The omniORB version 3.0
User’s Guide

Sai-Lai Lo

(emnail: slo@uk.research.att.com)

David Riddoch

(email: djr@uk.research.att.com)

Duncan Grisby

(email: dgrisby@uk.research.att.com)

AT&T Laboratories Cambridge

May 2000

mailto:slo@uk.research.att.com
mailto:djr@uk.research.att.com
mailto:dgrisby@uk.research.att.com

Changes and Additions, May 2000
e Updated to omniORB 3.

Contents

1 Introduction 1

1.1 Features 1

111 CORBA23compliant 1

1.1.2 Multithreading L. 2

1.1.3 Portability o o 2

1.14 Missing features, 2

1.2 Setting Up Your Environment 3

121 Deprecated configuration fileentries 4

1.3 Platform specific variables 4

2 The Basics 7

21 The EchoObject Example 7

2.2 Specifying the Echo interfaceinIDL 8

2.3 Generatingthe C++stubs 8

2.4 Object Referencesand Servants 9

2.5 A Quick Tourofthe C++stubs 9

2.5.1 Servant Object Implementation 12

2.6 Writing the servant implementation 13

2.7 Writing theclient 14

2.8 Example 1 — Colocated Client and Implementation 15

2.8.1 ORBinitialisation 16

2.8.2 Obtainingthe RootPOA 17

2.8.3 Objectinitialisation 17

2.84 ActivatingthePOA 18

285 Performingacall 18

28.6 ORBdestruction 18

2.9 Example 2 — Different Address Spaces 18
29.1 Object Implementation: Generating a Stringified Object Ref-

EIENCE it e 19

29.2 C(lient: Using a Stringified Object Reference 19

29.3 Catching System Exceptions 20

294 Lifetimeofa CORBAobject 20

2.10 Example 3 — Using the Naming Service 21

iii

2.10.1 Obtaining the Root Context Object Reference
2.10.2 The Naming Service Interface
2.11 Example 4 — Using tie implementation templates
2.12 Source Listings o o e
2121 eglicc. . . o o
2122 eg2 implcco o
2123 eg2 cltec.o
2124 eg3implcc
2125 eg3 cltcc.o
2126 eg3 tieimplcc Lo
2127 dirmk ...

3 C++language mapping

3.1 Incompatibilities with pre-2.8.0releases
3.2 BOA compatibility 0 oo
Interoperable Naming Service
41 ObjectURIs
411 corbaloc
412 corbaname
4.2 Configuring resolve_initial_references
421 ORBInitRef
422 ORBDefaultlnitRef
423 omniORB configurationfile
424 Resolutionorder,
43 omniNames e
43.1 NamingContextExt
432 Usewithcorbaname
44 omniMapper e
4.5 Creating objects with simple objectkeys
The IDL compiler
51 Commonoptions
5.1.1 Preprocessor interactions
5.1.2 Forward-declared interfaces.
513 Comments
52 C++back-endoptions L o oL
521 Modulesplicing
522 Flattened tieclasses.
523 Generating example implementations

53 Examples

45
45
46

49
49
49
50
51
51
51
52
52
53
53
54
54
55

6

10

The omniORB API
6.1 ORBinitialisationoptions
6.2 Hosthnameandport
6.3 Run-time Tracing and Diagnostic Messages
6.4 ServerName
6.5 GIOPMessageSize
6.6 Objecttablesize
6.7 POA request holding timeout
6.8 Obsolete Initial Object Reference Bootstrapping
6.9 GIOP Lowest Common Denominator Mode
6.10 Trapping omniORB Internal Errors
6.11 System ExceptionHandlers
6.11.1 CORBA:TRANSIENT handlers.
6.11.2 CORBA:COMM_FAILURE
6.11.3 CORBA:SystemException
6.12 Location forwarding

Interface Type Checking

7.1 Introduction
7.2 Basic Interface Type Checking
7.3 Interface Inheritanceo ...

Connection Management

81 Background
82 TheModel e
8.3 Idle Connection Shutdown and Remote Call Timeout
8.4 Interoperability Considerations
8.5 Connection Acceptance.o

Type Any and TypeCode

91 Exampleusingtype Any
911 TypeAnyinIDL
9.1.2 Inserting and Extracting Basic Types froman Any
9.1.3 Inserting and Extracting Constructed Types from an Any . . .

92 TypeAnyinomniORB

9.3 TypeCodeinomniORB

94 Sourcelisting
941 anyExample_implcc oL
942 anyExample cltecc L.

Dynamic Management of Any Values

101 C++mapping L e

10.2 The DynAny Interface
10.2.1 Example: extract data values froman Any

63
63
64
64
65
65
66
66
66
68
68
69
69
71
72
72

73
73
74
75

79
79
80
80
81
82

10.2.1.1 Iterate through the components 106

10.2.1.2 Extract basic type components 107

10.2.1.3 Extract complex components 107

10214 Clean-up 108

10.2.2 Example: insert data valuesintoan Any 108
10.2.2.1 Insert basic type components. 109

10.2.2.2 Insert complex components 110

10.3 The DynStruct Interface 111
10.4 The DynSequence Interface, 112
10.5 The DynArray Interface 113
10.6 The DynEnum Interface 114
10.7 The DynUnion Interface 114
10.7.1 Three Categoriesof Union 114
10.7.2 Example: extract data values fromaunion 115
10.7.2.1 Explicitdefaultunion 115

10.7.2.2 Implicit defaultunion 116

10.7.2.3 Nodefaultunion. 117

10.7.3 Example: insert data valuesintoaunion 117
10.7.3.1 Ambiguoususage 118

10.8 Duplicate DynAny References 119
10.9 Other Operations 119
11 The Dynamic Invocation Interface 121
11,1 OVervieW . . . o o o v e e s e e e e e e e e e e e e e e e 121
11.2 PseudoObjects 122
11.21 Request 122
11.22 NamedValue 123
1123 NVList o e e 123
1124 Context. e e 123
11.25 ContextList 124
11.2.6 ExceptionList 124
11.2.7 UnknownUserException 125
11.2.8 Environment 125

11.3 CreatingRequests 126
11.3.1 Examples o 127

11.4 Invoking Operations 127
11.5 MultipleRequests L. 128
12 The Dynamic Skeleton Interface 131
12.1 OVerview o o e e e e e e e 131
122 DSITypes o oo 132
12.2.1 PortableServer::DynamicImplementation 132
12.2.2 ServerRequest L. 132

12.3 Creating Dynamic Implementations 133

12.3.1 Operations on the ServerRequest
12.4 Registering Dynamic Objects

12.5 Example

A hosts_access(5)

Chapter 1

Introduction

omniORB is an Object Request Broker (ORB) that implements the 2.3 specification
of the Common Object Request Broker Architecture (CORBA) [OMG99a]'. It has
passed the Open Group CORBA compliant testsuite and is one of the three ORBs
to have been granted the CORBA brand in June 19992.

This user guide tells you how to use omniORB to develop CORBA applications.
It assumes a basic understanding of CORBA.

In this chapter, we give an overview of the main features of omniORB and what
you need to do to setup your environment to run omniORB.

1.1 Features

1.1.1 CORBA 2.3 compliant

omniORB implements the Internet Inter-ORB Protocol (IIOP). This protocol pro-
vides omniORB the means of achieving interoperability with the ORBs imple-
mented by other vendors. In fact, this is the native protocol used by omniORB
for the communication amongst its objects residing in different address spaces.
Moreover, the IDL to C++ language mapping provided by omniORB conforms to
the latest revision of the CORBA specification. Type Any and TypeCode are now
supported (introduced in version 2.5.0). DynAny is supported since 2.6.0. The
Dynamic Invocation Interface and Dynamic Skeleton Interface are supported since
2.7.0. The C++ mapping has been updated to the CORBA 2.3 specification since
2.8.0. The POA was introduced with 3.0.

"Most of the 2.3 features have been implemented. The features still missing in this release are
listed in section 1.1.4. Where possible, backward compatibility has been maintained up to specifica-
tion 2.0.

*More information can be found at http://www.opengroup.org/press/7jun99_b.htm

1

http://www.opengroup.org/press/7jun99_b.htm

2 CHAPTER 1. INTRODUCTION

1.1.2 Multithreading

omniORB is fully multithreaded. To achieve low IIOP call overhead, unnecessary
call-multiplexing is eliminated. At any time, there is at most one call in-flight in
each communication channel between two address spaces. To do so without limit-
ing the level of concurrency, new channels connecting the two address spaces are
created on demand and cached when there are more concurrent calls in progress.
Each channel is served by a dedicated thread. This arrangement provides maximal
concurrency and eliminates any thread switching in either of the address spaces to
process a call. Furthermore, to maximise the throughput in processing large call
arguments, large data elements are sent as soon as they are processed while the
other arguments are being marshalled.

1.1.3 Portability

At AT&T Laboratories, the ability to target a single source tree to multiple plat-
forms is very important. This is difficult to achieve if the IDL to C++ mapping for
these platforms are different. We avoid this problem by making sure that only one
IDL to C++ mapping is used. We run several flavours of Unix, Windows NT, Win-
dows 95 and our in-house developed systems for our own hardware. omniORB
has been ported to all these platforms. The IDL to C++ mapping for all these
targets is the same.

omniORB uses real C++ exceptions and nested classes. We keep to the CORBA
specification’s standard mapping as much as possible and do not use the alterna-
tive mappings for C++ dialects. The only exception is the mapping of modules.

Starting with 2.6.0, the code generated by the IDL compiler of omniORB can be
compiled using C++ classes or namespaces to represent IDL modules depending
on the availability of namespace support in the compiler.

omniORB relies on the native thread libraries to provide the multithreading
capability. A small class library (omnithread [Ric96b]) is used to encapsulate the
(possibly different) APIs of the native thread libraries. In application code, it is rec-
ommended but not mandatory to use this class library for thread management. It
should be easy to port omnithread to any platform that either supports the POSIX
thread standard or has a thread package that supports similar capabilities.

1.1.4 Missing features

omniORB is not (yet) a complete implementation of the CORBA 2.3 core. The fol-
lowing is a list of the missing features.

¢ omniORB does not have its own Interface Repository. However, it can act as
a client to an IR.

e The IDL types wchar, wstring, fixed, and valuetype are not supported in this
release.

1.2. SETTING UP YOUR ENVIRONMENT 3

e The PortableServer::Current interface is not yet supported.

e The DSI interface has changed significantly. Old code will have to be re-
written to the new interface. There is no support for using the DSI with
the BOA. This part of the ORB is incomplete, since it depends in part on
PortableServer::Current . See chapter 12 for a way to workaround this
problem for now.

These features may be implemented in the short to medium term. It is best
to check out the latest status on the omniORB home page (http://www.uk.
research.att.com/omniORB/).

1.2 Setting Up Your Environment

At AT&T Laboratories Cambridge, you should use the OMNI Development Envi-
ronment (ODE) [Ric96a] and the OMNI tree version 5.0 or above to compile your
programs. If this is the case, there is no extra setup you have to do other than those
described in the ODE documentation.

If you are running omniORB at other sites, you (or your system administrator)
should install omniORB by following the instructions in the installation notes.

e On Unix platforms, the omniORB runtime looks for the environment variable
OMNIORB_CONFIQf this variable is defined, it contains the pathname of the
omniORB configuration file. If the variable is not set, omniORB will use the
compiled-in pathname to locate the file.

e On ARM/ATMos, the omniORB runtime looks for configuration information
in the file omniORB.cfg .

e On Win32 platforms (Windows NT, 2000, 95, 98), omniORB first checks the
environment variable OMNIORB_CONFI®o obtain the pathname of the con-
figuration file. If this is not set, it then attempts to obtain configuration data
in the system registry. It searches for the data under the key HKEY_LOCAL _
MACHINE\SOFTWARE\ORL\omniORB\2.0.

The configuration file is used to obtain an object reference for the Naming Ser-
vice, via either a stringified IOR or an Interoperable Naming Service URI. The entry
in the configuration file should be specified in the form:

ORBInitRef NameService=<URI for the Naming Service>

The easiest way of specifying the Naming Service is with a corbaname: URI,
as described in section 4.1.2.

Comments in the configuration file should be prefixed with a ‘#” character.

On Win32 platforms, the naming service reference can be placed in the system
registry, in the (string) value ORBInitRef , under the key HKEY_LOCAL_MACHINE\
SOFTWARE\ORL\omniORB\2.0.

http://www.uk.research.att.com/omniORB/
http://www.uk.research.att.com/omniORB/

4 CHAPTER 1. INTRODUCTION

1.2.1 Deprecated configuration file entries

ORBInitRef is new with omniORB 3.0. The omniORB 2 formats are still sup-
ported, so you can specify the Naming Service IOR using a line of the form:

NAMESERVICE <IOR for the Naming Service>

Since 2.6.0, two other entries have been supported, but are now made obsolete
by the Interoperable Naming Service URIs:

ORBilnitialHost <hostname string>
ORBInitialPort <port number (1-65535)>

The corresponding entries under the Win32 system registry are the keys named
ORBlnitialHost and ORBInitialPort

The two entries provide information to the ORB to locate a (proprietary) boot-
strap service at runtime. The bootstrap service is able to return the initial object
reference for the Naming Service and others.

1.3 Platform specific variables

To compile omniORB programs correctly, several C++ preprocessor defines must
be specified to identify the target platform.

