ment, this name is only used by the host-based access control module. See section 7.5
for details.

The name is stored in the variable omniORB::serverName

CORBA::String_var omniORB::serverName;

The variable can be changed by assignment inside your applications. It can also
be changed by specifying the command-line option: -ORBserverName <string>

4.4. OBJECT KEYS 41

4.4 Object Keys

OmniORB2 uses a data type omniORB::objectKey to uniquely identify each object
implementation. This is an opaque data type and can only be manipulated by the
following functions:

void omniORB::generateNewKey(omniORB::objectKey &Kk);

omniORB::generateNewKey returns a new objectKey . The return value is
guaranteed to be unique among the keys generated during this program run. On
the platforms that have a realtime clock and unique process identifiers, a stronger
assertion can be made, i.e. the keys are guaranteed to be unique among all keys ever
generated on the same machine.

const unsigned int omniORB::hash_table_size;
int omniORB::hash(omniORB::objectKey& k);

omniORB::hash returns the hash value of an objectkKey . The value returned by
this function is always between 0 and omniORB:hash _table _size - 1 inclusively.

omniORB::objectkey omniORB::nullkey();

omniORB::nullkey always returns the same objectkKey value. This key is
guaranteed to hash to 0.

int operator==(const omniORB::objectkey &k1,const omniORB::objectkey &k2);
int operator!=(const omniORB::objectKey &k1,const omniORB::objectKey &k2);

ObjectKeys can be tested for equality using the overloaded operator== and
operator!=

omniORB::seqOctets*
omniORB::keyToOctetSequence(const omniORB::objectKey &k1);

omniORB::objectKey
omniORB::octetSequenceToKey(const omniORB::seqOctets& seq);

omniORB::keyToOctetSequence takes an objectkey and returns its exter-
nalised representation in the form of a sequence of octets. The same sequence can be
converted back to an objectkKey using omniORB::.octetSequenceToKey . If the
supplied sequence is not an objectKey , omniORB::octetSequenceToKey raises
a CORBA::MARSHAIlexception.

4.5 GIOP Message Size

omniORB2 sets a limit on the GIOP message size that can be sent or received. The
value can be obtained by calling:

size_t omniORB::MaxMessageSize();

and can be changed by:

42 CHAPTER 4. THE OMNIORB2 API

void omniORB::MaxMessageSize(size_t newvalue);

or by the command-line option -ORBgiopMaxMsgSize .

The exact value is somewhat arbitrary. The reason such a limit exists is to pro-
vide some way to protect the server side from resource exhaustion. Think about the
case when the server receives a rogue GIOP(110OP) request message that contains a se-
quence length field set to 2**31. With a reasonable message size limit, the server can
reject this rogue message straight away.

4.6 Initial Object Reference Bootstrapping

Starting from 2.6.0, a new mechanism is available for the ORB runtime to obtain the
initial object references to CORBA services. Previously, it is necessary to write the IOR
string of these services in the configuration file (section 1.2). Now the object references
can be obtained from a bootstrap service. The bootstrap service is a special object with
the object key 'INIT’ and the following interface?.:

/I 1IDL
module CORBA {
interface InitialReferences {
Object get(in ORB::Objectld id);
/I returns the initial object reference of the service
/I identified by <id>. For example the id for the COSS
/I Naming service is "NameService".

ORB::ObjectldList list();
/I returns the list of service id that this agent knows of
/I their initial object reference.

3
k

By default, all omniORB2 servers, i.e. those applications with the BOA ini-
tialised, contains an instance of this object and is able to responds to remote invo-
cations. To prevent the ORB from instantiating this object, the command-line option
-BOANno bootstrap _agent should be specified.

In particular, the Naming Service omniNames is able to respond to a query
through this interface and returns the object reference of its root context. In effect,
the bootstrap agent provides a level of indirection. All omniORB2 clients still have
to be supplied with the address of the bootstrap agent. However the information is
much easier to specify than a stringified IOR! Another advantage of this approach
is that it is completely compatiable with JavalDL. This makes it possible for a client
written in JavalDL to share with a omniORB2 server the same Naming Service.

The address of the bootstrap agent is given by the ORBInitialHost and
ORBInitialPort parameter in the omniORB configuration file (section 1.2).
The parameters can also be specified as command-line options (section 4.1).
ORBInitialHost is the host name and ORBInitialPort is the TCP/IP port num-
ber. The parameter ORBInitialPort is optional. If it is not specified, port number
900 will be used.

2This interface is first defined by Sun’s NEO and is in used in Sun’s JavalDL

4.7. TRAPPING OMNIORB2 INTERNAL ERRORS 43

During initialisation, the ORB reads the parameters in the omniORB configura-
tion file. If the parameter NAMESERVICEHs specified, the stringified IOR would be
used as the object reference of the root naming context. If the parameter is absent
and the parameter ORBInitialHost is present, the ORB would contact the boot-
strap agent at the address specified to obtain the root naming context when the ap-
plication calls resolve _initial _reference() . If neither the NAMESERVICHor
ORBInitialHost is present, a call to resolve _initial _reference() returns a
nil object. Finally, the command line argument -ORBInitialHost overrides any pa-
rameters in the configuration file. The ORB would always contact the bootstrap agent
at the address specified to obtain the root naming context.

Now we are ready to describe a simple way to set up omniNames.

1. Start omniNames for the first time on a machine (e.g. wobble):
$ omniNames -start 1234

2. Add to omniORB.cfqg:
ORBInitialHost wobble
ORBInitialPort 1234

3. All omniORB2 applications will now be able to contact omniNames.

Alternatively, the command line options can be used, for example:
$ eg3_impl -ORBlInitialHost wobble -ORBInitialPort 1234 &
$ eg3 _clt -ORBInitialHost wobble -ORBlnitialPort 1234

4.7 Trapping omniORB2 Internal Errors

class fatalException {
public:
const char *file() const;
int line() const;
const char *errmsg() const;

When omniORB2 detects an internal inconsistency that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that involves
the ORB’s runtime. It is best to exit the program immediately. The exception structure
carries by omniORB::fatalException contains the exact location (the file name
and the line number) where the exception is raised. You are strongly encourage to file
a bug report and point out the location.

44

CHAPTER 4. THE OMNIORB2 API

Chapter 5

The Basic Object Adaptor (BOA)

This chapter describes the BOA implementation in omniORB2. The CORBA speci-
fication defines the Basic Object Adaptor as the entity that mediates between object
implementations and the ORB. Unfortunately, the BOA specification is incomplete
and does not address the multi-threading issues appropriately. The end result is that
different ORB vendors implement different extensions to their BOAs. Worse, the im-
plementation of the operations defined in the specification are different in different
ORBs. Recently, a new Object Adaptor specification (the Portable Object Adaptor-
POA) has been adopted and will replace the BOA as the standard Object Adaptor in
CORBA. The new specification recognises the compatibility problems of BOA and rec-
ommends that all BOAs should be considered propriety extensions. OmniORB2 will
support POA in future releases. Until then, you have to use the BOA to attach object
implementations to the ORB.

The rest of this chapter describes the interface of the BOA in detail. It is important
to recognise that the interface described below is omniORB2 specific and hence the
code using this interface is unlikely to be portable to other ORBs.

Unless it is stated otherwise, the term “object” will be used below to refer to object
implementations. This should not be confused with “object references” which are
handles held by clients.

5.1 BOA Initialisation

It takes two steps to put the BOA into service. The BOA has to be initialised using
BOAInit and activated using impl _is _ready .

BOAInit is a member of the CORBA::ORBclass. Its signature is:

BOA ptr BOA init(int & argc,

char ** argv,
const char * boa_identifier);

Typically, it is used in the startup code as follows:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2"); /I line 1
CORBA::BOA_ptr boa = orb->BOA_init(argc,argv,"omniORB2_BOA"); // line 2

45

46 CHAPTER 5. THE BASIC OBJECT ADAPTOR (BOA)

The argv parameters may contain BOA options. These options will be removed
from the argv list when BOAInit returns. Other parameters in argv will remain.
The supported options are:

-BOAiiop_port <port number (0-65535)> Use the port number to receive 11OP
requests. This option can be specified multiple times in the command line and
the BOA would be initialised to listen on all of the ports.

-BOAid <id (string)> If this option is used the id must be “omniORB2_BOA”.

If the third argument of BOAInit is non-nil, it must be the string constant “om-
niORB2_BOA”. If the argument is nil, -BOAIid must be presentin argv .

If there is any problem in the initialisation process, a CORBA:INITIALIZE ex-
ception would be raised.

To register an object with the BOA, the method _obj _is _ready should be called
with the return value of BOAInit as the argument.

BOAInit is thread-safe. It can be called multiple times and the same BOAptr
will be returned. However, only the argv in the first call will be scanned, the argu-
ment is ignored in subsequent calls.

BOAInit returns a pseudo object of type CORBA::BOAptr . Similar to
CORBA::Object ptr , the pointer can be managed using CORBA:BOAvar ,
BOA:: _duplicate and CORBA:release . The pointer can be tested using
CORBA:is nil which returns true if the pointer is equivalent to the return value
of BOA:: nil

After BOAInit is called, objects can be registered. However, incoming IIOP re-
quests would not be despatched until impl _is _ready is called.

class BOA {
public:
impl_is_ready(CORBA::ImplementationDef_ptr p = 0O,
CORBA::Boolean NonBlocking = 0);

One of the common pitfall in using the BOA is to forget to call impl_is_ready. Until
this call returns, there is no thread listening on the port from which IIOP requests are
received. The remote client may hang because of this.

When impl _is _ready is called with no argument. The calling thread would be
blocked indefinitely in the function until impl _shutdown (see below) is called. The
thread that is calling impl _is _ready is not used by the BOA to perform its inter-
nal functions. The BOA has its own set of threads to process incoming requests
and general housekeeping. Therefore, it is not necessary to have a thread blocked
in the call if it can be put into use elsewhere. For example, the main thread may call
impl _is _ready once in non-blocking mode (see below) and then enter the event loop
to handle the GUI frontend.

If non-blocking behaviour is needed, the NonBlocking argument should be set
to 1. For instance, if you creates a callback object, you might call implis_ready in
non-blocking mode to tell the BOA to start receiving 11OP requests before sending the
callback object to the remote object. The first argument ImplementationDef _ptr is
ignored by the BOA. Just set the argument to nil.

5.2. OBJECT REGISTRATION 47

impl _is _ready is thread safe and can be called multiple times. Multiple threads
can be blocked in impl _is _ready .

5.2 Object Registration

Once the BOA is initialised, objects can be registered. The purpose of object registra-
tion is to let the BOA know of the existence of the object and to dispatch requests for
the object as upcalls into the object.

To register an object, the _obj .is ready function should be called.
_obj _is _ready is a member function of the implementation skeleton class. The
function should be called only once for each object. The call should be made only
after the object is fully initialised.

The member function obj _is _ready of the BOA may also be used to register an
object. However, this function has been superseded by _obj _is _ready and should
not be used in new application code.

5.3 Object Disposal

Once an object is registered, it is under the management of the BOA. To remove the
object from the BOA and to delete it (when it is safe to do so), the _dispose function
should be called. _dispose is a member function of the implementation skeleton
class. The function should be called only once for each object.

Notice the asymmetry in object instantiation and destruction. To instantiate an
object, the application code has to call the new operator. To remove the object, the
application should never call the delete operator on the object directly.

At the time the _dispose call is made, there may be other threads invoking on the
object, the BOA ensures that all these calls are completed before removing the object
from its internal tables and calling the delete operator.

Internally, the BOA keeps a reference count on each object. Initially, the reference
count is 0. After a call to _obj _is _ready , the reference count is 1. The BOA increases
the reference count by 1 before an upcall into the object is made. The count is de-
creased by 1 when the upcall returns. _dispose decreases the reference count by 1, if
the reference count is 0, the delete operator is called. If the count is non-zero, the object
is marked as disposed. The object will be deleted when the reference count eventually
goes to zero.

The reference count is also increased by 1 for each object reference held in the
same address space. Hence, the delete operator will not be called when there are
outstanding object references in the same address space. To ensure that an object is
deleted, all its object references in the same address space should be released using
CORBA::release

Unlike colocated object references, references held by clients in other address
spaces would not prevent the deletion of objects. If these clients invoke on the object
after it is disposed, the system exception INV_OBJREF would be raised. The differ-
ence in semantics is an undesirable side-effect of the current BOA implementation.
In future, colocated references will have the same semantics as remote references, i.e.
their presence will not delay the deletion of the objects.

48 CHAPTER 5. THE BASIC OBJECT ADAPTOR (BOA)

Instead of _dispose , it may be useful to have a method to deactivate the object
but not deleting it. This feature is not supported in the current BOA implementation.