Platform CPP defines

Sun Solaris 2.5 __sparc__ __sunos__ __OSVERSION__ =5

Digital Unix 3.2 _alpha__ __osfl__ __OSVERSION__ =3

HPUX 10.x __hppa__ __hpux__ __OSVERSION__=10

HPUX 11.x __hppa__ __hpux__ __OSVERSION__=11

IBM AIX 4.x __aix__ __powerpc__ __ OSVERSION__ =4

Linux 2.0 (x86) _X86__ __linux__ __OSVERSION__ =2

Linux 2.0 (alpha) _alpha__ __linux__ __OSVERSION__=2

Linux 2.0 (powerpc) | __powerpc__ _ linux__ __OSVERSION__ =2

Windows/NT 3.5 _ X86__ _ NT__ __OSVERSION__ =3 _ WIN32__
Windows/NT 4.0 __X86__ _ NT__ __OSVERSION__ =4 _ WIN32__
Windows /95 _ x86__ __WIN32__

OpenVMS 6.x (alpha) | __alpha__ __vms __OSVERSION__ =6

OpenVMS 6.x (vax) __vax__ __vms __OSVERSION__ =6

SGI Irix 6.x __mips__ _irix__ __OSVERSION__ =6

Reliant Unix 5.43 __mips__ __SINIX__ __OSVERSION__ =5

ATMos 4.0 _arm__ __atmos__ __OSVERSION__ =4

NextStep 3.x __m68k__ __nextstep_ _ OSVERSION__ =3

Unixware 7 _ x86__ _uw7__ __OSVERSION__=5

1.3. PLATFORM SPECIFIC VARIABLES 5

The preprocessor defines for new platform ports not listed above can be found
in the corresponding platform configuration files. For instance, the platform con-
figuration file for Sun Solaris 2.6 is in mk/platforms/sun4_sosV_5.6.mk . The
preprocessor defines to identify a platform are in the make variable IMPORT_
CPPFLAGS

In a single source multi-target environment, you can put the preprocessor de-
fines as the command-line arguments for the compiler. Alternately, you could cre-
ate a sitedef.h file in the same directory as omniORB3/CORBA.h. Write into the file
the appropriate set of preprocessor defines and add

#include <omniORB3/sitedef.h>
at the beginning of omniORB3/CORBA_sysdep.h .

CHAPTER 1. INTRODUCTION

Chapter 2

The Basics

In this chapter, we go through three examples to illustrate the practical steps to
use omniORB. By going through the source code of each example, the essential
concepts and APIs are introduced. If you have no previous experience with us-
ing CORBA, you should study this chapter in detail. There are pointers to other
essential documents you should be familiar with.

If you have experience with using other ORBs, you should still go through this
chapter because it provides important information about the features and APIs
that are necessarily omniORB specific. Now that omniORB supports the Portable
Object Adapter, there are very few omniORB specific details.

2.1 The Echo Object Example

Our example is an object which has only one method. The method simply echos
the argument string. We have to:

1. define the object interface in IDL;
2. use the IDL compiler to generate the stub code';
3. provide the servant object implementation;

4. write the client code.

The source code of this example is included in the last section of this chap-
ter. A makefile written to be used under the OMNI Development Environment
(ODE) [Ric96a] is also included.

IThe stub code is the C++ code that provides the object mapping as defined in the CORBA 2.3
specification.

8 CHAPTER 2. THE BASICS

2.2 Specifying the Echo interface in IDL

We define an object interface, called Echo, as follows:

interface Echo {
string echoString(in string mesg);

g

If you are new to IDL, you can learn about its syntax in Chapter 3 of the CORBA
specification 2.3 [OMG99a]. For the moment, you only need to know that the in-
terface consists of a single operation, echoString() , which takes a string as an
argument and returns a copy of the same string.

The interface is written in a file, called echo.idl . It is part of the CORBA
standard that all IDL files should have the extension “.idl ’, although omniORB
does not enforce this. If you are using ODE, the IDL files should be placed in
the idl directory of your export tree. This is done so that the stub code will be
generated automatically and kept up-to-date with your IDL file.

For simplicity, the interface is defined in the global IDL namespace. You should
avoid this practice for the sake of object reusability. If every CORBA developer de-
fines their interfaces in the global IDL namespace, there is a danger of name clashes
between two independently defined interfaces. Therefore, it is better to qualify
your interfaces by defining them inside module names. Of course, this does not
eliminate the chance of a name clash unless some form of naming convention is
agreed globally. Nevertheless, a well-chosen module name can help a lot.

2.3 Generating the C++ stubs

From the IDL file, we use the IDL compiler to produce the C++ mapping of the
interface. The IDL compiler for omniORB is called omniidl. Given the IDL file,
omniidl produces two stub files: a C++ header file and a C++ source file. For
example, from the file echo.idl , the following files are produced:

e echo.hh
e echoSK.cc

omniidl must be invoked with the -bcxx argument to tell it to generate C++ stubs.
The following command line generates the stubs for echo.idl

omniidl -bcxx echo.idl
If you are using our make environment (ODE), you don’t need to invoke omniidl
explicitly. In the example file dir.mk , we have the following line:
CORBA_INTERFACES = echo
That is all we need to instruct ODE to generate the stubs. Remember, you won’t
find the stubs in your working directory because all stubs are written into the stub

directory at the top level of your build tree.
The full arguments to omniidl are detailed in chapter 5.

2.4. OBJECT REFERENCES AND SERVANTS 9

2.4 Object References and Servants

We contact a CORBA object through an object reference. The actual implementation
of a CORBA object is termed a servant.

Object references and servants are quite separate entities, and it is important
not to confuse the two. Client code deals purely with object references, so there
can be no confusion; object implementation code must deal with both object refer-
ences and servants. omniORB 3 uses distinct C++ types for object references and
servants, so the compiler will complain if you use a servant when an object refer-
ence is expected, or vice-versa.

Warning

omniORB 2 did not use distinct types for object references and servants, and
often accepted a pointer to a servant when the CORBA specification says
it should only accept an object reference. If you have code which relies on
this, it will not compile with omniORB 3, even under omniORB 3’s BOA
compatibility mode.

2.5 A Quick Tour of the C++ stubs

The C++ stubs conform to the mapping defined in the CORBA 2.3 specification
(chapter 23). It is important to understand the mapping before you start writing
any serious CORBA applications. Before going any further, it is worth knowing
what the mapping looks like.

For the example interface Echo, the C++ mapping for its object reference is
Echo_ptr . The type is defined in echo.hh . The relevant section of the code is
reproduced below. The stub code produced by other ORBs will be functionally
equivalent to omniORB’s, but will almost certainly look very different.

class Echo;

class _objref_Echo;

class _impl_Echo;

typedef _objref Echo* Echo_ptr;

class Echo {

public:
/I Declarations for this interface type.
typedef Echo_ptr _ptr_type;
typedef Echo_var _var_type;

static _ptr_type _duplicate(_ptr_type);
static _ptr_type _narrow(CORBA::Object_ptr);
static _ptr_type _nil();

/I ... methods generated for internal use

10 CHAPTER 2. THE BASICS

3

class _objref_Echo :

public virtual CORBA::Object, public virtual omniObjRef {
public:

char * echoString(const char* mesg);

/I ... methods generated for internal use

g

In a compliant application, the operations defined in an object interface should
only be invoked via an object reference. This is done by using arrow (*->’) on an
object reference. For example, the call to the operation echoString() would be
written as obj->echoString(mesg)

It should be noted that the concrete type of an object reference is opaque, i.e.
you must not make any assumption about how an object reference is implemented.
In our example, even though Echo_ptr is implemented as a pointer to the class
_objref_Echo , it should not be used as a C++ pointer, i.e. conversion to void* ,
arithmetic operations, and relational operations, including test for equality using
operator== must not be performed on the type.

In addition to class _objref_Echo , the mapping defines three static member
functions in the class Echo: _nil() , _duplicate() ,and _narrow()

The _nil() function returns a nil object reference of the Echo interface. The
following call is guaranteed to return TRUE:

CORBA::Boolean true_result = CORBA::is_nil(Echo::_nil());

Remember, CORBA::is_nil() is the only compliant way to check if an object
reference is nil. You should not use the equality operator==

The _duplicate() function returns a new object reference of the Echo in-
terface. The new object reference can be used interchangeably with the old object
reference to perform an operation on the same object.

All CORBA objects inherit from the generic object CORBA::Object . CORBA::
Object_ptr is the object reference type for CORBA::Object . Any _ptr ob-
ject reference is therefore conceptually inherited from CORBA::Object_ptr . In
other words, an object reference such as Echo_ptr can be used in places where a
CORBA::Object_ptr is expected.

The _narrow() function takes an argument of type CORBA::Object_ptr
and returns a new object reference of the Echo interface. If the actual (runtime)
type of the argument object reference can be widened to Echo_ptr , _narrow()
will return a valid object reference. Otherwise it will return a nil object reference.
Note that _narrow() performs an implicit duplication of the object reference, so
the result must be released. Note also that _narrow() may involve a remote call
to check the type of the object, so it may throw CORBA system exceptions such as
COMM_FAILURE

To indicate that an object reference will no longer be accessed, you must call
the CORBA:release() operation. Its signature is as follows:

2.5. A QUICK TOUR OF THE C++ STUBS 11

class CORBA {
static void release(CORBA::Object_ptr obj);
/I other methods

\

Once you have called CORBA::release() on an object reference, you should
no longer use that reference. This is because the associated resources may have
been deallocated. Notice that we are referring to the resources associated with
the object reference and not the servant object. Servant objects are not affected
by the lifetimes of object references. In particular, servants are not deleted when
all references to them have been released—CORBA does not perform distributed
garbage collection.

As described above, the equality operator== should not be used on object
references. To test if two object references are equivalent, the member function
_is_equivalent() of the generic object CORBA::Object can be used. Here is
an example of its usage:

Echo_ptr A;

/I initialise A to a valid object reference
Echo_ptr B = A;
CORBA::Boolean true_result = A->_is_equivalent(B);
/I Note: the above call is guaranteed to be TRUE

You have now been introduced to most of the operations that can be invoked
via Echo_ptr . The generic object CORBA::Object provides a few more opera-
tions and all of them can be invoked via Echo_ptr . These operations deal mainly
with CORBA’s dynamic interfaces. You do not have to understand them in order to
use the C++ mapping provided via the stubs. For details, please read the CORBA
specification [OMG99a], chapter 23.

Since object references must be released explicitly, their usage is prone to error
and can lead to memory leakage. The mapping defines the object reference variable
type to make life easier. In our example, the variable type Echo_var is defined”.

The Echo_var is more convenient to use because it will automatically release
its object reference when it is deallocated or when assigned a new object refer-
ence. For many operations, mixing data of type Echo_var and Echo_ptr is
possible without any explicit operations or castings®. For instance, the operation
echosString() can be called using the arrow (->’) on a Echo_var , as one can
do with a Echo_ptr

The usage of Echo_var is illustrated below:

Echo_var a;
Echo_ptr p = ... I/l somehow obtain an object reference

’In omniORB, all object reference variable types are instantiated from the template type
_CORBA_ObjRef_Var .

’However, the implementation of the type conversion operator between Echo_var and
Echo_ptr varies slightly among different C++ compilers; you may need to do an explicit cast if
the compiler complains about the conversion being ambiguous.

12 CHAPTER 2. THE BASICS

a=np; /I a assumes ownership of p, must not use p any more
Echo_var b = a; /I implicit _duplicate

p = .. /l somehow obtain another object reference

a = Echo::_duplicate(p); /I release old object reference

/I a now holds a copy of p.

2.5.1 Servant Object Implementation

Before the Portable Object Adapter (POA) specification, many of the details of how
servant objects should be implemented and registered with the system were un-
specified, so server-side code was not portable between ORBs. The POA specifica-
tion rectifies that. omniORB 3 still supports the old omniORB 2.x BOA mapping,
but you should always use the POA mapping for new code. BOA code and POA
code can coexist within a single program. See section 3.2 for details of the BOA
compatibility, and problems you may encounter.

For each object interface, a skeleton class is generated. In our example, the POA
specification says that the skeleton class for interface Echo is named POA_Echo
A servant implementation can be written by creating an implementation class that
derives from the skeleton class.

The skeleton class POA_Echois defined in echo.hh . The relevant section of
the code is reproduced below.

class _impl_Echo :
public virtual omniServant

{

public:
virtual char * echoString(const char* mesg) = O;
...

g

class POA Echo :
public virtual _impl_Echo,
public virtual PortableServer::ServantBase

{
public:
Echo_ptr _this();
..
b

The code fragment shows the only member functions that can be used in the
object implementation code. Other member functions are generated for internal
use only. As with the code generated for object references, other POA-based ORBs
will generate code which looks different, but is functionally equivalent to this.

2.6. WRITING THE SERVANT IMPLEMENTATION 13

echosString()

It is through this abstract function that an implementation class provides
the implementation of the echoString() operation. Notice that its signa-
ture is the same as the echoString() function that can be invoked via the
Echo_ptr object reference.

_this()

2.6

This function returns an object reference for the target object, provided the
POA policies permit it. The returned value must be deallocated via CORBA::
release() . See section 2.8 for an example of how this function is used.

Writing the servant implementation

You define an implementation class to provide the servant implementation. There
is little constraint on how you design your implementation class except that it has
to inherit from the stubs’ skeleton class and to implement all the abstract functions
defined in the skeleton class. Each of these abstract functions corresponds to an
operation of the interface. They are the hooks for the ORB to perform upcalls to
your implementation.

Here is a simple implementation of the Echo object.

class Echo_i : public POA Echo,

{

public PortableServer::RefCountServantBase

public:

h

inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

char* Echo_i::echoString(const char* mesg)

{
}

return CORBA::string_dup(mesg);

There are four points to note here:

Storage Responsibilities

A string, which is used both as an in argument and the return value of
echoString() , is a variable size data type. Other examples of variable size
data types include sequences, type ‘any’, etc. For these data types, you must
be clear about whose responsibility it is to allocate and release the associated
storage. As a rule of thumb, the client (or the caller to the implementation
functions) owns the storage of all IN arguments, the object implementation
(or the callee) must copy the data if it wants to retain a copy. For OUT argu-
ments and return values, the object implementation allocates the storage and

14 CHAPTER 2. THE BASICS

passes the ownership to the client. The client must release the storage when
the variables will no longer be used. For details, please refer section 23.22 of
the CORBA 2.3 specification.

Multi-threading
As omniORB is fully multithreaded, multiple threads may perform the same
upcall to your implementation concurrently. It is up to your implementation
to synchronise the threads” accesses to shared data. In our simple example,
we have no shared data to protect so no thread synchronisation is necessary.

Alternatively, you can create a POA which has the SINGLE_THREAD_MODEL
Thread Policy. This guarantees that all calls to that POA are processed se-
quentially.

Reference Counting

As well as inheriting from the Echo skeleton class, the servant class is also
derived from PortableServer::RefCountServantBase which, as the
name suggests, is a mixin class which provides reference counting for the
servant object. This means that an Echo_i instance will be deleted when no
more references to it are held by application code or the POA itself. Not that
this is totally separate from the reference counting which is associated with
object references—a servant object is never deleted due to a CORBA object
reference being released.

Instantiation
Servants which derive from PortableServer::RefCountServantBase
must not be instantiated as automatic variables (i.e. on the stack). Instead,
you should always instantiate them using the new operator, i.e. their storage
is allocated on the heap. Otherwise, the POA may attempt to delete an object
on the stack.

2.7 Writing the client

Here is an example of how an Echo_ptr object reference is used.
void

hello(CORBA::Object_ptr obj)

{

Echo_var e = Echo::_narrow(obj);

if (CORBA:is_nil(e)) {
cerr << "cannot invoke on a nil object reference.\n"
<< endl;
return;

}

CORBA::String_var src = (const char*) "Hello!;

O ® N G e W N e

= om e
N =R o

2.8. EXAMPLE 1 — COLOCATED CLIENT AND IMPLEMENTATION 15

13 CORBA::String_var dest;

14

15 dest = e->echoString(src);

16

17 cerr << "l said\" << src << "\"."

18 << " The Object said\" << dest <<"\"" << end|;
19}

Briefly, the function hello() accepts a generic object reference. The object
reference (0bj) is narrowed to Echo_ptr . If the object reference returned by
Echo::_narrow() is not nil, the operation echoString() is invoked. Finally,
both the argument to and the return value of echoString() are printed to cerr .

The example also illustrates how T_var types are used. As it was explained
in the previous section, T_var types take care of storage allocation and release
automatically when variables of the type are assigned to or when the variables go
out of scope.

In line 4, the variable e takes over the storage responsibility of the object ref-
erence returned by Echo::_narrow() . The object reference is released by the
destructor of e. It is called automatically when the function returns. Lines 6 and
15 show how a Echo_var variable is used. As said earlier, Echo_var type can be
used interchangeably with Echo_ptr type.

The argument and the return value of echoString() are stored in CORBA::
String_var variables src and dest respectively. The strings managed by the
variables are deallocated by the destructor of CORBA::String_var . It is called
automatically when the variable goes out of scope (as the function returns). Line 15
shows how CORBA::String_var variables are used. They can be used in place
of a string (for which the mapping is char*)*. As used in line 12, assigning a
constant string (const char*)toa CORBA::String_var causes the string to be
copied. On the other hand, assigning a char* toa CORBA::String_var , as used
in line 15, causes the latter to assume the ownership of the string”.

Under the C++ mapping, T_var types are provided for all the non-basic data
types. It is obvious that one should use automatic variables whenever possible
both to avoid memory leak and to maximise performance. However, when one
has to allocate data items on the heap, it is a good practice to use the T_var types
to manage the heap storage.

2.8 Example 1 — Colocated Client and Implementation

Having introduced the client and the object implementation, we can now describe
how to link up the two via the ORB and POA. In this section, we describe an exam-
ple in which both the client and the object implementation are in the same address

A conversion operator of CORBA::String_var ~ converts a CORBA::String_var toa char .
>Please refer to the CORBA specification section 23.7 for the details of the String_var mapping.
Other T_var types are also covered in chapter 23.

16

CHAPTER 2. THE BASICS

space. In the next two sections, we shall describe the case where the two are in
different address spaces.
The code for this example is reproduced below:

© 0 N G ke W N e

NN R s s e e s
N = S © ® N o O & ® N = o

int
main(int argc, char **argv)

{

}

CORBA::ORB_ptr orb = CORBA::ORB _init(argc,argv,"omniORB3");

CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

Echo_i *myecho = new Echo_i();
PortableServer::Objectld_var myechoid = poa->activate_object(myecho);

Echo_var myechoref = myecho->_this();
myecho->_remove_ref();

PortableServer::POAManager_var pman = poa->the POAManager();
pman->activate();

hello(myechoref);

orb->destroy();
return O;

The example illustrates several important interactions among the ORB, the
POA, the servant, and the client. Here are the details:

2.8.1 ORB initialisation

Line 4

The ORB is initialised by calling the CORBA::ORB_init() function. The
function uses the 3rd argument to determine which ORB should be returned.
To use omniORB 3, this argument must either be ‘omniORB3" or NULL. If it
is NULL, there must be an argument, -ORBid ‘omniORB3’, in argv 6. Like
all command-line arguments understood by the ORB, it will be removed
from argv when CORBA::ORB_init() returns. Therefore, an application
is not required to handle any command-line arguments it does not under-
stand. If the ORB identifier is not ‘omniORB3’, the initialisation will fail
and a nil ORB_ptr will be returned. If supplied, omniORB also reads the
configuration file omniORB.cfg . Among other things, the file provides a
list of initial object references. One example of these object references is the
Naming service. Its use will be discussed in section 2.10.1. If any error oc-
curs during the processing of the configuration file, the system exception

®For backwards compatibility, the ORB identifier ‘omniORB2" is also accepted.

2.8. EXAMPLE 1 — COLOCATED CLIENT AND IMPLEMENTATION 17

CORBA:INITIALIZE s raised.

2.8.2 Obtaining the Root POA

Lines 6-7
To activate our servant object and make it available to clients, we must regis-
ter it with a POA. In this example, we use the Root POA, rather than creating
any child POAs. The Root POA is found with orb->resolve_initial_
references() , which returns a plain CORBA::Object . In line 7, we nar-
row the reference to the right type for a POA.

A POA’s behaviour is governed by its policies. The Root POA has suitable
policies for many simple servers, and closely matches the “policies” used by
omniORB 2’s BOA. See Chapter 11 of the CORBA 2.3 specification|[OMG99a]
for details of all the POA policies which are available.

2.8.3 Object initialisation

Line 9
An instance of the Echo object is initialised using the new operator.

Line 10
The servant object is activated in the Root POA using poa->activate_
object() , which returns an object identifier (of type PortableServer::
Objectld*). The object id must be passed back to various POA operations.
The caller is responsible for freeing the object id, so it is assigned to a _var

type.

Line 12
The object reference is obtained from the servant object by calling _this()
Like all object references, the return value of _this() must be released by
CORBA:release() when it is no longer needed. In this case, we assign it
toa_var type, so the release is implicit at the end of the function.

One of the important characteristics of an object reference is that it is com-
pletely location transparent. A client can invoke on the object using its object
reference without any need to know whether the servant object is colocated
in the same address space or is in a different address space.

In the case of colocated client and servant, omniORB is able to short-circuit
the client calls so they do not involve IIOP. The calls still go through the
POA, however, so the various POA policies affect local calls in the same way
as remote ones. This optimisation is applicable not only to object references
returned by _this() , but to any object references that are passed around
within the same address space or received from other address spaces via IIOP
calls.

18 CHAPTER 2. THE BASICS

Line 13
The server code releases the reference it holds to the servant object. The only
reference to that object is now held by the POA (it gained the reference on
the call to activate_object()), so when the object is deactivated (or the
POA is destroyed), the servant object will be deleted automatically. After this
point, the code must no longer use the myecho pointer.

2.8.4 Activating the POA

Lines 15-16
POAs are initially in the holding state, meaning that incoming requests are
blocked. Lines 15 and 16 acquire a reference to the POA’s POA manager, and
use it to put the POA into the active state. Incoming requests are now served.

2.8.5 Performing a call

Line 18
At long last, we can call hello() ~ with this object reference. The argument
is widened implicitly to the generic object reference CORBA::Object_ptr

2.8.6 ORB destruction

Line 20
Shutdown the ORB permanently. This call causes the ORB to release all its
resources, e.g. internal threads, and also to deactivate any servant objects
which are currently active. When it deactivates the Echo_i instance, the
object’s reference count drops to zero, so the object is deleted.

This call is particularly important when writing a CORBA DLL on Windows
NT that is to be used from ActiveX. If this call is absent, the application will
hang when the CORBA DLL is unloaded.

2.9 Example 2 — Different Address Spaces

In this example, the client and the object implementation reside in two different
address spaces. The code of this example is almost the same as the previous exam-
ple. The only difference is the extra work which needs to be done to pass the object
reference from the object implementation to the client.

The simplest (and quite primitive) way to pass an object reference between two
address spaces is to produce a stringified version of the object reference and to pass
this string to the client as a command-line argument. The string is then converted
by the client into a proper object reference. This method is used in this example. In
the next example, we shall introduce a better way of passing the object reference
using the CORBA Naming Service.

2.9. EXAMPLE 2 — DIFFERENT ADDRESS SPACES 19

29.1 Object Implementation: Generating a Stringified Object Reference

The main() function of the server side is reproduced below. The full listing (eg2_
impl.cc) can be found at the end of this chapter.

int main(int argc, char** argv)

{
CORBA::ORB_var orb = CORBA::ORB _init(argc, argv, "omniORB3");

CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

Echo_i* myecho = new Echo_i();

O 0 N o G = W =

PortableServer::Objectld_var myechoid = poa->activate_object(myecho);

- s
= =2

obj = myecho->_this();
CORBA::String_var sior(orb->object_to_string(obj));
cerr << " << (char®)sior << "" << endl;

N
U W N

myecho->_remove_ref();

JERN
N o

PortableServer::POAManager_var pman = poa->the POAManager();
pman->activate();

NN 2 e
= © © ®

orb->run();
orb->destroy();
return O;

}

The stringified object reference is obtained by calling the ORB'’s object_to_
string() function (line 13). This results in a string starting with the signature
‘IOR:” and followed by some hexadecimal digits. All CORBA 2 compliant ORBs are
able to convert the string into its internal representation of a so-called Interoperable
Object Reference (IOR). The IOR contains the location information and a key to
uniquely identify the object implementation in its own address space’. From the
IOR, an object reference can be constructed.

NN
=N

2.9.2 Client: Using a Stringified Object Reference

The stringified object reference is passed to the client as a command-line argument.
The client uses the ORB’s string_to_object() function to convert the string
into a generic object reference (CORBA::Object_ptr). The relevant section of the
code is reproduced below. The full listing (eg2_clt.cc) can be found at the end
of this chapter.

try {
CORBA::Object_var obj = orb->string_to_object(argv[1]);

"Notice that the object key is not globally unique across address spaces.

20 CHAPTER 2. THE BASICS

hello(obj);

}
catch(CORBA::COMM_FAILURE& ex) {

/I code to handle communication failure
}

2.9.3 Catching System Exceptions

When omniORB detects an error condition, it may raise a system exception. The
CORBA specification defines a series of exceptions covering most of the error con-
ditions that an ORB may encounter. The client may choose to catch these ex-
ceptions and recover from the error condition®. For instance, the code fragment,
shown in section 2.9.2, catches the COMM_FAILUREystem exception which indi-
cates that communication with the object implementation in another address space
has failed.

All system exceptions inherit from CORBA::SystemException . With com-
pilers that properly support RTTI, a single catch of CORBA::SystemException
will catch all the different system exceptions thrown by omniORB.

When omniORB detects an internal error that is most likely to be caused by a
bug in the runtime, it raises the exception omniORB::fatalException . When
this exception is raised, it is not sensible to proceed with any operation that in-
volves the ORB’s runtime. It is best to exit the program immediately. The exception
structure carried by omniORB::fatalException contains the exact location (the
file name and the line number) where the exception is raised. If this occurs, you
are strongly encouraged to file a bug report and point out the location.

29.4 Lifetime of a CORBA object

CORBA objects are either transient or persistent. The majority are transient, mean-
ing that the lifetime of the CORBA object (as contacted through an object reference)
is the same as the lifetime of its servant object. Persistent objects can live beyond
the destruction of their servant object, the POA they were created in, and even
their process. Persistent objects are, of course, only contactable when their associ-
ated servants are active, or can be activated by their POA with a servant manager'’.
A reference to a persistent object can be published, and will remain valid even if
the server process is restarted.

A POA’s Lifespan Policy determines whether objects created within it are tran-
sient or persistent. The Root POA has the TRANSIENTpolicy.

81f a system exception is not caught, the C++ runtime will call the terminate() function. This
function is defaulted to abort the whole process and on some systems will cause a core file to be
produced.

Run Time Type Identification

°The POA itself can be activated on demand with an adapter activator.

2.10. EXAMPLE 3 — USING THE NAMING SERVICE 21

An alternative to creating persistent objects is to register object references in
a naming service and bind them to fixed pathnames. Clients can bind to the object
implementations at runtime by asking the naming service to resolve the pathnames
to the object references. CORBA defines a standard naming service, which is a
component of the Common Object Services (COS) [OMG98], that can be used for
this purpose. The next section describes an example of how to use the COS Naming
Service.