5.4 BOA Shutdown

The BOA can be withdrawn from service using member functions impl _shutdown
and destroy

class BOA {

public:
void impl_shutdown();
void destroy();

2

impl _shutdown and destroy are the inverse of impl _is _ready and BOAinit
respectively.

impl _shutdown deactivates the BOA. When the call returns, all the inter-
nal threads and network connections will be shutdown. Any thread blocking in
impl _is _ready would be unblocked. After the call, no request from other address
spaces will be processed. In other words, the BOA will be in the same state as it was in
before impl _is _ready was called. For example, a remote client may hang if it tries to
connect to the server after impl _shutdown was called because no thread is listening
on the 11OP port.

impl _shutdown does not wait for incoming requests to complete before it closes
the network connections. The remote clients will see the network connections shut-
down and the replies may not reach them even if the upcalls have been completed.
Therefore, if the application is to define an operation in an IDL interface to shutdown
the BOA, the operation should be defined as an oneway operation.

impl _shutdown is thread-safe and can be called multiple times. The call is silently
ignored if the BOA has already been shutdown. After impl _shutdown is called, the
BOA can be reactivated by another call to impl _is _ready .

It should be noted thatimpl _shutdown does not affect outgoing network connec-
tions. That s, clients in the same address space will still be able to make calls to objects
in other address spaces.

While remote requests are not delivered after impl _shutdown is called, the cur-
rent implementation does not stop colocated clients from calling the objects. In future,
colocated clients will exhibit the same behaviour as remote clients.

destroy permanently removed the BOA. This function will call impl _shutdown
implicitly if it has not been called. When this call returns, the IIOP port(s) held by
the BOA will be freed. Remote clients will see their requests refused by the operating
system when they try to open a connection to the 11OP port(s).

After destroy is called, the BOA should not be used. If there is any objects still
registered with the BOA, the objects should not be invoked afterwards. The objects
are not disposed. Invoking on the objects after destroy would result in undefined
behaviour. Initialisation of another BOA using BOAInit is not supported. The be-
haviour of BOAInit after this call is undefined.

5.5. UNSUPPORTED FUNCTIONS 49

5.5 Unsupported functions

The following member functions are not implemented. Calling these functions do not
have any effect.

e Object _ptr create(...)

e ReferenceData* get _id(Object ptr)

Principal _ptr get _principal(Object _ptr,Environment _ptr)

void change _implementation(Object _ptr,
ImplementationDef ptr)

void deactivate Jimpl(ImplementationDef _ptr)

void deactivate _obj(Object _ptr)

5.6 Loading Objects On Demand

Since 2.5.0, there is limited support for loading objects on demand. An application
can register a handler for loading objects dynamically. The handler should have the
signature omniORB::loader::mapKeyToObject t:

namespace omniORB {

class loader {

public:
typedef CORBA::Object ptr (*mapKeyToObject t) (const objectkey& key);
static void set(mapKeyToObject_t NewKeyToObject);

k
3

When the ORB cannot locate the target object in this address space, it calls the
handler with the object key of the target. The handler is expected to instantiate the
object, either in this address space or in another address space, and returns the object
reference to the newly instantiated object. The ORB will then reply with a LOCA-
TION_FORWARD message to instruct the client to retry using the object reference
returned by the handler. When the handler returns, the ORB assumes ownership of
the returned value. It will call CORBA::release() on the returned value when it has
finished with it.

The handler may be called concurrently by multi-threads. Hence it must be thread-
safe.

If the handler cannot load the target object, it should return CORBA::Object:._nil().
The object will be treated as non-existing.

The application registers the handler with the ORB at runtime using om-
niORB::loader::set(). This function is not thread-safe. Calling this function again will
replace the old handler with the new one.

50

CHAPTER 5. THE BASIC OBJECT ADAPTOR (BOA)

Chapter 6

Interface Type Checking

This chapter describes the mechanism used by omniORB2 to ensure type safety when
object references are exchanged across the network. This mechanism is handled com-
pletely within the ORB. There is no programming interface visible at the application
level. However, for the sake of diagnosing the problem when there is a type violation,
it is useful to understand the underlying mechanism in order to interpret the error
conditions reported by the ORB.

6.1 Introduction

In GIOP/IIOP, an object reference is encoded as an Interoperable Object Reference
(IOR) when it is sent across a network connection. The IOR contains a Repository
ID (REPOID) and one or more communication profiles. The communication profiles
describe where and how the object can be contacted. The REPOID is a string which
uniquely identifies the IDL interface of the object.

Unless the ID pragma is specified in the IDL, the ORB generates the REPOID string
in the so-called OMG IDL Format!. For instance, the REPOID for the Echo interface
used in the examples of chapter 2 is IDL:Echo:1.0

When interface inheritance is used in the IDL, the ORB always sends the REPOID
of the most derived interface. For example:

/Il IDL
interface A {

\

interface B : A {

\

interface C {
void op(in A arg);
h

/I C++
C_ptr server;

LFor further details of the repository ID formats, see section 6.6 in the CORBA specification.

51

52 CHAPTER 6. INTERFACE TYPE CHECKING

B_ptr objB;
A_ptr objA = objB;
server->op(objA); /l Send B as A

In the example, the operation C:.op accepts an object reference of type A. The real
type of the reference passed to C::.op is B, which inherits from A. In this case, the
REPOID of B, and not that of A, is sent across the network.

The GIOP/110OP specification allows an ORB to send a null string in the REPOID
field of an IOR. It is up to the receiving end to work out the real type of the object.
OmniORB2 never sends out null strings as REPOID. However, it may receive null
REPOID from other ORBs. In that case, it will use the mechanism described below to
ensure type safety.

6.2 Basic Interface Type Checking

The ORB is provided with the interface information by the stubs via the proxyObject-
Factory class. For an interface A, the stub of A contains a A_proxyObjectFactory class.
This class is derived from the proxyObjectFactory class. The proxyObjectFactory is an
abstract class which contains 3 virtual functions.

class proxyObjectFactory {
public:

virtual const char *irRepold() const = 0;
virtual _CORBA _Boolean is_a(const char *base repold) const = 0;

virtual CORBA::Object_ptr newProxyObject(Rope *r,
CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList
*profiles,
CORBA::Boolean release) = 0;

e irRepold returns the REPOID of the interface.

e is _a returns true(l) if the argument is the REPOID of the interface itself or it is
that of its base interfaces.

e newProxyObject returns an object reference based on the information sup-
plied in the arguments.

A single instance of every *_proxyObjectFactory is instantiated at runtime. The
instances are entered into a list inside the ORB. The list constitutes all the interface
information known to the ORB.

When the ORB receives an IOR from the network, it unmarshals and extracts the
REPOID from the IOR. At this point, the ORB has two pieces of information in hand:

6.3. INTERFACE INHERITANCE 53

1. The REPOID of the object reference received from the network.

2. The REPOID the ORB is expecting. This comes from the unmarshal function that
tells the ORB to receive the object reference.

Using the REPOID received, the ORB searches its proxyObjectFactory list for an
exact match. If there is an exact match, all is well because the runtime can use the
is _a method of the proxyFactory to check if the expected REPOID is the same as the
received REPOID or if it is that of its base interfaces. If the answer is positive, the IOR
passes the type checking test and the ORB can proceed to create an object reference in
its own address space to represent the IOR.

However, the ORB may fail to find a match in its proxyObjectFactory list. This
means that the ORB has no local knowledge of the REPOID. There are three possible
causes:

1. The remote end is another ORB and it sends a null string as the REPOID.

2. The ORB is expecting an object reference of interface A. The remote end sends
the REPOID of B which is an interface that inherits from A. The stubs of A is
linked into the executable but the stubs of B is not.

3. The remote end has sent a duff IOR.

To handle this situation, the ORB must find out the type information dynamically.
This is explained in the next section.

6.3 Interface Inheritance

When the ORB receives an IOR of interface type B when it expects the type to be A, it
must find out if B inherits from A. When the ORB has no local knowledge of the type
B, it must work out the type of B dynamically.

The CORBA specification defines an Interface Repository (IR) from which IDL in-
terfaces can be queried dynamically. In the above situation, the ORB could contact the
IR to find out the type of B. However, this approach assumes that an IR is always avail-
able and contains the up-to-date information of all the interfaces used in the domain.
This assumption may not be valid in many applications.

An alternative is to use the _is _a operation to work out the actual type of an object.
This approach is simpler and more robust than the previous one because no 3rd party
is involved.

class Object{
CORBA::Boolean _is_a(const char* type_id);
3

The _is _a operation is part of the CORBA::Object interface and must be imple-
mented by every object. The input argument is a REPOID. The function returns true(1)
if the object is really an instance of that type, including if that type is a base type of the
most derived type of that object.

54 CHAPTER 6. INTERFACE TYPE CHECKING

In the situation above, the ORB would invoke the _is _a operation on the object
and ask if the object is of type A before it processes any application invocation on the
object.

Notice that the _is _a call is not performed when the IOR is unmarshalled. It is
performed just prior to the first application invocation on the object. This leads to
some interesting failure mode if B reports that it is not an A. Consider the following
example:

\\ IDL
interface A
interface B
interface D { ...
interface C

A op1();
Object op2();
3

\\ C++

C_ptr objC;
A_ptr objA;
CORBA::Object_ptr objR;

objA = objC->0p1(); /I line 1
(void) objA->_non_existent(); /I line 2

objR
ohjA

objC->0p2(); /I line 3
A::_narrow(objR); /I line 4

If the stubs of A,B,C,D are linked into the executable and:

Case 1l C:opl and C:iop2 returns aB. Line 1-4 complete successful. The remote
object is only contacted at line 2.

Case 2 C::opl andC::op2 returnsa D. This condition only occurs if the runtime of
the remote end is buggy. The ORB raises a CORBA::Marshal exception at line 1
because it knows it has received an interface of the wrong type.

If only the stub of A is linked into the executable and:

Case 1 C:opland C:op2 returns a B. Line 1-4 completes successful. When line 2 and
4 is executed, the object is contacted to ask if it is a A.

Case 2 C::opland C:op2 returns a D. This condition only occurs if the runtime of the
remote end is buggy. Line 1 completes and no exception is raised. At line 2, the
object is contacted to ask if it is a A. If the answer is no, a CORBA::INV_OBJREF
exception is raised. The application will also see a CORBA::INV_OBJREF at line
4,

Chapter 7

Connection Management

This chapter describes how omniORB2 manages network connections.

7.1 Background

In CORBA, the ORB is the “middleware” that allows a client to invoke an operation
on an object without regard to its implementation or location. In order to invoke an
operation on an object, a client needs to “bind” to the object by acquiring its object
reference. Such a reference may be obtained as the result of an operation on another
object (such as a naming service) or by conversion from a stringified representation
previously generated by the same ORB. If the object is in a different address space, the
binding process involves the ORB building a proxy object in the client’s address space.
The ORB arranges for invocations on the proxy object to be transparently mapped to
equivalent invocations on the implementation object.

For the sake of interoperability, CORBA mandates that all ORBs should support
IIOP as the means to communicate remote invocations over a TCP/IP connection.
IIOP is asymmetric with respect to the roles of the parties at the two ends of a connec-
tion. At one end is the client which can only initiate remote invocations. At the other
end is the server which can only receive remote invocations.

Notice that in CORBA, as in most distributed systems, remote bindings are es-
tablished implicitly without application intervention. This provides the illusion that
all objects are local, a property known as “location transparency”. CORBA does not
specify when such bindings should be established or how they should be multiplexed
over the underlying network connections. Instead, ORBs are free to implement im-
plicit binding by a variety of means.

The rest of this chapter describes how omniORB2 manages network connections
and the programming interface to fine tune the management policy.

7.2 The Model
OmniORB?2 is designed from the ground up to be fully multi-threaded. The objec-

tive is to maximise the degree of concurrency and at the same time eliminate any
unnecessary thread overhead. Another objective is to minimise the interference by

55

56 CHAPTER 7. CONNECTION MANAGEMENT

the activities of other threads on the progress of a remote invocation. In other words,
thread ““cross-talk” should be minimised within the ORB. To achieve these objectives,
the degree of multiplexing at every level is kept to a minimum.

On the client side of a connection, the thread that invokes on a proxy object drives
the 11OP protocol directly and blocks on the connection to receive the reply. On the
server side, a dedicated thread blocks on the connection. When it receives a request, it
performs the up-call to the object and sends the reply when the upcall returns. There
is no thread switching along the call chain.

With this design, there is at most one call in-flight at any time in a connection. If
there is only one connection, concurrent invocations to the same remote address space
would have to be serialised. To eliminate this limitation, omniORB2 implements a
dynamic policy- multiple connections to the same remote address space are created
on demand and cached when there are concurrent invocations in progress.

To be more precise, a network connection to another address space is only estab-
lished when a remote invocation is about to be made. Therefore, there may be one
or more object references in one address space that refers to objects in a different ad-
dress space but unless the application invokes on these objects, no network connec-
tion is made. The maximum number of connections opened to another address space
is 5 by default. Since 2.6.0, this parameter can be changed by setting the variable
omniORB::maxTcpConnectionPerServer before calling ORBinit

It is wasteful to leave a connection opened when it has been left unused for a
considerable time. Too many idle connections could block out new connections to a
server when it runs out of spare communication channels. For example, most unix
platforms has a limit on the number of file handles a process can open. 64 is the usual
default limit. The value can be increased to a maximum of a thousand or more by
changing the “ulimit” in the shell.

7.3 ldle Connection Shutdown

Inside the ORB, two separate threads are dedicated to scan for idle connections. One
thread is responsible for outgoing connections and the other looks after incoming con-
nections. The thread for incoming connections is only created when the BOA is ini-
tialised because only then will there be any incoming connections.

The threads scan all opened connections once every “scan period”. If a connec-
tion is found to be idle for two consecutive periods, it will be closed. The threads
use mark-and-swipe to detect if a connection is idle. When a connection is checked, a
status flag attached to the connection is set. Every remote invocation using that con-
nection would clear the flag. So if a connection’s status flag is found to be set in two
consecutive scans, the connection has been idled during the scan period.

The scan period for incoming and outgoing connections can be individually con-
trolled by the following API:

class omniORB {

public:

7.4. INTEROPERABILITY CONSIDERATIONS 57

enum idleConnType { idlelIncoming, idleOutgoing };

static void idleConnectionScanPeriod(idleConnType direction,
CORBA::ULong sec);

static CORBA::ULong idleConnectionScanPeriod(idleConnType direction);

The current value of the scan period (in seconds) is returned by the read-only
idleConnectionScanPeriod . The scan period can be changed by the write-only
idleConnectionScanPeriod . The default value (30 seconds) is compiled into the
ORB runtime. The scan can be disabled completely by setting the scan period to 0.
The scan period can be changed at any time. The write function is non-thread safe.
Concurrent calls to this function could results in undefined behaviour.

7.4 Interoperability Considerations

The IIOP specification allows both the client and the server to shutdown a connec-
tion unilaterally. When one end is about to shutdown a connection, it should send a
closeConnection message to the other end. It should also make sure that the message
will reach the other end before it proceeds to shutdown the connection.

The client should distinguish between an orderly and an abnormal connection
shutdown. When a client receives a closeConnection message before the connection is
closed, the condition is an orderly shutdown. If the message is not received, the con-
dition is an abnormal shutdown. In an abnormal shutdown, the ORB should raise a
COMMFAILURE exception whereas in an orderly shutdown, the ORB should not raise
an exception and should try to re-establish a new connection transparently.

OmniORB2 implements this semantics completely. However, it is known that
some ORBs are not (yet) able to distinguish between an orderly and an abnormal shut-
down. Usually this is manifested as the client in these ORBs seeing a COMMrAILURE
occasionally when connected to an omniORB2 server. The workaround is either to
catch the exception in the application code and retries or to turn off the idle connec-
tion shutdown inside the omniORB2 server.

7.5 Connection Acceptance

OmniORB2 provides the hook to implement a connection acceptance policy. Inside
the ORB runtime, a thread is dedicated to receive new connections. When the thread
is given the handle of a new connection by the operating system, it calls the policy
module to decide if the connection can be accepted. If the answer is yes, the ORB will
start serving requests coming in from that connection. Otherwise, the connection is
shutdown immediately.

There can be a number of policy module implementations. The basic one is a
dummy module which just accepts every connection.

58 CHAPTER 7. CONNECTION MANAGEMENT

In addition, a host-based access control module is available on unix platforms.
The module uses the IP address of the client to decide if the connection can be ac-
cepted. The module is implemented using tcp_wrappers 7.6. The access control policy
can be defined as rules in two access control files: hosts.allow and hosts.deny
The syntax of the rules is described in the manual page hosts _access(5) which
can be found in appendix A. The syntax defines a simple access control language that
is based on client (host name/address, user name), and server (process hame, host
name/address) patterns. When searching for a match on the server process name,
the ORB uses the value of omniORB::serverName . ORBInit uses the argument
argv[0] to set the default value of this variable. This can be overridden by the ap-
plication by passing the option: -ORBserverName <string> to ORBInit

The default location of the access control files is /etc . This can be overridden by
the extra options in omniORB.cfg . For instance:

omniORB configuration file - extra options
#

GATEKEEPER_ALLOWFILE /project/omni/var/hosts.allow

GATEKEEPER_DENYFILE /project/omni/var/hosts.deny

As each policy module is implemented as a separate library, the choice of policy
module is determined at program linkage time.
For instance, if the host-based access control module is in use:

% egl -ORBtracelLevel 2
omniORB2 gateKeeper is tcpwrapGK 1.0 - based on tcp_wrappers 7.6
| said,"Hello!". The Object said,"Hello!"

Whereas if the dummy module is in use:

% egl -ORBtracelLevel 2
omniORB2 gateKeeper is not installed. All incoming are accepted.
| said,"Hello!". The Object said,"Hello!"

Chapter 8

Proxy Objects

When a client acquires a reference to an object in another address space, omniORB2
creates a local representation of the object and returns a pointer to this object as its
object reference. The local representation is known as the proxy object.

The proxy object maps each IDL operation into a method to deliver invocations
to the remote object. The method implements argument marshalling using the ORB
runtime. When the ORB runtime detects an error condition, it may raise a system
exception. These exceptions will normally be propagated by the proxy object to the
application code. However, there may be applications that prefer to have the system
exceptions trapped in the proxy object. For these applications, it is possible to install
exception handlers for individual proxy object or all proxy objects. The API to do this
will be explained in this chapter.

As described in section 6.2, proxy objects are created by instances of the proxy-
ObjectFactory class. For each IDL interface A, the stubs of A contains a derived class
of proxyObijectFactory (A_proxyObjectFactory). This derived class is responsible for
creating proxy objects for A. This process is completely transparent to the applica-
tion. However, there may be applications that require greater control on the creation
of proxy objects or even want to change the behavior of the proxy objects. To cater for
this requirement, applications can override the default proxyObjectFactories and in-
stall their own versions of proxyObjectFactories. The way to do this will be explained
in this chapter.

8.1 System Exception Handlers

By default, all system exceptions, with the exception of CORBA:TRANSIENT,
are propagated by the proxy objects to the application code. Some applications
may prefer to trap these exceptions within the proxy objects so that the applica-
tion logic does not have to deal with the error condition. For example, when a
CORBA::COMM_FAILURE is received, an application may just want to retry the in-
vocation until it finally succeeds. This approach is useful for objects that are persistent
and their operations are idempotent.

OmniORB2 provides a set of functions to install exception handlers. Once they
are installed, proxy objects will call these handlers when the target system ex-
ceptions are raised by the ORB runtime. Exception handlers can be installed for

59

60 CHAPTER 8. PROXY OBJECTS

CORBA:TRANSIENT, CORBA:COMM_FAILURE and CORBA:.SystemException.
The last handler covers all system exceptions other than the two covered by the first
two handlers. An exception handler can be installed for individual proxy object or it
can be installed for all proxy objects in the address space.

8.1.1 CORBA:TRANSIENT handlers

When a CORBA:TRANSIENT exception is raised by the ORB runtime,
the default behaviour of the proxy objects is to retry indefinitely until
the operation succeeds. Successive retries will be delayed progressively
by multiples of omniORB::defaultTransientRetryDelaylncrement .
The delay will be limited to a maximum specified by
omniORB::defaultTransientRetryDelayMaximum . The unit of both val-
ues are in seconds.

The ORB runtime will raised CORBA:TRANSIENT under the following condi-
tions:

1. When a cached network connection is broken while an invocation is in progress.
The ORB wiill try to open a new connection at the next invocation.

2. When the proxy object has been redirected by a location forward message by
the remote object to a new location and the object at the new location cannot be
contacted. In addition to the CORBA:: TRANSIENT exception, the proxy object
also resets its internal state so that the next invocation will be directed at the
original location of the remote object.

3. When the remote object reports CORBA::TRANSIENT.
Applications can override the default behaviour by installing their own exception
handler. The API to do so is summarised below:
class omniORB {
public:
typedef CORBA::Boolean (*transientExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::TRANSIENT& ex);

static void installTransientExceptionHandler(void* cookie,
transientExceptionHandler_t fn);

static void installTransientExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
transientExceptionHandler_t fn);

static CORBA::ULong defaultTransientRetryDelaylncrement;
static CORBA::ULong defaultTransientRetryDelayMaximum;

}

8.1. SYSTEM EXCEPTION HANDLERS 61

The overloaded functions installTransientExceptionHandler can be used
to install the exception handlers for CORBA:: TRANSIENT.

Two overloaded forms are available. The first form install an exception handler for
all object references except for those which have an exception handler installed by the
second form, which takes an addition argument to identify the target object reference.
The argument cookie is an opaque pointer which will be passed on by the ORB when
it calls the exception handler.

An exception handler will be <called by proxy objects with
three arguments. The cookie is the opaque pointer registered by
installTransientExceptionHandler . The argument n_retries is the

number of times the proxy has called this handler for the same invocation. The argu-
ment ex is the value of the exception caught. The exception handler is expected to do
whatever is appropriate and returns a boolean value. If the return value is TRUE(1),
the proxy object would retry the operation again. If the return value is FALSE(0), the
CORBA::TRANSIENT exception would be propagated into the application code.

The following sample code installs a simple exception handler for all objects and
for a specific object:

CORBA::Boolean my_transient_handlerl (void* cookie,
CORBA::ULong retries,
const CORBA::TRANSIENT& ex)

cerr << "transient handler 1 called.” << endl;
return 1; /I retry immediately.

}

CORBA::Boolean my_transient_handler2 (void* cookie,
CORBA::ULong retries,
const CORBA:: TRANSIENT& ex)

cerr << "transient handler 2 called.” << endl;
return 1; /I retry immediately.

static Echo_ptr myobj;

void installhandlers()

{

omniORB::installTransientExceptionHandler(0,my_transient_handlerl);
/I All proxy objects will call my_transient_handlerl from now on.

omniORB::installTransientExceptionHandler(myobj,0,my_transient_handler2);
/I The proxy object of myobj will call my_transient_handler2 from now on.

62 CHAPTER 8. PROXY OBJECTS

8.1.2 CORBA:COMM_FAILURE

When the ORB runtime fails to establish a network connection to the remote object and
none of the conditions listed above for raising a CORBA:: TRANSIENT is applicable,
it raises a CORBA::COMM_FAILURE exception.

The default behaviour of the proxy objects is to propagate this exception to the
application.

Applications can override the default behaviour by installing their own exception
handlers. The API to do so is summarised below:

class omniORB {
public:

typedef CORBA::Boolean (*commFailureExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::COMM_FAILURE& ex);

static void installCommFailureExceptionHandler(void* cookie,
commpFailureExceptionHandler_t fn);

static void installCommFailureExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
commpFailureExceptionHandler_t
fn);

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

8.1.3 CORBA:SystemException

To report an error condition, the ORB runtime may raise other SystemExceptions. If
the exception is neither CORBA:: TRANISENT nor CORBA::.COMM_FAILURE, the de-
fault behaviour of the proxy objects is to propagate this exception to the application.

Application can override the default behaviour by installing their own exception
handlers. The API to do so is summarised below:

class omniORB {
public:
typedef CORBA::Boolean (*systemExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::SystemException& ex);

static void installSystemExceptionHandler(void* cookie,
systemExceptionHandler_t fn);

static void installSystemExceptionHandler(CORBA::Object_ptr obj,

8.2. PROXY OBJECT FACTORIES 63

void* cookie,
systemExceptionHandler_t fn);

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

8.2 Proxy Object Factories

This section describes how an application can control the creation or change the be-
haviour of proxy objects.

8.2.1 Background

For each interface A, its stub contains a proxy factory class-
A_proxyObjectFactory . This class is derived from proxyObjectFactory
and implements three virtual functions:

class A_proxyObjectFactory : public virtual proxyObjectFactory {
public:

virtual const char *irRepold() const;
virtual _CORBA _Boolean is_a(const char *base repold) const;

virtual CORBA.::Object_ptr newProxyObject(Rope *r,
CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList
*profiles,
CORBA::Boolean release);

As described in chapter 6, the functions allow the ORB runtime to perform type
checking. The function newProxyObject creates a proxy object for A based on its
input arguments. The return value is a pointer to the class _proxy _A which is au-
tomatically re-casted into a CORBA::Object _ptr . _proxy _A implements the proxy
object for A:

class _proxy A : public virtual A {
public:

_proxy_A (Rope *r,
CORBA::Octet *key,
size_t keysize,IOP::TaggedProfileList *profiles,
CORBA::Boolean release);

virtual ~_proxy_A();

64 CHAPTER 8. PROXY OBJECTS

/I plus other internal functions.

2

The stub of A guarantees that exactly one instance of A proxyObjectFactory
is instantiated when an application is executed. The constructor of
A_proxyObjectFactory , Vvia its base class proxyObjectFactory links the

instance into the ORB’s proxy factory list.

Newly instantiated proxy object factories are always entered at the front of the
ORB’s proxy factory list. Moreover, when the ORB searches for a match on the
type, it always stops at the first match. In other words, when additional instances
of A_proxyObjectFactory or derived classes of it are created, the last instantiation
will override earlier instantiations to be the proxy factory selected to create proxy ob-
jects of A. This property can be used by an application to install its own proxy object
factories.