210 Example 3 — Using the Naming Service

In this example, the object implementation uses the Naming Service [OMG98] to
pass on the object reference to the client. This method is far more practical than
using stringified object references. The full listing of the object implementation
(eg3_impl.cc)and the client (eg3_clt.cc) canbe found at the end of this chap-
ter.

The names used by the Naming service consist of a sequence of name compo-
nents. Each name component has an id and a kind field, both of which are strings.
All name components except the last one are bound to a naming context. A nam-
ing context is analogous to a directory in a filing system: it can contain names of
object references or other naming contexts. The last name component is bound to
an object reference.

Sequences of name components can be represented as a flat string, using *.” to
separate the id and kind fields, and ‘/’ to separate name components from each
other!!. In our example, the Echo object reference is bound to the stringified name
‘test.my_context/Echo.Object #

The kind field is intended to describe the name in a syntax-independent way:.
The naming service does not interpret, assign, or manage these values. However,
both the name and the kind attribute must match for a name lookup to succeed. In
this example, the kind values for test and Echo are chosen to be ‘my_context ’
and ‘Object ’ respectively. This is an arbitrary choice as there is no standardised
set of kind values.

2.10.1 Obtaining the Root Context Object Reference

The initial contact with the Naming Service can be established via the root context.
The object reference to the root context is provided by the ORB and can be ob-
tained by calling resolve_initial_references() . The following code frag-
ment shows how it is used:

CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB3");

’

UThere are escaping rules to cope with id and kind fields which contain *’ and ‘/’ characters.
See chapter 4 of this manual, and chapter 3 of the CORBA services specification, as updated for the
Interoperable Naming Service [OMG99b].

22 CHAPTER 2. THE BASICS

CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");

CosNaming::NamingContext_var rootContext;
rootContext = CosNaming::NamingContext::_narrow(initServ);

Remember, omniORB constructs its internal list of initial references at initialisa-
tion time using the information provided in the configuration file omniORB.cfg ,
or given on the command line. If this file is not present, the internal list will
be empty and resolve_initial_references() will raise a CORBA::ORB::
InvalidName exception.

2.10.2 The Naming Service Interface

It is beyond the scope of this chapter to describe in detail the Naming Service in-
terface. You should consult the CORBA services specification [OMG98] (chapter
3). The code listed in eg3_impl.cc and eg3_clt.cc are good examples of how
the service can be used. Please spend time to study the examples carefully.

211 Example 4 — Using tie implementation templates

Since 2.6.0, omniORB has supported tie implementation templates as an alterna-
tive way of providing servant classes. If you use the -Wbtp option to omniidl, it
generates an extra template class for each interface. This template class can be used
to tie a C++ class to the skeleton class of the interface.

The source code in eg3_tieimpl.cc at the end of this chapter illustrates how
the template class can be used. The code is almost identical to eg3_impl.cc ~ with
only a few changes.

Firstly, the servant class Echo_i does not inherit from any stub classes. This is
the main benefit of using the template class because there are applications in which
it is difficult to require every servant class to derive from CORBA classes.

Secondly, the instantiation of a CORBA object now involves creating an in-
stance of the implementation class and an instance of the template. Here is the
relevant code fragment:

class Echo_i { ... }

Echo_i *myimpl = new Echo_i();
POA_Echo_tie<Echo_i> myecho(myimpl);

PortableServer::Objectld_var myechoid = poa->activate_object(&myecho);

For interface Echo, the name of its tie implementation template is POA_Echo_
tie . The template parameter is the servant class that contains an implementation
of each of the operations defined in the interface. As used above, the tie template
takes ownership of the Echo_i instance, and deletes it when the tie object goes

2.11. EXAMPLE 4 — USING TIE IMPLEMENTATION TEMPLATES 23

out of scope. The tie constructor has an optional boolean argument (defaulted to
true) which indicates whether or not it should delete the servant object. For full
details of using tie templates, see section 23.36.7 of the CORBA 2.3 C++ mapping
specification [OMG99a].

24 CHAPTER 2. THE BASICS

2.12 Source Listings

2121 egl.cc

/I egl.cc - This is the source code of example 1 used in Chapter 2

/1 "The Basics" of the omniORB user guide.

1

/ In this example, both the object implementation and the
/1 client are in the same process.

1

/I Usage: egl
1

#include <iostream.h>
#include <echo.hh>

/I This is the object implementation.

class Echo_i : public POA Echo,
public PortableServer::RefCountServantBase
{

public:
inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

3

char* Echo_i::echoString(const char* mesg)

{
}

o
/I This function acts as a client to the object.

return CORBA::string_dup(mesg);

static void hello(Echo_ptr e)
{
if(CORBA:is_nil(e)) {
cerr << "hello: The object reference is nil\n" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!";

/I String literals are (char*) rather than (const char*) on some
/I old compilers. Thus it is essential to cast to (const char*)
/I here to ensure that the string is copied, so that the

/I CORBA::String_var does not attempt to ’'delete’ the string

/I literal.

2.12. SOURCE LISTINGS 25

CORBA::String_var dest = e->echoString(src);

cerr << "l said, \"" << (char*)src << "\"." << endl
<< "The Echo object replied, \"" << (char*)dest <<"\"." << endl;

}
I L T

int main(int argc, char** argv)
{

try {
/I Initialise the ORB.

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "omniORB3");

/I Obtain a reference to the root POA.
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

/I We allocate the object on the heap. Since this is a reference
/I counted object, it will be deleted by the POA when it is no

/I longer needed.

Echo_i* myecho = new Echo_i();

/I Activate the object. This tells the POA that this object is
/I ready to accept requests.
PortableServer::Objectld_var myechoid = poa->activate_object(myecho);

/I Obtain a reference to the object.
Echo_var myechoref = myecho->_this();

/I Decrement the reference count of the object implementation, so
/I that it will be properly cleaned up when the POA has determined
/I that it is no longer needed.

myecho->_remove_ref();

/I Obtain a POAManager, and tell the POA to start accepting

/I requests on its objects.

PortableServer.::POAManager_var pman = poa->the_POAManager();
pman->activate();

/I Do the client-side call.
hello(myechoref);

/I Clean up all the resources.
orb->destroy();
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE -- unable to contact the "
<< "object." << endl;

26

CHAPTER 2.

}
catch(CORBA::SystemException&) {
cerr << "Caught CORBA::SystemException." << endl;
}
catch(CORBA::Exception&) {
cerr << "Caught CORBA::Exception." << endl;
}
catch(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;

cerr << file: " << fe.file() << endl;

cerr << " line: " << fe.line() << endl;

cerr << " mesg: " << fe.errmsg() << endl;
}
catch(...) {

cerr << "Caught unknown exception.” << endl;

}

return O;

THE BASICS

2.12. SOURCE LISTINGS 27

2122 eg2 impl.cc

/Il eg2_impl.cc - This is the source code of example 2 used in Chapter 2
1 "The Basics" of the omniORB user guide.

1

1 This is the object implementation.

1

/I Usage: eg2_impl

1

1 On startup, the object reference is printed to cerr as a

1 stringified IOR. This string should be used as the argument to
1 eg2_clt.

1

#include <iostream.h>
#include <echo.hh>

class Echo_i : public POA_Echo,
public PortableServer::RefCountServantBase
{

public:
inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

2
char* Echo_i::echoString(const char* mesg)
{
return CORBA::string_dup(mesg);
}

T

int main(int argc, char** argv)
{

try {
CORBA::ORB_var orb = CORBA:ORB_init(argc, argv, "omniORB3");

CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

Echo_i* myecho = new Echo_i();

PortableServer::Objectld_var myechoid = poa->activate_object(myecho);
/I Obtain a reference to the object, and print it out as a

/I stringified IOR.

obj = myecho->_this();
CORBA::String_var sior(orb->object_to_string(obj));

28

CHAPTER 2. THE BASICS

cerr << " << (char*)sior << """ << endl;
myecho->_remove_ref();

PortableServer::POAManager_var pman = poa->the POAManager();
pman->activate();

orb->run();
orb->destroy();
}
catch(CORBA::SystemException&) {
cerr << "Caught CORBA::SystemException." << endl;
}
catch(CORBA::Exception&) {
cerr << "Caught CORBA::Exception." << endl,
}
catch(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;

cerr << " file: " << fe.file() << endl;

cerr << " line: " << fe.line() << endl;

cerr << " mesg: " << fe.errmsg() << endl;
}
catch(...) {

cerr << "Caught unknown exception." << endl;
}

return O;

2.12. SOURCE LISTINGS 29

2123 eg2 clt.cc

/I eg2_clt.cc - This is the source code of example 2 used in Chapter 2

1 "The Basics" of the omniORB user guide.

1

1 This is the client. The object reference is given as a
I stringified IOR on the command line.

1

/I Usage: eg2 clt <object reference>

1

#include <iostream.h>
#include <echo.hh>

static void hello(Echo_ptr €)

{
CORBA::String_var src = (const char*) "Hello!";

CORBA::String_var dest = e->echoString(src);

cerr << "l said, \"" << (char¥)src << "\"." << endl
<< "The Echo object replied, \'"" << (char*)dest <<"\"." << end];

}
T LT

int main(int argc, char** argv)

{
try {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "omniORB3");
if(argc = 2) {
cerr << "usage: eg2 clt <object reference>" << endl;
return 1;
}
CORBA::Object_var obj = orb->string_to_object(argv[1]);
Echo_var echoref = Echo::_narrow(obj);
if(CORBA::is_nil(echoref)) {
cerr << "Can’t narrow reference to type Echo (or it was nil)." << endl;
return 1;
hello(echoref);
orb->destroy();
}

catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE -- unable to contact the "
<< "object." << endl;

30

CHAPTER 2.

catch(CORBA::SystemException&) {

cerr << "Caught a CORBA::SystemException." << endl;

}

catch(CORBA::Exception&) {

cerr <<

}

"Caught CORBA::Exception." << endl;

catch(omniORB::fatalException& fe) {

cerr <<
cerr <<
cerr <<
cerr <<

}

catch(...) {

cerr <<

}

return O;

"Caught omniORB::fatalException:" << endl;
" file: " << fe.file() << endl;

" line: " << feline() << endl;

mesg: " << fe.errmsg() << endl;

"Caught unknown exception." << endl;

THE BASICS

2.12. SOURCE LISTINGS 31

2124 eg3_impl.cc

/I eg3_impl.cc - This is the source code of example 3 used in Chapter 2

1 "The Basics" of the omniORB user guide.
1
1 This is the object implementation.

I
/I Usage: eg3_impl

1

1 On startup, the object reference is registered with the
1 COS naming service. The client uses the naming service to
1 locate this object.

1

I The name which the object is bound to is as follows:
1 root [context]

1 |

1 test [context] kind [my_context]

I |

I Echo [object] kind [Object]

1

#include <iostream.h>
#include <echo.hh>

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

class Echo_i : public POA_Echo,
public PortableServer:;:RefCountServantBase
{

public:
inline Echo_i() {}
virtual ~Echo_i() {}
virtual char* echoString(const char* mesg);

2
char* Echo_i::echoString(const char* mesg)
{
return CORBA::string_dup(mesg);
}

I L T o

int
main(int argc, char **argv)
{

try {
CORBA::ORB_var orb = CORBA:ORB_init(argc, argv, "omniORB3");

32

}

}

CHAPTER 2. THE BASICS

CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

Echo_i* myecho = new Echo_i();
PortableServer::Objectld_var myechoid = poa->activate_object(myecho);
/l Obtain a reference to the object, and register it in
/I the naming service.
obj = myecho->_this();
if(!'bindObjectToName(orb, obj))
return 1;

myecho->_remove_ref();

PortableServer::POAManager_var pman = poa->the POAManager();
pman->activate();

orb->run();
orb->destroy();

catch(CORBA::SystemException&) {

}

cerr << "Caught CORBA::SystemException." << endl;

catch(CORBA::Exception&) {

}

cerr << "Caught CORBA::Exception." << endl;

catch(omniORB::fatalException& fe) {

cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;

cerr << " line: " << fe.line() << endl;

cerr << " mesg: " << fe.errmsg() << endl;

}
catch(...) {

}

cerr << "Caught unknown exception." << endl;

return O;

i

static CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb, CORBA::Object_ptr objref)

{

CosNaming::NamingContext_var rootContext;

try {

/I Obtain a reference to the root context of the Name service:
CORBA::Object_var obj;

2.12. SOURCE LISTINGS 33

obj = orb->resolve_initial_references("NameService");

/I Narrow the reference returned.

rootContext = CosNaming::NamingContext::_narrow(obj);

if(CORBA::is_nil(rootContext)) {
cerr << "Failed to narrow the root naming context." << endl;
return O;

}

}
catch(CORBA::ORB::InvalidName& ex) {

/I This should not happen!
cerr << "Service required is invalid [does not exist]." << endl;
return O;

}

try {
/l Bind a context called "test" to the root context:

CosNaming::Name contextName;

contextName.length(1);

contextName[0].id = (const char*) "test"; /I string copied
contextName[0].kind = (const char*) "my_context"; /I string copied
/l Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used

/I by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {
/I Bind the context to root.
testContext = rootContext->bind_new_context(contextName);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
/I If the context already exists, this exception will be raised.
/I In this case, just resolve the name and assign testContext
/I to the object returned:
CORBA::Object_var obj;
obj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext:: narrow(obj);
if(CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return O;
}
}

/I Bind objref with name Echo to the testContext:

CosNaming::Name objectName;

objectName.length(1);

objectName[0].id = (const char*) "Echo"; /I string copied
objectName[0].kind = (const char*) "Object"; /I string copied

34

CHAPTER 2. THE BASICS

try {
testContext->bind(objectName, objref);
}

catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName, objref);

}

/I Note: Using rebind() will overwrite any Object previously

I bound to /test/Echo with obj.