8.2.2 An Example

Using the Echo example in chapter 2 as the basis, one can tell the ORB to use a modi-
fied proxy object class to create proxy objects. The steps involved are as follows:

8.2.2.1 Define a new proxy class

We define a new proxy class to cache the result of the last invocation of echoString

class _new_proxy Echo : public virtual _proxy Echo {
public:
_hew_proxy_Echo (Rope *r,
CORBA::Octet *key,
size t keysize,IOP::TaggedProfileList *profiles,
CORBA::Boolean release)
. _proxy_Echo(r,key,keysize,profiles,release),
omniObject(Echo_IntfRepolD,r,key,keysize,profiles,release)
{
/Il You have to look at the _proxy Echo class and copy from its
/I ctor all the explicit ctor calls to its base member.

}

virtual ~_new_proxy_Echo() {}

virtual char* echoString(const char* mesg) {
I
/I Only calls the remote object if the argument is different from the
/I last invocation.

omni_mutex_lock sync(lock);
if ((char*)last_arg) {
if (strcmp(mesg,(char®)last_arg) == 0) {
return CORBA::string_dup(last_result);
}

}

8.2. PROXY OBJECT FACTORIES 65

char* res = _proxy_Echo::echoString(mesg);
last_arg = mesg;

last_result = (const char*) res;

return res;

}

private:
omni_mutex lock;
CORBA::String_var last_arg;
CORBA::String_var last_result;

3

8.2.2.2 Define a new proxy factory class

Next, we define a new proxy factory class to instantiate _new_proxy _Echo as proxy
objects for Echo.

class _new_Echo_proxyObjectFactory : public virtual Echo_proxyObjectFactory

{
public:
_new_Echo_proxyObjectFactory () {}
virtual ~_new_Echo_proxyObjectFactory() {}
/Il Only have to override newProxyObject
virtual CORBA.::Object_ptr newProxyObject(Rope *r,
CORBA::Octet *key,
size_t keysize,
IOP::TaggedProfileList *profiles,
CORBA::Boolean release) {
_new_proxy_Echo *p = new _new_proxy_Echo(r,key,keysize,profiles,release);
return p;
}
I3

Finally, we have to instantiate a single instance of the new proxy factory in the
application code.

int main(int argc, char** argv)

{
/I Other initialisation steps

_new_Echo_proxyObjectFactory* f = new _new_Echo_proxyObjectFactory;

I/l Use the new operator to instantiate the proxy factory and never
/I call the delete operator on this instance.

/[l From this point onwards, _new_proxy Echo will be used to create
/I proxy objects for Echo.

66 CHAPTER 8. PROXY OBJECTS

8.2.3 Further Considerations

Notice that the ORB may call newProxyObject multiple times to create proxy objects
for the same remote object. In other words, the ORB does not guarantee that only
one proxy object is created for each remote object. For applications that require this
guarantee, it is necessary to check within newProxyObject whether a proxy object
has already been created for the current request. If the argument Rope* r points
to the same structure and the content of the sequence CORBA.::Octet* key is the
same, then an existing proxy object can be returned to satisfy the current request. Do
not forget to call CORBA::duplicate() before returning the object reference.

newProxyObject may be called concurrently by different threads within the
ORB. Needless to say, the function must be thread-safe.

Chapter 9

Type Any and TypeCode

The CORBA specification provides for a type that can hold the value of any OMG
IDL type. This type is known as type Any. The OMG also specifies a pseudo-obiject,
TypeCode, that can encode a description of any type specifiable in OMG IDL.

In this chapter, an example demonstrating the use of type Any is presented. This
is followed by sections describing the behaviour of type Any and TypeCode in om-
niORB2. For further information on type Any, refer to the C++ Mapping section of the
CORBA 2 specification [OMG96a], and for more information on TypeCode, refer to the
Interface Repository chapter in the CORBA core section of the CORBA 2 specification.

9.1 Example using type Any

Before going through this example, you should make sure that you have read and
understood the examples in chapter 2. The source code for this example is included
in the omniORB2 distribution, in the directory src/examples/anyExample. A listing
of the source code is provided at the end of this chapter.

9.11 Type AnyinIDL

Type Any allows one to delay the decision on the type used in an operation until
run-time. To use type any in IDL, use the keyword any, as in the following example:

/I 1DL

interface anyExample {
any testOp(in any mesg);
I3

The operation testOp() in this example can now take any value expressible in
OMG IDL as an argument, and can also return any type expressible in OMG IDL.
Type Any is mapped into C++ as the type CORBA::Any . When passed as an argu-
ment or as a result of an operation, the following rules apply:
In InOut Out Return
const CORBA::Any& CORBA:Any& CORBA:Any*& CORBA::Any*

67

68 CHAPTER 9. TYPE ANY AND TYPECODE

So, the above IDL would map to the following C++

Il C++

class anyExample i : public virtual _sk anyExample {
public:

anyExample_i() { }

virtual "anyExample_i() { }

virtual CORBA::Any* testOp(const CORBA::Any& a);

3

9.1.2 Inserting and Extracting Basic Types from an Any

The question now arises as to how values are inserted into and removed from an Any.
This is achieved using two overloaded operators: <<= and >>=

Two insert a value into an Any, the <<= operator is used, as in this example:

/I C++

CORBA::Any an_any;
CORBA::Long | = 100;
an_any <<= I;

Note that the overloaded <<= operator has a return type of void .

To extract a value, the >>= operator is used, as in this example (where the Any
contains a long):

/I C++

CORBA::Long |;
an_any >>= |;

cout << "This is a long: " << | << end];

The overloaded >>= operator returns a CORBA::Boolean. If an attempt is made
to extract a value from an Any when it contains a different value (e.g. an attempt to
extract a long from an Any containing a double), the overloaded >>= operator will
return False; otherwise it will return True. Thus, a common tactic to extract values
from an Any is as follows:

9.1. EXAMPLE USING TYPE ANY 69

Il C++

CORBA::Long |,
CORBA::Double d;
char* str;

if (an_any >>= 1) {
cout << "Long: " << | << endl;
}

else if (an_any >>= d) {
cout << "Double: " << d << endl;
}

else if (an_any >>= str) {
cout << "String: " << str << endl,

else {
cout << "Unknown value." << endl;

9.1.3 Inserting and Extracting Constructed Types from an Any

It is also possible to insert and extract constructed types and object references from an
Any. omniidl2 will generate insertion and extraction operators for the constructed
type. Note that it is necessary to specify the -a command-line flag when running
omniidl2 in order to generate these operators. The following example illustrates the
use of constructed types with type Any:

/I 1DL

struct testStruct {
long I;
short s;

h

interface anyExample {
any testOp(in any mesg);
I3

Upon compiling the above IDL with omniidl2 -a , the following overloaded op-
erators are generated:

1. void operator<<=(CORBA:Any&, const testStruct&)

2. void operator<<=(CORBA::Any&, testStruct*)

3. CORBA::Boolean operator>>=(const CORBA::Any&,
testStruct*&)

70 CHAPTER 9. TYPE ANY AND TYPECODE

Operators of this form are generated for all constructed types, and for interfaces.

The first operator, (1) , copies the constructed type, and inserts it into the Any. The
second operatar, (2) , inserts the constructed type into the Any, and then manages it.
Note that if the second operator is used, the Any consumes the constructed type, and
the caller should not used the pointer to access the data after insertion. The following
is an example of how to insert a value into an Any using operator (1) :

/I C++

CORBA::Any an_any;
testStruct t;

t.l = 456;

ts = 8;

an_any <<= t;

The third operator, (3) , is used to extract the constructed type from the Any, and
can be used as follows:

testStruct* tp;

if (an_any >>= tp) {

cout << "testStruct: I: " << tp->I << endl;

cout << " s: " << tp->s << endl;
}
else {

cout << "Unknown value contained in Any." << endl;
}

As with basic types, if an attempt is made to extract a type from an Any that does
not contain a value of that type, the extraction operator returns False. If the Any does
contain that type, the extraction operator returns True. If the extraction is successful,
the caller’s pointer will point to memory managed by the Any. The caller must not
delete or otherwise change this storage, and should not use this storage after the con-
tents of the Any are replaced (either by insertion or assignment), or after the Any has
been destroyed . In particular, management of the pointer should not be assigned to
a _var type.

If the extraction fails, the caller’s pointer will be set to point to null.

Note that there are special rules for inserting and extracting arrays (using _forany
types), and for inserting and extracting booleans, octets, chars, and bounded strings.
Please refer to section 16.14 of the C++ Mapping section of the CORBA 2 specifica-
tion [OMG96a] for further information.

Ut is unclear in the CORBA specification whether or not object references should be managed by an
Any. The omniORB2 implementation leaves management of an extracted object reference to the caller.
Therefore, the programmer should release object references and TypeCodes that have been extracted
from an Any.

9.2. TYPE ANY IN OMNIORBZ2 71

9.2 Type Any in omniORB2

This section contains some notes on the use and behaviour of type Any in omniORB2.

Generating Insertion and Extraction Operators. To generate type Any insertion and
extraction operators for constructed types and interfaces, the -a command line flag
should be specified when running omniidI2

TypeCode comparison when extracting from an Any. When an attempt is made to
extract a type from an Any, the TypeCode of the type is checked for equality with the
TypeCode of the type stored by the Any. omniORB2 will ignore any alias TypeCodes
(tk _alias) when making this comparison. Examples:

/I IDL 1
typedef double Doublel;

struct Testl {
Doublel a;

h

/I IDL 2
typedef double Double2;

struct Testl {
Double2 a;

h

If an attempt is made to extract the type Testl defined in IDL 1 from an Any
containing the Testl defined in IDL 2, this will succeed (and vice-versa), as the two
types differ only by an alias.

Object references. Note that type Any does not manage object reference types - it
is unclear in the CORBA specification whether this is required or not. Therefore, the
programmer should release object references and pseudo-objects (such as TypeCode)
that have been extracted from an Any. Type Any will, however, manage constructed
types (as per the CORBA 2 specification) - constructed types extracted from an Any
should not be deleted, as they will be deleted by the Any when it is destroyed.

Top-level aliases. When a type is inserted into an Any, the Any stores both the value
of the type and the TypeCode for that type. If there are any top-level tk _alias Type-
Codes in the TypeCode, they will be removed from the TypeCode stored in the Any.

72 CHAPTER 9. TYPE ANY AND TYPECODE

Note that this does not affect the tc - TypeCode generated to represent the type (see
section on TypeCode, below). This behaviour is necessary, as two types that differ
only by a top-level alias can use the same insertion and extraction operators. If the
tk _alias is not removed, one of the types could be transmitted with an incorrect
tk _alias TypeCode. Example:

/I 1IDL 3

typedef sequence<double> seqDoublel;
typedef sequence<double> segDouble2;

If either seqDoublel or seqDouble2 is inserted into a TypeCode, the Type-
Code stored will be for a sequence<double> , and not for an alias to a
sequence<double>

Removing aliases from TypeCodes. Some ORBs (e.g. Orbix) will not accept Type-
Codes containing tk _alias TypeCodes. When using type Any while interoperating
with these ORBEs, it is necessary to remove tk _alias TypeCodes from throughout the
TypeCode representing a constructed type.

While omniORB2 will always remove top-level aliases, it doesn’t remove aliases
contained in a constructed type (for example, Doublel inthestruct Testl inexample
1, above). To remove all tk _alias TypeCodes from TypeCodes stored in Anys, sup-
ply the -ORBtcAliasExpand 1 command-line flag when running an omniORB2
executable. There will be some (small) performance penalty when inserting values
into an Any.

Note that the tc - TypeCodes generated for all constructed types will contain the
complete TypeCode for the type (including any tk _alias TypeCodes), regardless of
whether the -ORBtcAliasExpand flag is setto 1 or not.

Recursive TypeCodes. omniORB2 does not yet support recursive TypeCodes. This
means that types such as the following can not be inserted or extracted from an Any:

/l IDL 4

struct Test4 {
sequence<Test4> a;

3

If these types are specified in IDL, omniidl2 will not generate Any insertion/ ex-
traction operators, so an attempt to insert/extract them will result in compile-time
errors. Similarly, it won’t generate a _tc _ TypeCode for the type. If another type con-
tains a type which is recursive, operators won’t be generated for that type either, and
so on. Recursive TypeCodes will be supported in a future release of omniORB2.

9.3. TYPECODE IN OMNIORBZ2 73

Type-unsafe construction and insertion. If using the type-unsafe Any constructor,
or the CORBA::Any::replace() member function, ensure that the value returned
by the CORBA::Any::value() member function and the TypeCode returned by the
CORBA::Any::type() member function are used as arguments to the constructor or
function. Using other values or TypeCodes may result in a mismatch, and is undefined

behaviour.
Note that a non-CORBA 2 function,

CORBA::ULong CORBA::Any::NP_length() const

is supplied. This member function returns the length of the value returned by the
CORBA::Any::value() member function. It may be necessary to use this function
if the Any’s value is to be stored in a file.

Threads and type Any. Inserting and extracting simultaneously from the same Any
(in 2 different threads) is undefined behaviour.

Extracting simultaneously from the same Any (in 2 or more different threads) may
result in a memory leak if the type being extracted is a constructed type. It was de-
cided not to mutex the Any, as this condition should rarely arise, and adding a mutex
would lead to performance penalties.