I Alternatively, bind() can be used, which will raise a
1 CosNaming::NamingContext::AlreadyBound exception if
I the name supplied is already bound to an object.

/I Amendment: When using OrbixNames, it is necessary to first
/I try bind and then rebind, as rebind on it's own will throw
/[a NotFoundexception if the Name has not already been bound.
/I [This is incorrect behaviour -- it should just bind].
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE -- unable to "
<< "contact the naming service." << endl;
return O;
}
catch(CORBA::SystemException&) {
cerr << "Caught a CORBA::SystemException while using the "
<< "naming service." << end];
return O;

}

return 1;

2.12. SOURCE LISTINGS 35

2125 eg3_clt.cc

/I eg3_clt.cc - This is the source code of example 3 used in Chapter 2

1 "The Basics" of the omniORB user guide.

1

1 This is the client. It uses the COSS naming service
I to obtain the object reference.

1

/I Usage: eg3 clt

1

I

1 On startup, the client lookup the object reference from the
I COS naming service.

1

1 The name which the object is bound to is as follows:

1 root [context]

I |

1 text [context] kind [my_context]

1 |

I Echo [object] kind [Object]

1

#include <iostream.h>
#include <echo.hh>

static CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);

static void hello(Echo_ptr e)
{
if(CORBA::is_nil(e)) {
cerr << "hello: The object reference is nill\n" << endl;
return;

}

CORBA::String_var src = (const char*) "Hello!";
CORBA::String_var dest = e->echoString(src);

cerr << "l said, \"" << (char*)src << "\"." << endl
<< "The Echo object replied, \"" << (char*)dest <<"\"." << endl;
}

I L T o

int
main (int argc, char **argv)
{

try {
CORBA::ORB_var orb = CORBA:ORB_init(argc, argv, "omniORB3");

36

}

CHAPTER 2. THE BASICS

CORBA::Object_var obj = getObjectReference(orb);

Echo_var echoref = Echo::_narrow(obj);
hello(echoref);

orb->destroy();
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE -- unable to "
<< "contact the object." << endl;
}

catch(CORBA::SystemException&) {
cerr << "Caught CORBA::SystemException." << endl;
}
catch(CORBA::Exception&) {
cerr << "Caught CORBA::Exception." << endl;
}
catch(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;
cerr << " line: " << fe.line() << endl;

cerr << " mesg: " << fe.errmsg() << endl;
}
catch(...) {
cerr << "Caught unknown exception." << endl;
}
return O;

e

static CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)

{

CosNaming::NamingContext_var rootContext;

try {
/I Obtain a reference to the root context of the Name service:

CORBA::Object_var obj;
obj = orb->resolve_initial_references("NameService");

/I Narrow the reference returned.

rootContext = CosNaming::NamingContext:: narrow(obj);

if(CORBA::is_nil(rootContext)) {
cerr << "Failed to narrow the root naming context." << endl;
return CORBA::Object::_nil();

}

}
catch(CORBA::ORB::InvalidName& ex) {

2.12. SOURCE LISTINGS 37

/I This should not happen!
cerr << "Service required is invalid [does not exist]." << endl;
return CORBA::Object::_nil();

}

/I Create a name object, containing the name test/context:
CosNaming::Name name;
name.length(2);

name[0].id = (const char*) "test"; /I string copied
name[0].kind = (const char*) "my_context"; /I string copied
name[1].id = (const char*) "Echo";

name[1].kind = (const char*) "Object";

/l Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used
/I by files (name.type -- e.g. test.ps = postscript etc.)

try {
/I Resolve the name to an object reference.

return rootContext->resolve(name);
}
catch(CosNaming::NamingContext::NotFound& ex) {
/I This exception is thrown if any of the components of the
/I path [contexts or the object] aren’'t found:
cerr << "Context not found." << endl;
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE -- unable to "
<< "contact the naming service." << endl;
}
catch(CORBA::SystemException&) {
cerr << "Caught a CORBA::SystemException while using the
<< "naming service." << endl;

}
return CORBA::Object::_nil();

38 CHAPTER 2. THE BASICS

212.6 eg3_tieimpl.cc

/I eg3_tieimpl.cc - This example is similar to eg3 impl.cc except that

i the tie implementation skeleton is used.
1
I This is the object implementation.

I
/I Usage: eg3_tieimpl

1

I On startup, the object reference is registered with the
I COS naming service. The client uses the naming service to
I locate this object.

1

I The name which the object is bound to is as follows:
I root [context]

i |

/1 test [context] kind [my_context]

1 |

/1 Echo [object] kind [Object]

1l

#include <iostream.h>
#include <echo.hh>

static CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);

/I This is the object implementation. Notice that it does not
/I inherit from any stub class.

class Echo_i {
public:
inline Echo_i() {}
inline ~Echo_i() {}
virtual char* echoString(const char* mesg);

%
char* Echo_i::echoString(const char* mesg)
{
return CORBA::string_dup(mesg);
}

T T T]

int main(int argc, char** argv)
{

try {
CORBA::ORB_var orb = CORBA::ORB init(argc, argv, "omniORB3");

CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");

2.12. SOURCE LISTINGS 39

}

}

PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);

/I Note that the <myecho> object is constructed on the stack here.
/I This is because tie implementations do not inherit from the

Il PortableServer::RefCountServantBase mixin class -- and so are
/I not automatically deleted by the POA.

/Il However, it will delete its implementation (myimpl) when it

/I it itself destroyed (when it goes out of scope). It is

/I essential however to ensure that such objects are not deleted

Il whilst still activated.

Echo_i* myimpl = new Echo_i();

POA_Echo_tie<Echo_i> myecho(myimpl);

PortableServer::Objectld_var myechoid = poa->activate_object(&myecho);

/I Obtain a reference to the object, and register it in
/I the naming service.
obj = myecho._this();
if('bindObjectToName(orb, obj))
return 1;

PortableServer.::POAManager_var pman = poa->the_POAManager();
pman->activate();

orb->run();
orb->destroy();

catch(CORBA::SystemException&) {

}

cerr << "Caught CORBA::SystemException." << endl;

catch(CORBA::Exception&) {

}

cerr << "Caught CORBA::Exception." << endl;

catch(omniORB::fatalException& fe) {

cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fefile() << endl;

cerr << line: " << feline() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
catch(...) {
cerr << "Caught unknown exception." << endl;
}
return O;

W T

static CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb, CORBA::Object_ptr objref)

40

{

CHAPTER 2. THE BASICS

CosNaming::NamingContext_var rootContext;

try {
/l Obtain a reference to the root context of the Name service:
CORBA::Object_var obj;
obj = orb->resolve_initial_references("NameService");

/I Narrow the reference returned.

rootContext = CosNaming::NamingContext:: narrow(obj);

if(CORBA::is_nil(rootContext)) {
cerr << "Failed to narrow the root naming context." << endl;
return O;

}

}

catch(CORBA::ORB::InvalidName& ex) {
/I This should not happen!
cerr << "Service required is invalid [does not exist]." << endl;
return O;

}

try {
/I Bind a context called "test" to the root context:

CosNaming::Name contextName;

contextName.length(1);

contextName[0].id = (const char*) "test"; /I string copied
contextName[0].kind = (const char*) "my_context"; /I string copied
/I Note on kind: The kind field is used to indicate the type

/I of the object. This is to avoid conventions such as that used

/I by files (name.type -- e.g. test.ps = postscript etc.)

CosNaming::NamingContext_var testContext;
try {
/l Bind the context to root.
testContext = rootContext->bind_new_context(contextName);
}
catch(CosNaming::NamingContext::AlreadyBound& ex) {
/I If the context already exists, this exception will be raised.
/I In this case, just resolve the name and assign testContext
/I to the object returned:
CORBA::Object_var obj;
obj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(obj);
if(CORBA::is_nil(testContext)) {
cerr << "Failed to narrow naming context." << endl;
return O;

}
}

2.12. SOURCE LISTINGS 41

}

/I Bind objref with name Echo to the testContext:
CosNaming::Name objectName;
objectName.length(1);

objectName[0].id = (const char*) "Echo"; /I string copied
objectName[0].kind = (const char*) "Object"; /I string copied
try {

testContext->bind(objectName, objref);
}

catch(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName, objref);

}

/I Note: Using rebind() will overwrite any Object previously

I bound to /test/Echo with obj.

I Alternatively, bind() can be used, which will raise a
1 CosNaming::NamingContext::AlreadyBound exception if
I the name supplied is already bound to an object.

/I Amendment: When using OrbixNames, it is necessary to first
/I try bind and then rebind, as rebind on it's own will throw

/I a NotFoundexception if the Name has not already been bound.
/I [This is incorrect behaviour -- it should just bind].

catch(CORBA::COMM_FAILURE& ex) {

}

cerr << "Caught system exception COMM_FAILURE -- unable to "
<< "contact the naming service." << endl;
return O;

catch(CORBA::SystemException&) {

}

cerr << "Caught a CORBA::SystemException while using the
<< "naming service." << endl;
return O;

return 1;

42 CHAPTER 2. THE BASICS

2.12.7 dir.mk

CXXSRCS = egl.cc eg2_impl.cc eg2_ clt.cc eg3_impl.cc eg3_clt.cc
DIR_CPPFLAGS = $(CORBA_CPPFLAGS)
CORBA_INTERFACES = echo

ifdef OSF1

ifeq ($(notdir $(CXX)),cxx)
NoTieExample = 1

endif

endif

ifndef NoTieExample

-Whbtp tells the compiler to generate tie implementation template
OMNIORB_IDL += -Whbtp

eg3_tieimpl = $(patsubst %,$(BinPattern),eg3_tieimpl)

endif

egl = $(patsubst %,$(BinPattern),egl)
eg2_impl = $(patsubst %,$(BinPattern),eg2_impl)
eg2_clt = $(patsubst %,$(BinPattern),eg2_clt)
eg3_impl = $(patsubst %,$(BinPattern),eg3_impl)
eg3_clt = $(patsubst %,$(BinPattern),eg3_clt)

all:: $(egl) $(eg2_impl) $(eg2_clt) $(eg3_impl) $(eg3_clt) $(eg3_tieimpl)
clean::
$(RM) $(egl) $(eg2_impl) $(eg2_clt) $(eg3_impl) $(eg3_clt) \
$(eg3_tieimpl)

export:: $(egl) $(eg2_impl) $(eg2_clt) $(eg3_impl) $(eg3_clt) $(eg3_tieimpl)
@(module="echoexamples"; $(ExportExecutable))

$(egl): egl.o $(CORBA_STATIC_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB_NODYN)"; $(CXXExecutable))

$(eg2_impl): eg2_impl.o $(CORBA_STATIC_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB_NODYN)"; $(CXXExecutable))

$(eg2_clt): eg2_clt.o $(CORBA_STATIC_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB_NODYN)"; $(CXXExecutable))

$(eg3_impl): eg3_impl.o $(CORBA_STATIC_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB_NODYN)"; $(CXXExecutable))

$(eg3_clt): eg3 clt.o $(CORBA_STATIC_STUB_OBJS) $(CORBA_LIB_DEPEND)

2.12. SOURCE LISTINGS 43

@(libs="$(CORBA_LIB_NODYN)"; $(CXXExecutable))

ifndef NoTieExample

$(eg3_tieimpl): eg3_tieimpl.o $(CORBA_STATIC_STUB_OBJS) $(CORBA_LIB_DEPEND)
@(libs="$(CORBA_LIB_NODYN)"; $(CXXExecutable))

endif

44

CHAPTER 2. THE BASICS

Chapter 3

C++ language mapping

Now that you are familiar with the basics, it is important to familiarise yourself
with the standard IDL to C++ language mapping. The mapping is described in
detail in [OMG99a]. If you have not done so, you should obtain a copy of the
document and use that as the programming guide to omniORB.

The specification is not an easy read. The alternative is to use one of the books
on CORBA programming that has begun to appear. For instance, Henning and
Vinoski’s “Advanced CORBA Programming with C++’ [HV99] includes many ex-
ample code bits to illustrate how to use the CORBA 2.3 C++ mapping.

3.1 Incompatibilities with pre-2.8.0 releases

Before 2.8.0, omniORB implemented the CORBA 2.0 C++ mapping. From 2.8.0
onwards, the mapping has been updated to CORBA 2.3. Unfortunately, to comply
with the CORBA 2.3 specification, it has been necessary to change the semantics
of a few APIs in a way that is incompatible with older omniORB releases. The
incompatible changes are limited to:

1. The mapping for some out and inout argument types is different.

2. The extraction of string, object reference and typecode from an Any has dif-
ferent ownership rules.

3. the DII interface now defaults to reporting a system exception by raising a
C++ exception, instead of returning the exception as an environment value.

The changes are minor and require minimal changes to the application source
code. The C++ compiler will complain about the first change. However, it is not
possible to detect the old usage for changes 2 and 3 at compile time. In partic-
ular, unmodified code that uses the affected Any extraction operators will most
certainly cause runtime errors to occur.

45

46 CHAPTER 3. C++ LANGUAGE MAPPING

To smooth the transition from the old usage to the new, an omniORB config-
uration variable omniORB::omniORB_27_CompatibleAnyExtraction can be
set to revert the any extraction operators to the old semantics. More information
can be found in chapter 9.

3.2 BOA compatibility

If you use the -WbBOAoption to omniidl, it will generate skeleton code with the
same interface as the old omniORB 2 BOA mapping, as well as code to be used with
the POA. Note that since the major problem with the BOA specification was that
server code was not portable between ORBs, it is unlikely that omniORB 3’s BOA
compatibility will help you much if you are moving from a different BOA-based
ORB.

The BOA compatibility permits the majority of BOA code to compile without
difficulty. However, there are a number of constructs which relied on omniORB 2
implementation details which no longer work.

e omniORB 2 did not use distinct types for object references and servants, and
often accepted a pointer to a servant when the CORBA specification says it
should only accept an object reference. Such code will not compile under
omniORB 3.

e The reverse is true for BOA::0bj_is_ready() . It now only works when
passed a pointer to a servant object, not an object reference. The more com-
monly used mechanism of calling _obj_is_ready(boa) on the servant ob-
ject still works as expected.

e It used to be the case that the skeleton class for interface | (_sk_|) was de-
rived from class | . This meant that the names of any types declared in the
interface were available in the scope of the skeleton class. This is no longer
true. If you have an interface:

interface | {
struct S {
long a,b;
h
S op();
%

then where before the implementation code might have been:

class |I_impl : public virtual _sk_ | {

S op(); /I _sk_| is derived from |
h
I::S |_impl::op() {

S ret;

...

}

3.2. BOA COMPATIBILITY 47

it is now necessary to fully qualify all uses of S:

class I_impl : public virtual _sk_ I {

1:S op(); /I _sk_I is not derived from |
3
[::S |_impl::op() {

[::S ret;

...
}

e The proprietary omniORB 2 LifeCycle extensions are no longer supported.
All of the facilities it offered can be implemented with the POA interfaces,
and the omniORB::LOCATION_FORWAR[xception (see section 6.12). Code
which used the old interfaces will have to be rewritten.

48

CHAPTER 3. C++ LANGUAGE MAPPING

Chapter 4

Interoperable Naming Service

omniORB 3 supports the Interoperable Naming Service (INS), which will be part
of CORBA 2.4. The following is a summary of the new facilities described in the
INS edited chapters document [OMG99b].

4.1 Object URIs

As well as accepting IOR-format strings, ORB::string_to_object() now also
supports two new Uniform Resource Identifier (URI) [BLFIM98] formats, which
can be used to specify objects in a convenient human-readable form. The existing
IOR-format strings are now also considered URIs.

4.1.1 corbaloc

corbaloc URIs allow you to specify object references which can be contacted by
IIOP, or found through ORB::resolve_initial_references() . To specity
an IIOP object reference, you use a URI of the form:

corbaloc:iiop: <host>: <port>| <object key>
for example:
corbaloc:iiop:myhost.example.com:1234/MyObjectKey

which specifies an object with key ‘MyObjectKey” within a process running on
myhost.example.com listening on port 1234. Object keys containing non-ASCII
characters can use the standard URI % escapes:

corbaloc:iiop:myhost.example.com:1234/My%efObjectKey

denotes an object key with the value 239 (hex ef) in the third octet.
The protocol name ‘iiop ’ can be abbreviated to the empty string, so the origi-
nal URI can be written:

49

50 CHAPTER 4. INTEROPERABLE NAMING SERVICE

corbaloc::myhost.example.com:1234/MyObjectKey

The IANA has assigned port number 2809' for use by corbaloc , so if the server is
listening on that port, you can leave the port number out. The following two URIs
refer to the same object:

corbaloc::myhost.example.com:2809/MyObjectKey
corbaloc::myhost.example.com/MyObjectKey

You can specify an object which is available at more than one location by separating
the locations with commas:

corbaloc::myhost.example.com,:localhost:1234/MyObjectKey

Note that you must restate the protocol for each address, hence the “: ” before
‘localhost . It could equally have been written ‘iiop:localhost ’

You can also specify an IIOP version number, although omniORB only supports
IIOP 1.0 at present:

corbaloc::1.2@myhost.example.com/MyObjectKey

Alternatively, to use resolve_initial_references() , you use a URI of the
form:

corbaloc:rir:/NameService

4.1.2 corbaname

corbaname URIs cause string_to_object() to look-up a name in a CORBA
Naming service. They are an extension of the corbaloc syntax:

corbaname: <corbaloc location>/ <object key>#<stringified name>
for example:

corbaname::myhost/NameService#project/example/echo.obj
corbaname:rir:/NameService#project/example/echo.obj

Note that the object found with the corbaloc -style portion must be of type Cos-
Naming::NamingContext , or something derived from it. If the object key (or
rir name) is ‘NameService ’, it can be left out:

corbaname::myhost#project/example/echo.obj
corbaname:rir:#project/example/echo.obj

'Not 2089 as printed in [OMG99b]!

4.2. CONFIGURING RESOLVE_INITIAL_REFERENCES 51

The stringified name portion can also be left out, in which case the URI denotes the
CosNaming::NamingContext which would have been used for a look-up:

corbaname::myhost.example.com
corbaname:rir:

The first of these examples is the easiest way of specifying the location of a naming
service.

4.2 Configuring resolve_initial_references

The INS adds two new command line arguments which provide a portable way of
configuring ORB::resolve_initial_references()

4.2.1 ORBInitRef

-ORBInitRef takes an argument of the form <Objectld>=<ObjectURI>. So, for
example, with command line arguments of:

-ORBInitRef NameService=corbaname::myhost.example.com

resolve_initial_references("NameService") will return a reference to
the object with key ‘NameService” available on myhost.example.com, port 2809.
Since IOR-format strings are considered URIs, you can also say things like:

-ORBInitRef NameService=IOR:00ff...

4.2.2 ORBDefaultInitRef

-ORBDefaultInitRef provides a prefix string which is used to resolve other-
wise unknown names. When resolve_initial_references() is unable to
resolve a name which has been specifically configured (with -ORBInitRef), it
constructs a string consisting of the default prefix, a ’/ character, and the name
requested. The string is then fed to string_to_object() . So, for example, with
a command line of:

-ORBDefaultinitRef corbaloc::myhost.example.com

a call to resolve_initial_references("MyService") will return the object
reference denoted by ‘corbaloc::myhost.example.com/MyService !

Similarly, a corbaname prefix can be used to cause look-ups in the naming
service. Note, however, that since a ‘/ ” character is always added to the prefix, it
is impossible to specify a look-up in the root context of the naming service—you
have to use a sub-context, like:

-ORBDefaultinitRef corbaname::myhost.example.com#services

52 CHAPTER 4. INTEROPERABLE NAMING SERVICE

4.2.3 omniORB configuration file

As an extension to the standard facilities of the INS, omniORB supports configu-
ration file entries named ORBInitRef and ORBDefaultlnitRef . The syntax is
identical to the command line arguments. omniORB.cfg might contain:

ORBInitRef NameService=corbaname::myhost.example.com
ORBDefaultlnitRef corbaname:rir:#services
4.2.4 Resolution order

With all these options for specifying object references to be returned by resolve_
initial_references() , it is important to understand the order in which the
options are tried. The resolution order, as required by the CORBA specification, is:

1. Check for special names such as ‘RootPOA".
2. Resolve with an -ORBInitRef argument.
3. Resolve with the -ORBDefaultInitRef prefix, if present.

4. Resolve with an ORBInitRef (or old-style NAMESERVICEentry in the con-
figuration file.

5. Resolve with the ORBDefaultInitRef entry in the configuration file, if
present.

6. Resolve with the deprecated ORBInitialHost boot agent.

This order mostly has the expected consequences—in particular that command line
arguments override entries in the configuration file. However, you must be careful
with the default prefixes. Suppose you have configured a ‘NameService ’entry in
the configuration file, and you specify a default prefix on the command line with:

-ORBDefaultinitRef corbaname:rir:#services

expecting unknown services to be looked up in the configured naming service.
Now, step 3 above means that resolve_initial_references("MyService")
should be processed with the steps:

1. Construct the URI ‘corbaname:rir:#services/MyService " and give it
to string_to_object()

2. Resolve the first part of the corbaname URI by calling
resolve_initial_references("NameService")

’In fact, a strict reading of the specification says that it should be possible to override ‘RootPOA’
etc. with -ORBInitRef , but since POAs are locality constrained that is ridiculous.

4.3. OMNINAMES 53
3. Construct the URI ‘corbaname:rir:#services/NameService “and give
it to string_to_object()

4. Resolve the first part of the corbaname URI by calling
resolve_initial_references("NameService")

5. ... and so on for ever...

omniORB detects loops like this and throws either CORBA::ORB::InvalidName

if the loop started with a call to resolve_initial_references() ,or CORBA::
BAD_PARANMf it started with a call to string_to_object() . To avoid the prob-
lem you must either specify the NameService reference on the command line, or
put the DefaultinitRef in the configuration file.

4.3 omniNames

4.3.1 NamingContextExt

omniNames now supports the CosNaming::NamingContextExt interface:

module CosNaming {
interface NamingContextExt : NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name (in StringName sn) raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
h
2
to_string() and to_name() convert from CosNaming::Name sequences

to flattened strings and vice-versa. Note that calling these operations involves re-
mote calls to the naming service, so they are not particularly efficient. You can
use the omniORB specific local omniURI::nameToString() and omniURI::
stringToName() functions instead.

A CosNaming::Name is stringified by separating name components with ‘/’
characters. The kind and id fields of each component are separated by *. ” char-
acters. If the kind field is empty, the representation has no trailing ‘. ’; if the id
is empty, the representation starts with a *. ” character; if both id and kind are

54 CHAPTER 4. INTEROPERABLE NAMING SERVICE

empty, the representation isjusta’. ’. The backslash ‘\ " is used to escape the mean-
ingof‘/’,”. " and "\ " itself.

to_url() takes a corbaloc style address and key string (but without the
corbaloc: part), and a stringified name, and returns a corbaname URI (incor-
rectly called a URL) string, having properly escaped any invalid characters. The
specification does not make it clear whether or not the address string should also
be escaped by the operation; omniORB does not escape it. For this reason, it is best
to avoid calling to_url() if the address part contains escapable characters. omni-
ORB provides the equivalent local function omniURI::addrAndNameToURI()

resolve_str() is equivalent to calling to_name() followed by the inherited
resolve() operation. There are no string-based equivalents of the various bind
operations.

4.3.2 Use with corbaname

To make it easy to use omniNames with corbaname URIs, it now starts with the
default port of 2809, and an object key of ‘NameService ~ for the root naming
context. This is only possible when it is started ‘fresh’, rather than with a log file
from an older omniNames version.

If you have a previous omniNames log, configured to run on a different port,
and with a different object key for its root context, all is not lost. If the root context’s
object key is not ‘'NameService ’, omniNames creates a forwarding agent with that
key. Effectively, this means that there are two object keys which refer to the root
context—'NameService " and whatever the original key was.

For the port number, there are two options. The first is to run omniNames with
a command line argument like:

omniNames -logdir /the/log/dir -ORBpoa_iiop_port 2809

This causes it to listen on both port 2809 and whatever port it listened on before.
The disadvantage with this is that the IORs to all naming contexts now contain two
IIOP profiles, one for each port, which, amongst other things, increases the size of
the omniNames log.

The second option is to use omniMapper, as described below.

44 omniMapper

omniMapper is a simple daemon which listens on port 2809 (or any other port),
and redirects IIOP requests for configured object keys to associated persistent IORs.
It can be used to make a naming service (even an old non-INS aware version of
omniNames or other ORB’s naming service) appear on port 2809 with the object
key ‘NameService ’. The same goes for any other service you may wish to specify,
such as an interface repository. omniMapper is started with a command line of:

4.5. CREATING OBJECTS WITH SIMPLE OBJECT KEYS 55

omniMapper [-port <port>] [-config <config file>] [-V]

The -port option allows you to choose a port other than 2809 to listen on®. The
-config option specifies a location for the configuration file. The default name is
letc/omniMapper.cfg , or C:\omniMapper.cfg on Windows. omniMapper
does not normally print anything; the -v option makes it verbose so it prints con-
figuration information and a record of the redirections it makes, to standard out-
put.

The configuration file is very simple. Each line contains a string to be used as
an object key, some white space, and an IOR (or any valid URI) that it will redirect
that object key to. Comments should be prefixed with a ‘#” character. For example:

Example omniMapper.cfg
NameService IOR:000f...
InterfaceRepository 10R:0100...

omniMapper can either be run on a single machine, in much the same way as
omniNames, or it can be run on every machine, with a common configuration file.
That way, each machine’s omniORB configuration file could contain the line:

ORBDefaultlnitRef corbaloc::localhost

4.5 Creating objects with simple object keys

In normal use, omniORB creates object keys containing various information in-
cluding POA names and various non-ASCII characters. Since object keys are sup-
posed to be opaque, this is not usually a problem. The INS breaks this opacity and
requires servers to create objects with human-friendly keys.

If you wish to make your objects available with human-friendly URIs, there
are two options. The first is to use omniMapper as described above, in conjunction
with a PERSISTENTPOA. The second is to create objects with the required keys
yourself. You do this with a special POA with the name ‘omniINSPOA’, acquired
from resolve_initial_references() . This POA has the USER_IDand PER-
SISTENT policies, and the special property that the object keys it creates contain
only the object ids given to the POA, and no other data. It is a normal POA in all
other respects, so you can activate/deactivate it, create children, and so on, in the
usual way.

*You can also play the -ORBpoa_iiop_port trick to make it listen on more than one port.

56

CHAPTER 4. INTEROPERABLE NAMING SERVICE

Chapter 5

The IDL compiler

omniORB 3 has a brand new IDL compiler, named omniidl. It consists of a generic

front-end parser written in C++, and a number of back-ends written in Python.

omniidl is very strict about IDL validity, so you may find that it reports errors in

IDL which compiles fine with earlier versions of omniORB, and with other ORBs.
The general form of an omniidl command line is:

omniidl

[options] -b <back-end> [back-end options] <file1> <file2> ...