9.3 TypeCode in omniORB2

This section contains some notes on the use and behaviour of TypeCode in omniORB2

TypeCodes in IDL. When using TypeCodes in IDL, note that they are defined in the
CORBA scope. Therefore, CORBA::TypeCode should be used. Example:

/I IDL 5

struct Test5 {

long length;

CORBA:: TypeCode desc;
I3

orb.idl Inclusion of the file orb.idl in IDL using CORBA::TypeCode is optional.
An empty orb.idl file is provided for compatibility purposes.

Generating TypeCodes for constructed types. To generate a TypeCode for con-
structed types, specify the -a command-line flag when running omniidl2. This will
generate a _tc _ TypeCode describing the type, at the same scope as the type (as per
the CORBA 2 specification). Example:

/I IDL 6

struct Test6 {
double a;
sequence<long> b;

5

74 CHAPTER 9. TYPE ANY AND TYPECODE

A TypeCode, _tc _Test6 , will be generated to describe the struct Test6 . The op-
erations defined in the TypeCode interface (see section 6.7.1 of the CORBA 2 specifi-
cation [OMG96a]) can be used to query the TypeCode about the type it represents.

TypeCode equality. The CORBA::TypeCode:.equal() member function will re-
turn true only if the two TypeCodes are exactly the same. tk _alias TypeCodes are
included in this comparison, unlike the comparison made when values are extracted
from an Any (see section on Any, above).

If one of the TypeCodes being checked is a tk _struct , tk _union , tk _enum,
or tk _alias , and has an empty repository ID parameter, then the repository ID
parameter will be ignored when checking for equality. Similarly, if the name or
member_name parameters of a TypeCode are empty strings, they will be ignored for
equality checking purposes. This is because a CORBA 2 ORB does not have to include
these parameters in a TypeCode (see section 12.3.4 of the Interoperability section of
the CORBA 2 specification [OMG96a]). Note that these (optional) parameters are in-
cluded in TypeCodes generated by omniORB2.

9.4. SOURCE LISTING 75

9.4 Source Listing

9.4.1 anyExample_impl.cc

/I anyExample_impl.cc - This is the source code of the example used in

/1 Chapter 9 "Type Any and TypeCode" of the omniORB2
/1 users guide.

I

1 This is the object implementation.

I

/Il Usage: anyExample_impl

I

/1 On startup, the object reference is registered with the

1 COS naming service. The client uses the naming service to
1 locate this object.

I

/1 The name which the object is bound to is as follows:

/1 root [context]

I |

1 text [context] kind [my_context]

I |

/1 anyExample [object] kind [Obiject]

I

#include <iostream.h>

#include "anyExample.hh"

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

class anyExample i : public virtual _sk anyExample {
public:

anyExample_i() { }

virtual "anyExample_i() { }

virtual CORBA.::Any* testOp(const CORBA::Any& a);

2
CORBA::Any*
anyExample_i::itestOp(const CORBA::Any& a) {
cout << "Any received, containing: " << endl;
#ifndef NO_FLOAT
CORBA::Double d;
#endif

CORBA::Long |;
char* str;

testStruct* tp;

76 CHAPTER 9. TYPE ANY AND TYPECODE

if (@ >>=1 {
cout << "Long: " << | << endl;
}

#ifndef NO_FLOAT
else if (a >>= d) {
cout << "Double: " << d << endl;
}

#endif
else if (a >>= str) {
cout << "String: " << str << endl,

}
else if (a >>= tp) {
cout << "testStruct: I " << tp->| << end|;
cout << " s: " << tp->s << endl;
}
else {
cout << "Unknown value." << endl;
}

CORBA::Any* ap = new CORBA:Any;
*ap <<= (CORBA:ULong) 314;

cout << "Returning Any containing: ULong: 314\n" << end];
return ap;

int

main(int argc, char **argv)

{
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA ptr boa = orb->BOA _init(argc,argv,"omniORB2_BOA");

anyExample_i *myobj = new anyExample_i();
myobj->_obj_is_ready(boa);

{
anyExample_var myobjRef = myobj->_this();
if ('bindObjectToName(orb,myobjRef)) {
return 1;
}

}

boa->impl_is_ready();

/I Tell the BOA we are ready. The BOA’s default behaviour is to block
/I on this call indefinitely.

return O;

9.4. SOURCE LISTING

static

CORBA::Boolean

bindObjectToName(CORBA::ORB_ptr orb,CORBA::Object_ptr obj)
{

CosNaming::NamingContext_var rootContext;

try {
/I Obtain a reference to the root context of the Name service:

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

/I Narrow the object returned by resolve initial_references()
/l to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))
{
cerr << "Failed to narrow naming context." << endl;
return O;
}
}
catch(CORBA::ORB::InvalidName& ex) {
cerr << "Service required is invalid [does not exist]." << endl;
return O;

}

try {
/l Bind a context called "test" to the root context:

CosNaming::Name contextName;

contextName.length(1);

contextName[0].id = (const char*) "test"; /I string copied
contextName[O].kind = (const char*) "my_context"; // string copied
/l Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {
/I Bind the context to root, and assign testContext to it:
testContext = rootContext->bind_new_context(contextName);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
/I If the context already exists, this exception will be raised.
/I In this case, just resolve the name and assign testContext
/I to the object returned:
CORBA::Object_var tmpobj;
tmpobj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(tmpobj);
if (CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return O;

7

78

}

CHAPTER 9. TYPE ANY AND TYPECODE

}
}

/I Bind the object (obj) to testContext, naming it anyExample:
CosNaming::Name objectName;

objectName.length(1);

objectName[0].id = (const char*) "anyExample"; // string copied
objectName[0].kind = (const char*) "Object"; // string copied

/I Bind obj with name anyExample to the testContext:

try {
testContext->bind(objectName,obj);
}

catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName,obj);

}

/I Note: Using rebind() will overwrite any Object previously bound

I to /test/anyExample with obj.

I Alternatively, bind() can be used, which will raise a

I CosNaming::NamingContext::AlreadyBound exception if the name
I supplied is already bound to an object.

catch (CORBA::COMM_FAILURE& ex) {

}

cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "naming service." << endl;
return O;

catch (omniORB::fatalException& ex) {

}

throw;

catch (...) {

}

cerr << "Caught a system exception while using the naming service."<< endl;
return O;

return 1;

9.4. SOURCE LISTING 79

9.4.2 anyExample_clt.cc

/I anyExample_clt.cc - This is the source code of the example used in

1 Chapter 9 "Type Any and TypeCode" of the omniORB2
1 users guide.

I

/1 This is the client. It uses the COSS naming service
/1 to obtain the object reference.

I

/I Usage: anyExample_clt

I

I

/1 On startup, the client lookup the object reference from the
1 COS naming service.

I

1 The name which the object is bound to is as follows:

/1 root [context]

I |

/1 text [context] kind [my_context]

I |

1 anyExample [object] kind [Object]

I

#include <iostream.h>
#include "anyExample.hh"

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);
static void invokeOp(anyExample_ptr& tobj, const CORBA::Any& a);

int

main (int argc, char **argv)

{
CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB2");
CORBA::BOA ptr boa = orb->BOA _init(argc,argv,"omniORB2_BOA");
CORBA::Object_var obj;

try {
obj = getObjectReference(orb);

}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;
return -1;
}
catch(omniORB::fatalException& ex) {
cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"
<< "The exception was thrown in file: " << ex.file() << "\n"

<< line: " << ex.line() << "\n"
<< "The error message is: " << ex.errmsg() << endl;
return -1;

}
catch(...) {

80 CHAPTER 9. TYPE ANY AND TYPECODE

cerr << "Caught a system exception." << endl;
return -1;

}

anyExample_ptr tobj = anyExample::_narrow(obj);

if (CORBA::is_nil(tobj)) {
cerr << "Can't narrow object reference to type anyExample." << endl;

return -1;
}
CORBA::Any a;
try {

/I Sending Long

CORBA::Long | = 100;

a <<= |;

cout << "Sending Any containing Long: " << | << endl;
invokeOp(tobj,a);

/I Sending Double
#ifndef NO_FLOAT
CORBA::Double d = 1.2345;
a <<= d;
cout << "Sending Any containing Double: " << d << endl;
invokeOp(tobj,a);
#endif

/I Sending String

const char* str = "Hello";

a <<= str;

cout << "Sending Any containing String: " << str << endl;
invokeOp(tobj,a);

/I Sending testStruct [Struct defined in IDL]
testStruct t;

t.l = 456;

ts = §;

a <<=t

cout << "Sending Any containing testStruct: |: " << t.| << endl;

cout << " s: " << t.s << endl;

invokeOp(tobj,a);
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the "
<< "object." << endl;
return -1;
}
catch(omniORB::fatalException& ex) {
cerr << "Caught omniORB2 fatalException. This indicates a bug is caught "
<< "within omniORB2.\nPlease send a bug report.\n"

9.4. SOURCE LISTING

}

<< "The exception was thrown in file: " << ex.file() << "\n"
<< " line: " << exline() << "\n"
<< "The error message is: " << ex.errmsg() << endl;
return -1;
}
catch(...) {
cerr << "Caught a system exception." << endl;
return -1;

}

return O;

static
CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)

{

CosNaming::NamingContext_var rootContext;

try {
/I Obtain a reference to the root context of the Name service:

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

/I Narrow the object returned by resolve initial_references()
/l to a CosNaming::NamingContext object:
rootContext = CosNaming::NamingContext::_narrow(initServ);
if (CORBA::is_nil(rootContext))
{
cerr << "Failed to narrow naming context." << endl;
return CORBA::Object::_nil();
}
}
catch(CORBA::ORB::InvalidName& ex) {
cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();
}

/I Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0]l.id = (const char*) "test"; /I string copied
name[0].kind = (const char*) "my_context"; // string copied
name[l].id = (const char*) "anyExample";

name[1].kind = (const char*) "Object";

/I Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

CORBA::Object_ptr obj;

81

82 CHAPTER 9. TYPE ANY AND TYPECODE

try {
/Il Resolve the name to an object reference, and assign the reference

/I returned to a CORBA::Object:
obj = rootContext->resolve(name);

}

catch(CosNaming::NamingContext::NotFound& ex)
{
/I This exception is thrown if any of the components of the
/I path [contexts or the object] aren’'t found:
cerr << "Context not found." << endl;
return CORBA::Object::_nil();
}
catch (CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE, unable to contact the
<< "naming service." << endl;
return CORBA::Object::_nil();

}
catch(omniORB::fatalException& ex) {
throw;
}
catch (...) {
cerr << "Caught a system exception while using the naming service."<< endl;
return CORBA::Object::_nil();
}
return obj;
}
static void
invokeOp(anyExample_ptr& tobj, const CORBA::Any& a)
{

CORBA::Any var bp;

cout << "Invoking operation." << endl;
bp = tobj->testOp(a);

cout << "Operation completed. Returned Any: ";
CORBA::ULong ul;

if (bp >>= ul) {

cout << "ULong: " << ul << "\n" << endl;
}
else {

cout << "Unknown value." << "\n" << endl;
}

}

Chapter 10

Dynamic Management of Any
Values

In CORBA specification 2.2, a new facility- DynAny is introduced. Previously, it is
not possible to insert or extract constructed and other complex types from an any
without using the stub code generated by an idl compiler for these types. This makes
it impossible to write generic servers (bridges, event channels supporting filtering etc)
because these servers can not have static knowledge of all the possible data types that
they have to handle.

To fill this gap, the DynAny facility is defined to enable traversal of the data value
associated with an any at runtime and extraction of its constituents. This facility also
enables the construction of an any at runtime, without having static knowledge of its
types.

This chapter explains how DynAny may be used. For completeness, you should
also read the DynAny specification defined in Chapter 7 of the CORBA specification
2.2. Where possible, the implementation in omniORB2 adheres closely to the speci-
fication. However, there are areas in the specification that are ambiguous or lacking
in details. A number of these issues are currently opened with the ORB revision task
force. Until the issues are resolved, it is possible that a different implementation may
choose to intepret the specification differently. This chapter provides clarifications to
the specification, explains the interpretation used and offers some advice and warn-
ings on potential portability problems.