51 Common options

The following options are common to all back-ends:

-D name[=value] Define name for the preprocessor.

-Uname

-1 dir

-E

-Y cmd

-N
-Wparg[,arg...]
-b back-end
-Whbargl,arg...]
-nf

Undefine name for the preprocessor.

Include dir in the preprocessor search path.

Only run the preprocessor, sending its output to stdout.

Use cmd as the preprocessor, rather than the normal C preprocessor.
Do not run the preprocessor.

Send arguments to the preprocessor.

Run the specified back-end. For the C++ ORB, use -bcxx .

Send arguments to the back-end.

Do not warn about unresolved forward declarations.

Keep comments after declarations, to be used by some back-ends.
Keep comments before declarations, to be used by some back-ends.
Change directory to dir before writing output files.

Dump the parsed IDL then exit, without running a back-end.

Use dir as a path to find omniidl back-ends.

Print version information then exit.

Print usage information.

Verbose: trace compilation stages.

57

58 CHAPTER 5. THE IDL COMPILER

Most of these options are self explanatory, but some are not so obvious.

5.1.1 Preprocessor interactions

IDL is processed by the C preprocessor before omniidl parses it. Unlike the old IDL
compiler, which used different C preprocessors on different platforms, omniidl
always uses the GNU C preprocessor (which it builds with the name omnicpp).
The -D, -U, and -I options are just sent to the preprocessor. Note that the current
directory is not on the include search path by default—use “-I. ” for that. The -Y
option can be used to specify a different preprocessor to omnicpp. Beware that line
directives inserted by other preprocessors are likely to confuse omniidl.

5.1.2 Forward-declared interfaces

If you have an IDL file like:

interface I,
interface J {
attribute 1 the_I;

h

then omniidl will normally issue a warning;:

test.idl:1: Warning: Forward declared interface “:I' was never
fully defined

It is illegal to declare such IDL in isolation, but it is valid to define interface | in a
separate file. If you have a lot of IDL with this sort of construct, you will drown
under the warning messages. Use the -nf option to suppress them.

5.1.3 Comments

By default, omniidl discards comments in the input IDL. However, with the -k and
-K options, it preserves the comments for use by the back-ends. The C++ back-end
ignores this information, but it is relatively easy to write new back-ends which do
make use of comments.

The two different options relate to how comments are attached to declarations
within the IDL. Given IDL like:

interface | {
void opl();
/I A comment
void op2();

h

the -k flag will attach the comment to op1() ; the -K flag will attach it to op2() .

5.2. C++ BACK-END OPTIONS 59

5.2 C++ back-end options

When you specify the C++ back-end (with -bcxx), the following -Wb options are
available. Note that the -Wb options must be specified after the -bcxx option, so
omniidl knows which back-end to give the arguments to.

-Wbh=suffix Use suffix for generated header files. Default “.hh ’.

-Whbs=suffix Use suffix for generated stub files. Default ‘SK.cc ./

-Wbd=suffix Use suffix for generated dynamic files. Default ‘DynSK.cc ./

-Wba Generate stubs for TypeCode and Any.

-Wbtp Generate “tie” implementation skeletons.

-Whtf Generate flattened ‘tie” implementation skeletons.
-Wbsplice-modules Splice together multiply-opened modules into one.

-Wbexample Generate example implementation code.

-WbF Generate code fragments (for experts only).

-WbBOA Generate BOA compatible skeletons.

-Wbold Generate old CORBA 2.1 signatures for skeletons.

-Whbold_prefix Map C++ reserved words with prefix “_" rather than “_cxx_ ".
-Wbkeep_inc_path Preserve IDL ‘#include ’ paths in generated ‘#include ’ directives.
-Wbuse_quotes Use quotes in ‘#include ’ directives (e.g. "foo" rather than <foo> .)

Again, most of these are self-explanatory.

5.2.1 Module splicing

On C++ compilers without namespace support, IDL modules map to C++ classes,
and so cannot be reopened. For some IDL, it is possible to “splice” reopened mod-
ules on to the first occurrence of the module, so all module definitions are in a
single class. It is possible in this sort of situation:

module M1 {
interface | {};
h
module M2 {
interface J {
attribute M1::1 ok;
3
h
module M1 {
interface K {
attribute 1 still_ok;
3
h

but not if there are cross-module dependencies:

60 CHAPTER 5. THE IDL COMPILER

module M1 {
interface 1 {};

%
module M2 {
interface J {
attribute M1::l ok;

3

¥
module M1 {
interface K {
attribute M2::J oh_dear;

g
g
In both of these cases, the -Wbsplice-modules option causes omniidl to put all
of the definitions for module M1linto a single C++ class. For the first case, this
will work fine. For the second case, class M1::K will contain a reference to M2::J ,
which has not yet been defined; the C++ compiler will complain.

5.2.2 Flattened tie classes

Another problem with mapping IDL modules to C++ classes arises with tie tem-
plates. The C++ mapping says that for the interface M::I , the C++ tie template
class should be named POA_M::I_tie . However, since template classes cannot
be declared inside other classes, this naming scheme cannot be used with compil-
ers without namespace support.
The standard solution is to produce ‘flattened’ tie class names, using the -Wbtf

command line argument. With that flag, the template class is declared at global
scope with the name POA_M_|_tie . i.e.all occurrences of “:: ’ are replaced by “_".

5.2.3 Generating example implementations

If you use the -Wbexample flag, omniidl will generate an example implementation
file as well as the stubs and skeletons. For IDL file foo.idl , the example code is
written to foo_i.cc . The example file contains class and method declarations
for the operations of all interfaces in the IDL file, along with a main() function
which creates an instance of each object. You still have to fill in the operation
implementations, of course.

5.3 Examples
Generate the C++ headers and stubs for a file a.idl
omniidl -bcxx a.idl

Generate with Any support:

5.3. EXAMPLES 61

omniidl -bcxx -Wba a.idl
Compile two files with Any support:
omniidl -bcxx -Wba a.idl b.idl

As above, but also generate Python stubs for the files (assuming omniORBpy is
installed):

omniidl -bcxx -Wba -bpython a.idl b.idl
Just check the IDL files for validity, generating no output:

omniidl a.idl b.idl

62

CHAPTER 5. THE IDL COMPILER

Chapter 6

The omniORB API

In this chapter, we introduce the omniORB API. The purpose of this APl is to pro-
vide access points to omniORB specific functionality that is not covered by the
CORBA specification. Obviously, if you use this API in your application, that part
of your code is not going to be portable to run unchanged on other vendors” ORBs.
To make it easier to identify omniORB dependent code, this API is defined under
the name space ‘omniORB'!.

6.1 ORB initialisation options

CORBA::ORB_init() accepts the following standard command-line arguments:

-ORBid omniORB3 The identifier must be ‘omniORB3".
-ORBInitRef <Objectld>=<ObjectURI> See section 4.2.
-ORBDefaultInitRef <Default URI> See section 4.2.

and the following omniORB-specific arguments:

-ORBtraceLevel <level> See section 6.3.
-ORBtracelnvocations See section 6.3.
-ORBstrictllOP See section 6.9.
-ORBtcAliasExpand <0or 1> See section 9.2.
-ORBgiopMaxMsgSize <size in bytes> See section 6.5.
-ORBobjectTableSize <number of entries> See section 6.6.
-ORBserverName <string> See section 6.4.
-ORBNo_bootstrap_agent See section 6.8.
-ORBdiiThrowsSysExceptions <0or 1> See section 11.4.
-ORBabortOnInternalError <0or1> See section 6.10.
-ORBuverifyObjectExistsAndType <0or 1> See section 6.9.
-ORBinConScanPeriod <0-max integer> See section 8.3.

'omniORBis a class name if the C++ compiler does not support the namespace keyword.

63

64 CHAPTER 6. THE OMNIORB API

-ORBoutConScanPeriod <0-max integer> See section 8.3.
-ORBclientCallTimeOutPeriod <0-max integer> See section 8.3.
-ORBserverCallTimeOutPeriod <0—max integer> See section 8.3.
-ORBscanGranularity <0-max integer> See section 8.3.
-ORBlcdMode See section 6.9.
-ORBpoa_iiop_port <port no.> See section 6.2.
-ORBpoa_iiop_name_port <hostname[:port no.]> See section 6.2.
-ORBhelp Lists all ORB command line options.

and these two obsolete omniORB-specific arguments:

-ORBInitialHost <string> See section 6.8.
-ORBInitialPort <1-65535>] See section 6.8.

As defined in the CORBA specification, any command-line arguments understood
by the ORB will be removed from argv when the initialisation functions return.
Therefore, an application is not required to handle any command-line arguments
it does not understand.

6.2 Hostname and port

Normally, omniORB lets the operating system pick which port number it should
use to listen for IIOP calls. Alternatively, you can specify a particular port us-
ing -ORBpoa_iiop_port . If you specify -ORBpoa_iiop_port more than once,
omniORB will listen on all the ports you specify.

By default, the ORB can work out the IP address of the host machine. This ad-
dress is recorded in the object references of the local objects. However, when the
host has multiple network interfaces and multiple IP addresses, it may be desirable
for the application to control what address the ORB should use. This can be done
by defining the environment variable OMNIORB_USEHOSTNAMEontain the pre-
ferred host name or IP address in dot-numeric form. Alternatively, the same can be
achieved using the -ORBpoa_iiop_name_port option. You can optionally spec-
ify a port number too. Again, you can specify more than one host name by using
-ORBpoa_iiop_name_port more than once.

6.3 Run-time Tracing and Diagnostic Messages

omniORB can output tracing and diagnostic messages to the standard error stream.
To avoid conflicts between old-style iostream.h and new-styleiostream , omni-
ORB uses neither. Some or all of these messages can be turned on/off by setting
the variable omniORB::traceLevel . The type definition of the variable is:

CORBA::ULong omniORB::traceLevel = 1; /[The default value is 1

6.4. SERVER NAME 65

At the moment, the following trace levels are defined:

level 0 turn off all tracing and informational messages

level 1 informational messages only

level 2 the above plus configuration information

level 5 the above plus notifications when server threads
are created or communication endpoints are shut-
down

level 1020 the above plus execution and exception traces

level 25 the above plus hex dumps of all data sent and re-

ceived by the ORB via its network connections.

The variable can be changed by assignment inside your applications. It can also be
changed by specifying the command-line option: -ORBtraceLevel <level>. For
instance:

$ eg2_impl -ORBtraceLevel 5

New in omniORB 3, you can also trace operation invocations by setting omni-
ORB::tracelnvocations to true, or with the -ORBtracelnvocations com-
mand line argument.

6.4 Server Name

Applications can optionally specify a name to identify the server process. At the
moment, this name is only used by the host-based access control module. See
section 8.5 for details. The name is stored in the variable omniORB::serverName

CORBA::String_var omniORB::serverName;

The variable can be changed by assignment inside your applications. It can also be
changed by specifying the command-line option: -ORBserverName <string>.

6.5 GIOP Message Size

omniORB sets a limit on the GIOP message size that can be sent or received. The
value can be obtained by calling:

size_t omniORB::MaxMessageSize();
and can be changed by:
void omniORB::MaxMessageSize(size_t newvalue);

or by the command-line option -ORBgiopMaxMsgSize . The exact value is some-
what arbitrary. The reason such a limit exists is to provide some way to protect
the server side from resource exhaustion. Think about the case when the server

66 CHAPTER 6. THE OMNIORB API

receives a rogue GIOP(IIOP) request message that contains a sequence length field
set to 23!. With a reasonable message size limit, the server can reject this rogue
message straight away.

6.6 Object table size

omniORB uses a hash table to store the mapping from object keys to servant ob-
jects. Normally, it dynamically re-sizes the hash table when it becomes too full or
too empty. This is the most efficient trade-off between performance and memory
usage. However, since all POA operations which add or remove objects from the
table can (very occasionally) cause the object table to resize, the time spent in POA
operations is much less predictable than if the table size was fixed.

To prevent omniORB from resizing its object table, set the variable omniORB::
objectTableSize to the number of hash table entries you require before call-
ing CORBA::ORB_init() . Alternatively, use the -ORBobjectTableSize argu-
ment. Note that omniORB uses an open hash table so you can have any number of
objects active, no matter what size table you specify. If you have many more active
objects than hash table entries, object look-up performance will become linear with
the number of objects.

6.7 POA request holding timeout

POAs can be put into the holding state, which means that incoming requests are
queued until the POA is set to a different state. Normally, queued requests are
held for ever (or until the client times out as described in section 8.3). If you set
omniORB::poaHoldRequestTimeout to a non-zero time in seconds, held re-
quests will be cancelled after that time. When requests are cancelled in this way,
the caller is sent a TRANSIENTexception.

6.8 Obsolete Initial Object Reference Bootstrapping

Starting from 2.6.0, but superseded by the Interoperable Naming Service in omni-
ORB 3, a mechanism is available for the ORB runtime to obtain the initial object
references to CORBA services. The bootstrap service is a special object with the
object key ‘INIT” and the following interface’:

/I IDL
module CORBA {
interface InitialReferences {
Object get(in ORB::Objectld id);
/I returns the initial object reference of the service
/I identified by <id>. For example the id for the

*This interface was first defined by Sun’s NEO and is in used in Sun’s JavalDL.

6.8. OBSOLETE INITIAL OBJECT REFERENCE BOOTSTRAPPING 67

/I Naming service is "NameService".

ORB::ObjectldList list();
/I returns the list of service ids that this agent knows

g
g

By default, all omniORB servers contain an instance of this object and are able
to respond to remote invocations. To prevent the ORB from instantiating this ob-
ject, the command-line option -ORBno_bootstrap_agent should be specified.