10.1 C++ mapping

/I namespace CORBA
class ORB {
public:
class InconsistentTypeCode : public UserException { ... };

DynAny_ptr create_dyn_any(const Any& value);

83

84

h

CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

DynAny ptr create_basic_dyn_any(TypeCode_ptr tc);
DynStruct_ptr create_dyn_struct(TypeCode_ptr tc);
DynSequence_ptr create_dyn_sequence(TypeCode_ptr tc);
DynArray ptr create_dyn_array(TypeCode_ptr tc);
DynUnion_ptr create_dyn_union(TypeCode_ptr tc);

DynEnum_ptr create_dyn_enum(TypeCode_ptr tc);

typedef DynAny* DynAny_ptr;
class DynAny var { ... };

class DynAny {
public:

class Invalid : public UserException { ... };

class InvalidvValue : public UserException { ... };
class TypeMismatch : public UserException { ... };
class InvalidSeq : public UserException { ... };

typedef _CORBA_Unbounded_Sequence _Octet OctetSeq;
TypeCode_ptr type() const;

void assign(DynAny_ptr dyn_any) throw(Invalid,SystemException);
void from_any(const Any& value) throw(Invalid,SystemException);
Any* to_any() throw(Invalid,SystemException);

void destroy();

DynAny_ptr copy();

DynAny_ptr current_component();
Boolean next();

Boolean seek(Long index);

void rewind();

void insert_boolean(Boolean value) throw(InvalidValue,SystemException);
void insert_octet(Octet value) throw(InvalidValue,SystemException);

void insert_char(Char value) throw(InvalidValue,SystemException);

void insert_short(Short value) throw(InvalidvValue,SystemException);

void insert_ushort(UShort value) throw(InvalidValue,SystemException);
void insert_long(Long value) throw(InvalidValue,SystemException);

void insert_ulong(ULong value) throw(InvalidValue,SystemException);
void insert_float(Float value) throw(InvalidValue,SystemException);

void insert_double(Double value) throw(InvalidValue,SystemException);
void insert_string(const char* value) throw(InvalidValue,SystemException);
void insert_reference(Object_ptr v) throw(InvalidValue,SystemException);
void insert_typecode(TypeCode ptr v) throw(InvalidValue,SystemException);

10.1. C++ MAPPING

void insert_any(const Any& value) throw(InvalidValue,SystemException);

Boolean get_boolean() throw(TypeMismatch,SystemException);
Octet get_octet() throw(TypeMismatch,SystemException);

Char get_char() throw(TypeMismatch,SystemException);

Short get_short() throw(TypeMismatch,SystemException);

UShort get_ushort() throw(TypeMismatch,SystemException);

Long get long() throw(TypeMismatch,SystemException);

ULong get _ulong() throw(TypeMismatch,SystemException);

Float get float() throw(TypeMismatch,SystemException);

Double get double() throw(TypeMismatch,SystemException);
char* get_string() throw(TypeMismatch,SystemException);
Object_ptr get_reference() throw(TypeMismatch,SystemException);
TypeCode_ptr get_typecode() throw(TypeMismatch,SystemException);
Any* get_any() throw(TypeMismatch,SystemException);

static DynAny_ptr _duplicate(DynAny_ptr);
static DynAny_ptr _narrow(DynAny_ptr);
static DynAny_ptr _nil();

¥

/I DynFixed is not supported.

typedef DynEnum* DynEnum_ptr;
class DynEnum_var { ... };

class DynEnum : public DynAny {
public:

char* value_as_string();

void value_as_string(const char* value);
ULong value_as_ulong();

void value_as_ulong(ULong value);

static DynEnum_ptr _duplicate(DynEnum_ptr);
static DynEnum_ptr _narrow(DynAny_ptr);
static DynEnum_ptr _nil();

3

typedef char* FieldName;
typedef String_var FieldName_var;

struct NameValuePair {
String_member id;
Any value;

I3

typedef _CORBA_ConstrType Variable Var<NameValuePair> NameValuePair_var;
typedef _CORBA_Unbounded_Sequence<NameValuePair > NameValuePairSeq;

typedef DynStruct* DynStruct_ptr;
class DynStruct var { ... };

86

CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

class DynStruct : public DynAny {
public:

char* current_member_name();

TCKind current_member_kind();

NameValuePairSeq* get_members();

void set_members(const NameValuePairSeq& NVSeqVal)
throw(InvalidSeq,SystemException);

static DynStruct_ptr _duplicate(DynStruct_ptr);
static DynStruct_ptr _narrow(DynAny_ptr);
static DynStruct_ptr _nil();

h

typedef DynUnion* DynUnion_ptr;
class DynUnion_var { ... };

class DynUnion : public DynAny {
public:

Boolean set_as_default();

void set as_default(Boolean value);
DynAny_ptr discriminator();

TCKind discriminator_kind();
DynAny_ptr member();

char* member_name();

void member_name(const char* value);
TCKind member_kind();

static DynUnion_ptr _duplicate(DynUnion_ptr);
static DynUnion_ptr _narrow(DynAny_ptr);
static DynUnion_ptr _nil();

2

typedef _CORBA_Unbounded_Sequence<Any > AnySeq;

typedef DynSequence* DynSequence_ptr;
class DynSequence_var { ... }

class DynSequence : public DynAny {
public:

ULong length();

void length (ULong value);

AnySeq* get_elements();

void set_elements(const AnySeq& value) throw(InvalidValue,SystemException);

static DynSequence_ptr _duplicate(DynSequence_ptr);
static DynSequence_ptr _narrow(DynAny_ptr);
static DynSequence_ptr _nil();

h

typedef DynArray* DynArray_ptr;

10.2. THE DYNANY INTERFACE 87

class DynArray var { ... };

class DynArray : public DynAny {
public:

AnySeq* get_elements();
void set_elements(const AnySeq& value) throw(InvalidValue,SystemException);

static DynArray_ptr _duplicate(DynArray_ptr);
static DynArray_ptr _narrow(DynAny_ptr);
static DynArray_ptr _nil();

10.2 The DynAny Interface

10.2.1 Example: extract data values from an Any

If an any contains a value of one of the basic data types, its value can be extracted using
the pre-defined operators in the Any interface. When the value is a struct or other
non-basic types, one can use the DynAny interface to extract its constituent values.

In this section, we use a struct as an example to illustrate how the DynAny inter-
face can be used.

The example struct is as follows:

/I IDL

struct exampleStructl {
string s;
double d;
long l;

k

To create a DynAny from an any value, one uses the create _dyn_any method:

Il C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

Any v;
/I Initialise v to contain a value of type exampleStructl.

CORBA::DynAny var dv = orb->create_dyn_any(v);

Like CORBA object and pseudo object references, a DynAny_ptr can be managed
by a _var type (DynAny _var) which will release the DynAny_ptr automatically when
the variable goes out of scope.

88 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

10.2.1.1 Iterate through the components

Once the DynAny object is created, we can use the DynAny interface to extract the in-
dividual components in exampleStructl . The DynAny interface provides a num-
ber of functions to extract and insert component values. These functions are defined
to operate on the component identified by the current component pointer.

A current component pointer is an internal state of a DynAny object. When a
DynAny object is created, the pointer is initialised to point to the first component of
the any value.

The pointer can be advanced to the next component with the next() operation.
The function returns FALSE (0) if there are no more components. Otherwise it returns
TRUE (1). When the any value in the DynAny object contains only one component,
the next() operation always returns FALSE(0).

Another way of adjusting the pointer is the seek() operation. The function re-
turns FALSE (0) if there is no component at the specified index. Otherwise it returns
TRUE (1). The index value of the first component is zero. Therefore, a seek(0)
call rewinds the pointer to the first component, this is also equivalent to a call to the
rewind() operation.

For completeness, we should also mention here the current _component() op-
eration. This operation causes the DynAny object to return a reference to another
DynAny object that can be used to access the current component. It is possible
that the current component pointer is not pointing to a valid component, for in-
stance, the next() operation has been invoked and there is no more component.
Under this circumstance, the current _component() operation returns a nil Dy-
nAny object referencel. For components which are just basic data types, calling
current _component() is an overkill because we can just use the basic type extrac-
tion and insertion functions directly.

10.2.1.2 Extract basic type components

In our example, the component values can be extracted as follows:

CORBA::String_var s =
CORBA::Double d
CORBA::Long I

dv->get_double();

dv->get_string();
= dv->get_long();

Each get basic type operation has the side-effect of advancing the current compo-
nent pointer. For instance:

CORBA::String_var s = dv->get_string();
is equivalent to:
CORBA::DynAny var temp = dv->current_component();

CORBA::String_var s = temp->get_string();
dv->next();

Testing a nil DynAny object with CORBA::is_nil() returns TRUE(1). The CORBA 2.2 specification
does not specify what is the return value of this function when the current component pointer is invalid.
To ensure portability, it is best to avoid calling current _component() under this condition.

10.2. THE DYNANY INTERFACE 89

The get operations ensure that the current component is of the same type as re-
quested. Otherwise, the object throws a TypeMismatch exception. If the current
component pointer is invalid when a get operation is called, the object also throws
a TypeMismatch exception?.

To repeatedly access the components, one can use the rewind() or seek() op-
eration to manipulate the current component pointer. For instance, to access the d
member in exampleStructl directly:

dv->seek(1); /I position current component to member d.
CORBA::Double d = dv->get_double();

10.2.1.3 Extract complex components

When a component is not one of the basic data types, it is not possible to extract its
value using the get operations. Instead, a DynAny object has to be created from which
the component is accessed.

Consider this example:

/I IDL

struct exampleStruct2 {
string m1;
exampleStructl m2;

k

In order to extract the data members within m2 (of type exampleStructl), we
use current _component() as follows:

Il C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.
Any v;
/I Initialise v to contain a value of type exampleStruct2.

CORBA::DynAny_var dv = orb->create_dyn_any(v);

CORBA::String_var m1 = dv->get_string(); // extract member ml
CORBA::DynAny var dm = dv->current_component(); // DynAny reference to m2
CORBA::String_var s = dm->get_string(); // m2.s

CORBA::Double d = dm->get_double(); // m2.d

CORBA::Long | = dm->get_long(); Il m2.l

10.2.1.4 Clean-up

Now we finish off this example with a description on destroying DynAny obijects.
There are two points to remember:

2The CORBA 2.2 specification does not define the behavior of this error condition. To ensure porta-
bility, it is best to avoid calling the get operations when the current component pointer is known to be
invalid.

90 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

1. A DynAny reference (DynAny _ptr) is like any CORBA object or psuedo object
reference and should be handled in the same way. In particular, one has to call
the CORBA::release operation to indicate that a DynAny reference will no
longer be accessed. In the example, this is done automatically by DynAny _var .

2. A DynAny object and its references are separate entities, just as a CORBA
object implementation and its object references are different entities. While
CORBA:release will release any resource associated with a DynAny_ptr , one
has to separately destroy the DynAny object to avoid any memory leak. This is
done by calling the destroy() operation.

In the example, the DynAny object can be destroyed as follows:
Il C++
EORBA::DynAny_var dv = orb->create_dyn_any(v);
;j.;/—>destroy();

/I From now on, one should not invoke any operation in dv. Otherwise the
/I behavior is undefined.

10.2.2 Example: insert data values into an Any

Using the DynAny interface, one can create an any value from scratch. In this ex-
ample, we are going to create an any containing the value of the exampleStructl

type.
Firstly, we have to create a DynAny to store the value using one of the
create _dyn functions. Because exampleStructl is a struct type, we use the

create _dyn _struct() operation.
Il C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

I/l create the TypeCode for exampleStruct.

StructMemberSeq tc_members;

tc_members.length(3);

tc_members[0].name = (const char*)"s";

tc_members[0].type = CORBA:: TypeCode::_duplicate(CORBA::_tc_string);

tc_members[0].type_def = CORBA::IDLType::_nil();

tc_members[1l].name = (const char*)"d";

tc_members[l].type = CORBA:: TypeCode::_duplicate(CORBA::_tc_double);

tc_members[1].type_def = CORBA:IDLType::_nil();

tc_members[2].name = (const char*)"l";

tc_members[2].type = CORBA:: TypeCode::_duplicate(CORBA::_tc_long);

tc_members[2].type_def = CORBA::IDLType::_nil();

CORBA::TypeCode_var tc = orb->create_struct_tc("IDL:exampleStruct1:1.0",
"exampleStruct1”,
tc_members);

10.2. THE DYNANY INTERFACE 91

/I create the DynAny object to represent the any value
CORBA::DynAny var dv = orb->create_dyn_struct(tc);

10.2.2.1 Insert basic type components

Once the DynAny obiject is created, we can use the DynAny interface to insert the
components. The DynAny interface provides a number of insert operations to insert
basic types into the any value. In our example, the component values can be inserted
as follows:

CORBA::String_var s = (const char*)"Hello";
CORBA::Double d = 3.1416;
CORBA::Long I = 1

dv->insert_string(s);
dv->insert_double(d);
dv->insert_long(l);

Each insert basic type operation has the side-effect of advancing the current com-
ponent pointer. For instance:

dv->insert_string(s);

is equivalent to:
CORBA::DynAny var temp = dv->current_component();
temp->insert_string(s);

dv->next();

The insert operations ensure that the current component is of the same type as the
inserted value. Otherwise, the object throws a InvalidValue exception. If the current
component pointer is invalid when an insert operation is called, the object also throws
a InvalidValue exception?®.

Sometimes, one may just want to modify one component in an any value.
For instance, one may just want to change the value of the double member in
exampleStructl . This can be done as follows:

Il C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

Any v;
/I Initialise v to contain a value of type exampleStructl.

CORBA::Double d = 6.28;

CORBA::DynAny var dv = orb->create_dyn_any(v);

%The CORBA 2.2 specification does not define the behavior of this error condition. To ensure porta-
bility, it is best to avoid calling the insert operations when the current component pointer is known to be
invalid.

92 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

dv->seek(1);
dv->insert_double(d); /I Change the value of the member d.

Finally, the any value can be obtained from the DynAny object using the to _any()
operation:

CORBA::Any_var v = dv->to_any(); /I Obtain the any value.

10.2.2.2 Insert complex components

When a component is not one of the basic data types, it is not possible to insert its
value using the insert operations. Instead, a DynAny object has to be created through
which the component can be inserted.

In our example, one can insert component values into exampleStruct2 as fol-

lows:

Il C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var fc;
/I create the TypeCode for exampleStruct2.

/I create the DynAny object to represent the any value
CORBA::DynAny var dv = orb->create_dyn_struct(tc);

CORBA::String_var m1 = (const char*)"Greetings";
CORBA::String_var m2s = (const char*)"Hello";
CORBA::Double m2d = 3.1416;

CORBA::Long m2| 1;

dv->insert_string(m1); // insert member ml
CORBA::DynAny var dm = dv->current_component(); // DynAny reference to m2
dm->insert_string(m2s); // insert member m2.s
dm->insert_double(m2d); // insert member m2.d
dm->insert_long(m2l); /I insert member m2.I

CORBA::Any var v = dv->to_any(); // obtain the any value

dv->destroy(); /I destroy the DynAny obiject.
/I No operation should be invoked on dv
/I from this point on except CORBA::release.

In addition to the DynAny interface, a number of derived interfaces are defined.
These interfaces are specialisation of the DynAny interface to facilitate the handling
of any values containing non-basic types: struct, sequence, array, enum and union®.
The next few sections will provide more details on these interfaces.

*In the CORBA 2.2 specification, the DynFixed interface is defined to handle the fixed data type. This
is not supported in this implementation.

10.3. THE DYNSTRUCT INTERFACE 93

10.3 The DynStruct Interface

When a DynAny obiject is created through the create _dyn_any() operation and
the any value contains a struct type, a DynStruct object is created. The Dy-
nAny reference returned can be narrowed to a DynStruct reference using the
CORBA::DynStruct:: narrow() operation.

In the previous example, the components are extracted using the get op-
erations. Alternatively, the DynStruct interface provides an addition operation
(get _-members()) to return all the components in a single call. The returned value
is a sequence of name value pair. The member name is given in the name field and
its value is returned as an any value. For example, an alternative way to extract the
components in the previous example is as follows:

/I C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.
Any v;

/I Initialise v to contain a value of type exampleStructl.
CORBA :DynAny var dv = orb->create_dyn_any(v);
CORBA::DynStruct_var ds = CORBA::DynStruct::_narrow(dv);

CORBA::NameValuePairSeq* sq = ds->get_members();

char* S;

CORBA::Double d;

CORBA::Long l;

(*sg)[0].value >>= s; /l 1st element contains member s
(*sq)[1].value >>= d; /I 2nd element contains member d
(*sg)[2].value >>= [; /I 3rd element contains member |

Similarly, the DynStruct interface provides an addition operation
(set _-members()) to insert all the components in a single call. The following is
an alternative way to insert the components of the type exampleStructl into an
any value:

Il C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var fc;
/I create the TypeCode for exampleStructl.

/I create the DynAny object to represent the any value
CORBA::DynAny var dv = orb->create_dyn_struct(tc);

CORBA::String_var s = (const char*)"Hello";
CORBA::Double d = 3.1416;
CORBA::Long I = 1

94 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

CORBA::NameValuePairSeq sq;
sq.length(3);
sq[0].id = (const char*)"s";
sq[0].value <<= CORBA::Any::from_string(s,0);
/I 1st element contains member s
sq[1].id = (const char*)"d";

sq[1].value <<= d; /[2nd element contains member d
sq[2].id = (const char*)"l";
sq[2].value <<= [; /I 3rd element contains member |

dv->set_members(sq);

Notice that the name-value pairs in the argument to set _members() must match
the members of the struct exactly or the object would throw the InvalidSeq exception.

In addition to the current _component() operation, the DynStruct interface pro-
vides two operations: current _member.name() and current _memberkind() ,to
return information about the current component.

10.4 The DynSequence Interface

Like struct values, sequence values can be traversed using the operations introduced
in section 10.2. The first sequence element can be accessed as the first DynAny com-
ponent, the second sequence element as the second DynAny component and so on.

To extract component values from an any containing a sequence, the length of the
sequence can be obtained using the get length operation in the DynSequence interface.
Here is an example to extract the components of a sequence of long:

/I C++

CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.
Any v;

/I Initialise v to contain a value of a sequence of long
CORBA :DynAny var dv = orb->create_dyn_any(v);

CORBA::DynSequence_var ds = CORBA::DynSequence::_narrow(dv);
CORBA::ULong len = ds->length(); /I extract the length of the sequence
CORBA::ULong index;
for (index = 0; index < len; index++) {

CORBA::Long v = ds->get long();

cerr << "[" << index << "] = " << v << end|

}

Conversely, the set length operation is provided to set the length of the sequence.
Here is an example to insert the components of a sequence of long:

/I C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var fc;

10.5. THE DYNARRAY INTERFACE 95

I/l create the TypeCode for a sequence of long.

/I create the DynAny object to represent the any value
CORBA::DynSequence_var ds = orb->create_dyn_sequence(tc);

CORBA::ULong len = 3;
ds->length(len); /I set the length of the sequence

CORBA::ULong index;
for (index = 0O; index < len; index++) {
ds->insert_long(index); /I insert a sequence element

}

Similar to the DynStruct interface, the get _elements() operation is provided to
return all the sequence elements and the set _elements() operation is provided to
insert all the sequence elements.

10.5 The DynArray Interface

Array values are handled by the DynArray interface. The DynArray interface is the
same as the DynSequence interface except that the former does not provide the set
length and get length operations.

10.6 The DynEnum Interface

Enum values are handled by the DynEnum interface. A DynEnum object contains a
single component which is the enum value. This value cannot be extracted or inserted
using the get and insert operations of the DynAny interface. Instead, two pairs of
operations are provided to handle this value.

The value _as_string operations allow the enum value to be extracted or in-
serted as a string. The value _as_ulong operations allow the enum value to be ex-
tracted or inserted as an unsigned long.

10.7 The DynUnion Interface

Union values are handled by the DynUnion interface. Unfortunately, the CORBA 2.2
specification does not define the DynUnion interface in sufficent details to nail down
its intended usage®. In this section, we try to fill in the gaps and describe a sensible
way to use the DynUnion interface. Where necessary, the semantics of the operations
is clarified. It is possible that the behavior of this interface in another ORB is different
from this implmentation. Where appropriate, we give warnings on usage that might
cause problems with portability.

In relation to the current component pointer (10.2.1.1), a DynUnion object contains
two components. The first component (with the index value equals 0) is the discrimi-
nator value, the second one is the member value. Therefore, one can use the seek()

SThis interface is currently an open issue with the ORB revision task force.

96 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

and current _component() operations to obtain a reference to the DynAny objects
that handle the two components. However, it is better to use the operations defined
in the DynUnion interface to manipulate these components as the semantics of the
operations is easier to understand.

10.7.1 Three Categories of Union

Before we continue, it is important to understand that unions can be classified into the
following categories:

1. One that has a default branch defined in the IDL. This will be called explicit
default union in the rest of this section.

2. One that has no default branch and not all the possible values of the discrimina-
tor type are covered by the branch labels in the IDL. This will be called implicit
default union.

3. One that has no default branch but all the possible values of the discriminator
type are covered. This will be called no default union.

Of the three categories, the implicit default union is interesting because by defini-
tion if the discriminator value is not equal to any of the branch labels, the union has
no member. That is, the union value consists solely of the discriminator value.

10.7.2 Example: extract data values from a union
10.7.2.1 Explicit default union

Consider a union of the following type:
/I IDL
union exampleUnionl switch(boolean) {

case TRUE: long I,
default: double d;

h

The most straightforward way to extract the member value is as follows:
/I C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

Any v;
/I Initialise v to contain a value of type exampleUnionl.

CORBA::DynAny var dv = orb->create_dyn_any(v);
CORBA::DynUnion_var du = CORBA::DynUnion::_narrow(dv);

CORBA::String_var di = du->member_name();
CORBA::DynAny_var dm = du->member();

10.7. THE DYNUNION INTERFACE 97

if (strcmp((const char®)di,"I") == 0) {
/I branch label is TRUE
CORBA::Long v = dm->get_long();
cerr << "l = " << v << endl;

}

if (strcmp((const char¥)di,"d") == 0) {
Il Is default branch
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl;

}

In the example, the operation member_name() is used to determine which branch
the union has been instantiated. The operation member() is used to obtain a reference
to the DynAny object that handles the member.

Alternatively, the branch can be determined by reading the discriminator value:

/I C++

CORBA::DynAny_var di = du->discriminator();
CORBA::DynAny_var dm = du->member();

CORBA::Boolean di_v = di->get_boolean();

switch (di_v) {

case 1
CORBA::Long v = dm->get_long();
cerr << " = " << v << endl
break;

default:
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl;

}

The operation discriminator() is used to obtain the value of the discriminator.

Finally, the third way to determine the branch is to test if the default is selected:

/I C++

switch (dv->set_as_default()) {

case 1:
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl
break;

default:
CORBA::Long v = dm->get_long();
cerr << "l = " << v << endl;

}

The operation set _as _default() returns TRUE (1) if the discriminator has been
assigned a valid default value.

98 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

10.7.2.2 Implicit default union

Consider a union of the following type:
I/l IDL

union exampleUnion2 switch(long) {
case 1. long I,
case 2: double d;

k

This example is similar to the previous one but there is no default branch. The
description above also applies to this example. However, the discriminator may be
set to neither 1 nor 2. Under this condition, the implicit default is selected and the
union value contains the discriminator only!

When the discriminator contains an implicit default value, one might ask what
is the value returned by the member_-name() and member() operation. Since there
is no member in the union value, omniORB2 returns a null string and a nil DynAny
reference respectively. This behavior is not specified in the CORBA 2.2 specification.
To ensure that your application is portable, it is best to avoid calling these operations
when the DynUnion object might contain an implicit default value.

10.7.2.3 No default union

This is the last union category. For instance:
/I IDL

union exampleUnion3 switch(boolean) {
case TRUE: long I,
case FALSE: double d;

k

In this example, all the possible values of the discriminator are used as union la-
bels. There is no default branch. The only difference between this category and the
explicit default union is that the set _as_default() operation always returns FALSE

(0).

10.7.3 Example: insert data values into a union

Writing into a union involves selecting the union branch with the appropriate dis-
criminator value and then writing the member value. There are three ways to set the
discriminator value:

1. Use the member_name() write operation to specify the union branch by speci-
fying the union member directly. This operation has the side effect of setting the
discriminator to the label value of the branch.

2. Write the label value of a union branch into the DynAny object that handles the
discriminator.

10.7. THE DYNUNION INTERFACE 99

3. If the union has a default branch, either explicitly or implicitly, use the
set _as _default() write operation to set the discriminator to a valid default
value.

The following example shows the three ways of writing into a union:
Il C++
CORBA::ORB_ptr orb; // orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var fc;
/I create the TypeCode for exampleUnionl.

/I create the DynAny object to represent the any value
CORBA::DynUnion_var dv = orb->create_dyn_union(tc);

CORBA::Any_var v;
DynAny_ptr dm;

/I Use member_name to select the union branch
dv->member_name("l");

dm = dv->member();

dm->insert_long(10);

v = dv->to_any(); /I transfer to an any
CORBA::release(dm);

/I Setting the discriminator value to select the union branch
CORBA::DynAny_var di = dv->discriminator();
di->insert_boolean(1); /I set discriminator to label TRUE
dm = dv->member();

dm->insert_long(20);

v = dv->to_any(); /I transfer to an any
CORBA::release(dm);

Il Use set_as default to select the default union branch
dv->set_as_default(1);

dm = dv->member();

dm->insert_double(3.14);

v = dv->to_any(); /I transfer to an any
CORBA::release(dm);

dv->destroy();

10.7.3.1 Ambiguous usage

1. When the discriminator is set to a different value, a different member branch is
selected. Suppose the application has previously obtained a DynAny reference
to a union member when it changes the discriminator value. As a result of the
value change, the union is now instantiated to another union branch, i.e. a call
to the member() operation will now return a reference to a different DynAny
object. If the application continues to access the DynAny object of the old union

100 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

member, the behavior of the ORB under this condition is not defined by the
CORBA 2.2 specification. With omniORB2, the DynAny object of the old union
member is detached from the union when a new union branch is selected. There-
fore reading or writing this object will not have any relation to the current value
of the union. To avoid this ambiguity, the reference to the old union member
should be released before a different union branch is selected.

2. The write operation set _as _default() takes a boolean argument. It is am-
biguous to call this function with the argument set to FALSE (0). With om-
niORB2, such a call will be silently ignored.

3. Itis also ambiguous to pass the value TRUE (1) to the set _as _default() op-
eration when the union is a no default union (10.7.1). With omniORB2, such a
call will be silently ignored.

4. When the discriminator value is not set, calling the member() operation is am-
biguous. With omniORB2, such a call will return a nil DynAny reference. Sim-
ilarly, a call to the member_kind() operation under this condition will return
tk _null

To ensure portability, it is best to avoid using the DynUnion interface and not to
rely on the ORB to behave as omniORB2 does under these ambiguous conditions.