In particular, the Naming Service omniNames is able to respond to a query
through this interface and return the object reference of its root context. In effect,
the bootstrap agent provides a level of indirection. All omniORB clients still have
to be supplied with the address of the bootstrap agent. However, the informa-
tion is much easier to specify than a stringified IOR! Another advantage of this
approach is that it is completely compatible with JavalDL. This makes it possible
for programs written for JavalDL to share a Naming Service with omniORB.

The address of the bootstrap agent is given by the ORBInitialHost and
ORBInitialPort parameter in the omniORB configuration file (section 1.2). The
parameters can also be specified as command-line options (section 6.1). The pa-
rameter ORBInitialPort is optional. If it is not specified, port number 900 will
be used.

During initialisation, the ORB reads the parameters in the omniORB config-
uration file. If the parameter NAMESERVICEs specified, the stringified IOR is
used as the object reference of the root naming context. If the parameter is absent
and the parameter ORBInitialHost is present, the ORB contacts the bootstrap
agent at the address specified to obtain the root naming context when the appli-

cation calls resolve_initial_references() . If neither is present, resolve_
initial_references() returns a nil object reference. Finally, the command
line argument -ORBInitialHost overrides any parameters in the configuration

file. The ORB always contacts the bootstrap agent at the address specified to obtain
the root naming context.

Now we are ready to describe a simple way to set up omniNames.

1. Start omniNames for the first time on a machine (e.g. wobble):

$ omniNames -start 1234

2. Add to omniORB.cfg:
ORBInitialHost wobble
ORBInitialPort 1234

3. All omniORB applications will now be able to contact omniNames.
Alternatively, the command line options can be used, for example:
$ eg3_impl -ORBInitialHost wobble -ORBInitialPort 1234 &
$ eg3_clt -ORBInitialHost wobble -ORBInitialPort 1234

68 CHAPTER 6. THE OMNIORB API

6.9 GIOP Lowest Common Denominator Mode

Sometimes, to cope with bugs in another ORB, it is necessary to disable various
GIOP and IIOP features in order to achieve interoperability. If the command line
option -ORBIcdMode is present or the function omniORB::enableLcdMode() is
called, the ORB enters the so-called ‘lowest common denominator mode’. It bends
over backwards to cope with bugs in the ORB at the other end. This is purely
a transitional measure. The long term solution is to report the bugs to the other
vendors and ask them to fix them expediently.

In some (sloppy) IIOP implementations, the message size value in the IIOP
header can be larger than the actual body size, i.e. there is garbage at the end. As
the spec does not say the message size must match the body size exactly, this is
not a clear violation of the spec. omniORB’s default policy is to expect incoming
messages to be formatted properly. Any messages that have garbage at the end
will be rejected.

-ORBIcdMode and omniORB::enableLcdMode() set omniORB to silently
skip the unread part of such invalid messages. Alternatively, you can just change
this policy with the -ORBstrictllOP 0 command line, or by setting omniORB::
strictlOP to zero. The problem with doing this is that the header message size
may actually be garbage, caused by a bug in the sender’s code. The receiving
thread may block forever as it tries to read more data from the connection. In this
case the sender won’t send any more as it thinks it has marshalled in all the data.

By default, omniORB uses the GIOP LOCATE_REQUEST message to verify
the existence of an object prior to the first invocation. If another vendor’s ORB is
known not to be able to handle this GIOP message, set the variable omniORB::
verifyObjectExistsAndType to 0 to disable this feature, and hence achieve
interoperability. The command line option -ORBverifyObjectExistsAndType
has the same effect.

6.10 Trapping omniORB Internal Errors

class fatalException {
public:
const char *file() const;
int line() const;
const char *errmsg() const;

3

When omniORB detects an internal problem that is most likely to be caused
by a bug in the runtime, it raises the exception omniORB::fatalException
When this exception is raised, it is not sensible to proceed with any operation that
involves the ORB’s runtime. It is best to exit the program immediately. The excep-
tion structure carried by omniORB::fatalException contains the exact location

6.11. SYSTEM EXCEPTION HANDLERS 69

(the file name and the line number) where the exception is raised. You are strongly
encouraged to file a bug report and point out the location.

It may help to cause a core-dump and look at the stack trace to locate where
the exception was thrown. This can be done by setting the variable omniORB::
abortOninternalError to 1. The variable can also be set via the command line
option -ORBabortOninternalError

6.11 System Exception Handlers

By default, all system exceptions which are raised during an operation invoca-
tion, with the exception of CORBA::TRANSIENT, are propagated to the applica-
tion code. Some applications may prefer to trap these exceptions within the proxy
objects so that the application logic does not have to deal with the error condition.
For example, when a CORBA::COMM_FAILUREs received, an application may just
want to retry the invocation until it finally succeeds. This approach is useful for
objects that are persistent and their operations are idempotent.

omniORB provides a set of functions to install exception handlers. Once they
are installed, proxy objects will call these handlers when the associated system ex-
ceptions are raised by the ORB runtime. Handlers can be installed for CORBA::
TRANSIENT CORBA::COMM_FAILUREand CORBA::SystemException . This
last handler covers all system exceptions other than the two covered by the first
two handlers. An exception handler can be installed for individual proxy objects,
or it can be installed for all proxy objects in the address space.

6.11.1 CORBA:TRANSIENT handlers

When a CORBA::TRANSIENT exception is raised by the ORB runtime, the de-
fault behaviour of the proxy objects is to retry indefinitely until the operation suc-
ceeds. Successive retries will be delayed progressively by multiples of omniORB::
defaultTransientRetryDelaylncrement . The delay will be limited to the
maximum specified by omniORB::defaultTransientRetryDelayMaximum
The unit of both values are in seconds.

The ORB runtime will raise CORBA::TRANSIENT under the following condi-
tions:

1. When a cached network connection is broken while an operation invocation
is in progress. The ORB will try to open a new connection at the next invoca-
tion.

2. When the proxy object has been redirected by a location forward message by
the remote object to a new location and the object at the new location cannot
be contacted. In addition to the CORBA::TRANSIENT exception, the proxy
object also resets its internal state so that the next invocation will be directed
at the original location of the remote object.

70 CHAPTER 6. THE OMNIORB API

3. When the remote object reports CORBA::TRANSIENT.

Applications can override the default behaviour by installing their own excep-
tion handler. The API to do so is summarised below:

class omniORB {
public:

typedef CORBA::Boolean (*transientExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::TRANSIENT& ex);

static void installTransientExceptionHandler(void* cookie,
transientExceptionHandler_t fn);

static void installTransientExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
transientExceptionHandler_t fn);

static CORBA::ULong defaultTransientRetryDelaylncrement;
static CORBA::ULong defaultTransientRetryDelayMaximum;

}

The overloaded function installTransientExceptionHandler() can be
used to install the exception handlers for CORBA::TRANSIENT. Two forms are
available: the first form installs an exception handler for all object references except
for those which have an exception handler installed by the second form, which
takes an additional argument to identify the target object reference. The argument
cookie is an opaque pointer which will be passed on by the ORB when it calls the
exception handler.

An exception handler will be called by proxy objects with three arguments. The
cookie is the opaque pointer registered by installTransientException-
Handler() . The argument n_retries is the number of times the proxy has
called this handler for the same invocation. The argument ex is the value of the
exception caught. The exception handler is expected to do whatever is appropriate
and returns a boolean value. If the return value is TRUE(1), the proxy object retries
the operation. If the return value is FALSE(0), the CORBA::TRANSIENT exception
is propagated into the application code.

The following sample code installs a simple exception handler for all objects
and for a specific object:

CORBA::Boolean my_transient_handlerl (void* cookie,

CORBA::ULong retries,
const CORBA:: TRANSIENT& ex)

cerr << "transient handler 1 called." << endl;
return 1; /I retry immediately.

6.11. SYSTEM EXCEPTION HANDLERS 71

CORBA::Boolean my_transient_handler2 (void* cookie,
CORBA::ULong retries,
const CORBA:: TRANSIENT& ex)

cerr << "transient handler 2 called." << endl;
return 1; /I retry immediately.

static Echo_ptr myobj;

void installhandlers()

{
omniORB::installTransientExceptionHandler(0,my_transient_handlerl);
/I All proxy objects will call my_transient_handlerl from now on.
omniORB::installTransientExceptionHandler(myobj,0,my_transient_handler2);
/I The proxy object of myobj will call my_transient_handler2 from now on.
}

6.11.2 CORBA:COMM_FAILURE

When the ORB runtime fails to establish a network connection to the remote ob-
ject and none of the conditions listed above for raising a CORBA::TRANSIENT is
applicable, it raises a CORBA::COMM_FAILURException.

The default behaviour of the proxy objects is to propagate this exception to the
application. Applications can override the default behaviour by installing their
own exception handlers. The API to do so is summarised below:

class omniORB {
public:

typedef CORBA::Boolean (*commFailureExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::COMM_FAILURE& ex);

static void installCommFailureExceptionHandler(void* cookie,
commpFailureExceptionHandler_t fn);

static void installCommFailureExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
commpFailureExceptionHandler_t
fn);

}

The functions are equivalent to their counterparts for CORBA::TRANSIENT.

72 CHAPTER 6. THE OMNIORB API

6.11.3 CORBA::SystemException

To report an error condition, the ORB runtime may raise other system exceptions.
If the exception is neither CORBA::TRANISENTnor CORBA::COMM_FAILUREhe
default behaviour of the proxy objects is to propagate this exception to the appli-
cation. Applications can override the default behaviour by installing their own
exception handlers. The API to do so is summarised below:

class omniORB {
public:

typedef CORBA::Boolean (*systemExceptionHandler_t)(void* cookie,
CORBA::ULong n_retries,
const CORBA::SystemException& ex);

static void installSystemExceptionHandler(void* cookie,
systemExceptionHandler_t fn);

static void installSystemExceptionHandler(CORBA::Object_ptr obj,
void* cookie,
systemExceptionHandler_t fn);

}
The functions are equivalent to their counterparts for CORBA::TRANSIENT.

6.12 Location forwarding

Any CORBA operation invocation can return a LOCATION_FORWARRessage to
the caller, indicating that it should retry the invocation on a new object reference.
The standard allows ServantManagers to trigger LOCATION_FORWARDYy rais-
ing the PortableServer::ForwardRequest exception, but it does not pro-
vide a similar mechanism for normal servants. omniORB provides the omni-
ORB::LOCATION_FORWARBXxception for this purpose. It can be thrown by any
operation implementation.

class LOCATION_FORWARD {
public:
LOCATION_FORWARD(CORBA::Object_ptr objref);

b

The exception object consumes the object reference it is passed.

Chapter 7

Interface Type Checking

This chapter describes the mechanism used by omniORB to ensure type safety
when object references are exchanged across the network. This mechanism is han-
dled completely within the ORB. There is no programming interface visible at the
application level. However, for the sake of diagnosing the problem when there is
a type violation, it is useful to understand the underlying mechanism in order to
interpret the error conditions reported by the ORB.

7.1 Introduction

In GIOP/IIOP, an object reference is encoded as an Interoperable Object Reference
(IOR) when it is sent across a network connection. The IOR contains a Repository
ID (Repold) and one or more communication profiles. The communication profiles
describe where and how the object can be contacted. The Repold is a string which
uniquely identifies the IDL interface of the object.

Unless the ID pragma is specified in the IDL, the ORB generates the Repold
string in the so-called OMG IDL Format!. For instance, the Repold for the Echo
interface used in the examples of chapter 2 is IDL:Echo:1.0

When interface inheritance is used in the IDL, the ORB always sends the Re-
pold of the most derived interface. For example:

/I IDL
interface A {

\

interface B : A {

\

interface C {
void op(in A arg);
h

'For further details of the repository ID formats, see section 10.6 in the CORBA 2.3 specification.

73

74 CHAPTER 7. INTERFACE TYPE CHECKING

/I C++

C_ptr server;

B_ptr objB;

A_ptr objA = objB;

server->0p(objA); /I Send B as A

In the example, the operation C::0p() accepts an object reference of type A
The real type of the reference passed to C::op() is B, which inherits from A In
this case, the Repold of B, and not that of A, is sent across the network.

The GIOP/IIOP specification allows an ORB to send a null string in the Repold
field of an IOR. It is up to the receiving end to work out the real type of the object.
omniORB never sends out null strings as Repold. However, it may receive null
Repold from other ORBs. In that case, it will use the mechanism described below
to ensure type safety.

7.2 Basic Interface Type Checking

The ORB is provided with the interface information by the stubs via the proxy-
ObjectFactory class. For an interface A, the stub of A contains a _pof A class.
This class is derived from the proxyObjectFactory class. The proxyObject-
Factory is an abstract class which contains 3 functions of interest:

class proxyObjectFactory {
public:
const char *irRepold() const;

virtual CORBA::Boolean is_a(const char *base repold) const = 0;

virtual CORBA::Object_ptr newObjRef(const char* mostDerivedTypeld,
IOP::TaggedProfileList* profiles,
omnildentity* id,
omniLocalldentity* lid) = O;

e irRepold() returns the Repold of the interface.

e is_a() returns true(l) if the argument is the Repold of the interface itself or
it is that of its base interfaces.

e newODbjRef() returns an object reference based on the information supplied
in the arguments.

A single instance of every _pof_* is instantiated at runtime. The instances are
entered into a list inside the ORB. The list constitutes all the interface information
known to the ORB.

7.3. INTERFACE INHERITANCE 75

When the ORB receives an IOR from the network, it unmarshals and extracts
the Repold from the IOR. At this point, the ORB has two pieces of information in
hand:

1. The Repold of the object reference received from the network.

2. The