10.8 Duplicate DynAny References

Like any CORBA object and psuedo object references, a DynAny reference can be du-
plicated using the _duplicate() operations. When an application has obtained mul-
tiple DynAny references to the same DynAny obiject, it should be noted that a change
made to the object by invoking on one reference is also visible through the other refer-
ences. In particular, if a call through one reference has caused the current component
pointer to be changed, subsequent calls through other references will operate on the
new current component pointer.

10.9 Other Operations

The following is a short summary of the other operations in the DynAny interface
which have not been covered in previous sections:

assign() initialises a DynAny object with another DynAny object. The two objects
must have the same typecode.

from _any() initialises a DynAny object from the value in an any. The typecode in
the two objects must be the same.

copy() creates a new DynAny object whose value is a deep copy of the current ob-
ject.

type() returns the typecode associated with the DynAny object.

Appendix A

hosts_access(5)

DESCRIPTION

This manual page describes a simple access control language that is based on client
(host name/address, user name), and server (process hame, host name/address) pat-
terns. Examples are given at the end. The impatient reader is encouraged to skip to
the EXAMPLES section for a quick introduction.

An extended version of the access control language is described in the
hosts_options(5) document. The extensions are turned on at program build time by
building with -DPROCESS_OPTIONS.

In the following text, daemon is the the process hame of a network daemon process,
and client is the name and/or address of a host requesting service. Network daemon
process names are specified in the inetd configuration file.

ACCESS CONTROL FILES

The access control software consults two files. The search stops at the first match:

e Access will be granted when a (daemon,client) pair matches an entry in the
/etc/hosts.allow file.

e Otherwise, access will be denied when a (daemon,client) pair matches an entry
in the /etc/hosts.deny file.

e Otherwise, access will be granted.

A non-existing access control file is treated as if it were an empty file. Thus, access
control can be turned off by providing no access control files.

ACCESS CONTROL RULES

Each access control file consists of zero or more lines of text. These lines are processed
in order of appearance. The search terminates when a match is found.

e A newline character is ignored when it is preceded by a backslash character.
This permits you to break up long lines so that they are easier to edit.

101

102 APPENDIX A. HOSTS_ACCESS(5)

e Blank lines or lines that begin with a # character are ignored. This permits you
to insert comments and whitespace so that the tables are easier to read.

e All other lines should satisfy the following format, things between [] being op-
tional: daemon.ist : client dist [: shell _command]

daemon.list is a list of one or more daemon process names (argv[0] values) or
wildcards (see below).

client _ist isalist of one or more host names, host addresses, patterns or wild-
cards (see below) that will be matched against the client host name or address.

The more complex forms daemon@host and user@host are explained in the sec-
tions on server endpoint patterns and on client username lookups, respectively.

List elements should be separated by blanks and/or commas.

With the exception of NIS (YP) netgroup lookups, all access control checks are case
insensitive.

PATTERNS

The access control language implements the following patterns:

e A string that begins with a . character. A host name is matched if the last
components of its name match the specified pattern. For example, the pattern
tue.nl matches the host name wzv.win.tue.nl

e A string that ends with a . character. A host address is matched if its first
numeric fields match the given string. For example, the pattern 131.155.
matches the address of (almost) every host on the Eindhoven University net-
work (131.155.x.x).

e A string that begins with an character is treated as an NIS (formerly YP) net-
group name. A host name is matched if it is a host member of the specified
netgroup. Netgroup matches are not supported for daemon process names or
for client user names.

e An expression of the form n.n.n.n/m.m.m.m is interpreted as a “net/mask”
pair. A host address is matched if “net” is equal to the bitwise
AND of the address and the “mask”. For example, the net/mask pat-
tern 131.155.72.0/255.255.254.0 matches every address in the range
131.155.72.0 through 131.155.73.255

WILDCARDS

The access control language supports explicit wildcards:

ALL The universal wildcard, always matches.

LOCAL Matches any host whose name does not contain a dot character.

103

UNKNOWMatches any user whose name is unknown, and matches any host whose
name or address are unknown. This pattern should be used with care: host
names may be unavailable due to temporary name server problems. A network
address will be unavailable when the software cannot figure out what type of
network it is talking to.

KNOWNMatches any user whose name is known, and matches any host whose name
and address are known. This pattern should be used with care: host names may
be unavailable due to temporary name server problems. A network address will
be unavailable when the software cannot figure out what type of network it is
talking to.

PARANOIDMatches any host whose name does not match its address. When tcpd
is built with -DPARANOID (default mode), it drops requests from such clients
even before looking at the access control tables. Build without -DPARANOID
when you want more control over such requests.

OPERATORS

EXCEPTIntended use is of the form: list _1 EXCEPT list _2; this construct
matches anything that matches list 1 unless it matches list 2. The EXCEPT
operator can be used in daemon_lists andinclient _ists . The EXCEPTop-
erator can be nested: if the control language would permit the use of parenthe-
ses,a EXCEPT b EXCEPT oevould parse as (a EXCEPT (b EXCEPT c)) .

SHELL COMMANDS

If the first-matched access control rule contains a shell command, that command is
subjected to %<letter> substitutions (see next section). The result is executed by a
/bin/sh child process with standard input, output and error connected to /dev/null.
Specify an & at the end of the command if you do not want to wait until it has com-
pleted.

Shell commands should not rely on the PATH setting of the inetd. Instead,
they should use absolute path names, or they should begin with an explicit
PATH=whatever statement.

The hosts_options(5) document describes an alternative language that uses the
shell command field in a different and incompatible way.

% EXPANSIONS
The following expansions are available within shell commands:
%a (%A) The client (server) host address.

%c Client information: user@host, user@address, a host name, or just an address,
depending on how much information is available.

%d The daemon process name (argv[0] value).

104 APPENDIX A. HOSTS_ACCESS(5)

%h (%H) The client (server) host name or address, if the host name is unavailable.
%n (%N) The client (server) host name (or “unknown’ or “paranoid”).
%p The daemon process id.

%s Server information: daemon@host, daemon@address, or just a daemon name,
depending on how much information is available.

%u The client user name (or ”unknown).

%%Expands to a single %character.

Characters in % expansions that may confuse the shell are replaced by under-
scores.

SERVER ENDPOINT PATTERNS

In order to distinguish clients by the network address that they connect to, use pat-
terns of the form:

process _name@host_pattern : client dlist ...

Patterns like these can be used when the machine has different internet addresses
with different internet hostnames. Service providers can use this facility to offer FTP,
GOPHER or WWW archives with internet names that may even belong to different
organisations. See also the “twist” option in the hosts_options(5) document. Some
systems (Solaris, FreeBSD) can have more than one internet address on one physical
interface; with other systems you may have to resort to SLIP or PPP pseudo interfaces
that live in a dedicated network address space. .sp The host _pattern obeys the
same syntax rules as host names and addresses in client _list context. Usually,
server endpoint information is available only with connection-oriented services.

CLIENT USERNAME LOOKUP

When the client host supports the RFC 931 protocol or one of its descendants (TAP,

IDENT, RFC 1413) the wrapper programs can retrieve additional information about

the owner of a connection. Client username information, when available, is logged

together with the client host name, and can be used to match patterns like:
daemon.ist : ... user _pattern@host _pattern ...

The daemon wrappers can be configured at compile time to perform rule-driven
username lookups (default) or to always interrogate the client host. In the case of rule-
driven username lookups, the above rule would cause username lookup only when
both the daemon.ist and the host _pattern match.

A user pattern has the same syntax as a daemon process pattern, so the same wild-
cards apply (netgroup membership is not supported). One should not get carried
away with username lookups, though.

e The client username information cannot be trusted when it is needed most,
i.e. when the client system has been compromised. In general, ALL and
(UN)KNOWN are the only user name patterns that make sense.

105

e Username lookups are possible only with TCP-based services, and only when
the client host runs a suitable daemon; in all other cases the result is “unknown”.

e A well-known UNIX kernel bug may cause loss of service when username
lookups are blocked by a firewall. The wrapper README document describes
a procedure to find out if your kernel has this bug.

e Username lookups may cause noticeable delays for non-UNIX users. The de-
fault timeout for username lookups is 10 seconds: too short to cope with slow
networks, but long enough to irritate PC users.

Selective username lookups can alleviate the last problem. For example, a rule
like:

daemon.ist : @pcnetgroup ALL@ALL

would match members of the pc netgroup without doing username lookups, but
would perform username lookups with all other systems.

DETECTING ADDRESS SPOOFING ATTACKS

A flaw in the sequence number generator of many TCP/IP implementations allows
intruders to easily impersonate trusted hosts and to break in via, for example, the
remote shell service. The IDENT (RFC931 etc.) service can be used to detect such and
other host address spoofing attacks.

Before accepting a client request, the wrappers can use the IDENT service to find
out that the client did not send the request at all. When the client host provides IDENT
service, a negative IDENT lookup result (the client matches UNKNOWN@hQsds strong
evidence of a host spoofing attack.

A positive IDENT lookup result (the client matches KNOWN@hois less trustwor-
thy. It is possible for an intruder to spoof both the client connection and the IDENT
lookup, although doing so is much harder than spoofing just a client connection. It
may also be that the client’s IDENT server is lying.

Note: IDENT lookups don’t work with UDP services.

EXAMPLES

The language is flexible enough that different types of access control policy can be
expressed with a minimum of fuss. Although the language uses two access control
tables, the most common policies can be implemented with one of the tables being
trivial or even empty.

When reading the examples below it is important to realise that the allow table is
scanned before the deny table, that the search terminates when a match is found, and
that access is granted when no match is found at all.

The examples use host and domain names. They can be improved by including
address and/or network/netmask information, to reduce the impact of temporary
name server lookup failures.

106 APPENDIX A. HOSTS_ACCESS(5)

MOSTLY CLOSED

In this case, access is denied by default. Only explicitly authorised hosts are permitted
access.
The default policy (no access) is implemented with a trivial deny file:

/etc/hosts.deny:
ALL: ALL

This denies all service to all hosts, unless they are permitted access by entries in
the allow file.
The explicitly authorised hosts are listed in the allow file. For example:

/etc/hosts.allow:
ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

The first rule permits access from hosts in the local domain (no . in the host name)
and from members of the some_netgroup netgroup. The second rule permits access
from all hosts in the foobar.edu domain (notice the leading dot), with the exception
of terminalserver.foobar.edu

MOSTLY OPEN

Here, access is granted by default; only explicitly specified hosts are refused service.
The default policy (access granted) makes the allow file redundant so that it can be
omitted. The explicitly non-authorised hosts are listed in the deny file. For example:

/etc/hosts.deny:
ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

The first rule denies some hosts and domains all services; the second rule still
permits finger requests from other hosts and domains.

BOOBY TRAPS

The next example permits tftp requests from hosts in the local domain (notice the
leading dot). Requests from any other hosts are denied. Instead of the requested file,
a finger probe is sent to the offending host. The result is mailed to the superuser.

/etc/hosts.allow:
in.tftpd: LOCAL, .my.domain

letc/hosts.deny:
in.tftpd: ALL: (/some/where/safe_finger -| @%h | \
/usr/ucb/mail -s %d-%h root) &

107

The safe _finger command comes with the tcpd wrapper and should be in-
stalled in a suitable place. It limits possible damage from data sent by the remote
finger server. It gives better protection than the standard finger command.

The expansion of the %h (client host) and %d (service name) sequences is de-
scribed in the section on shell commands.

Warning: do not booby-trap your finger daemon, unless you are prepared for infi-
nite finger loops.

On network firewall systems this trick can be carried even further. The typical
network firewall only provides a limited set of services to the outer world. All other
services can be "bugged” just like the above tftp example. The result is an excellent
early-warning system.

DIAGNOSTICS

An error is reported when a syntax error is found in a host access control rule; when
the length of an access control rule exceeds the capacity of an internal buffer; when
an access control rule is not terminated by a newline character; when the result of
expansion would overflow an internal buffer; when a system call fails that shouldnt.
All problems are reported via the syslog daemon.

FILES

letc/hosts.allow , (daemon,client) pairs that are granted access.
/etc/hosts.deny , (daemon,client) pairs that are denied access.
SEE ALSO

tcpd(8) tcp/ip daemon wrapper program.
tcpdchk(8), tcpdmatch(8), test programs.

BUGS

If a name server lookup times out, the host name will not be available to the access
control software, even though the host is registered.

Domain name server lookups are case insensitive; NIS (formerly YP) netgroup
lookups are case sensitive.

AUTHOR

Wietse Venema (wietse@wzv.win.tue.nl)
Department of Mathematics and Computing Science
Eindhoven University of Technology

Den Dolech 2, P.O. Box 513,

5600 MB Eindhoven, The Netherlands

108 APPENDIX A. HOSTS_ACCESS(5)

Bibliography

[OMG96a] The Common Object Request Broker: Architecture and Specification, Revision
2.0, OMG, Updated July 1996.

[OMG96b] CORBAservices: Common Obiject Services Specification, OMG, Updated July
1996.

[Richardson96a] The OMNI Thread Abstraction, Tristan Richardson, ORL, 22 October
1996.

[Richardson96b] The OMNI Development Environment Version 4.0, Tristan Richardson,
ORL, 5 November 1996.

109

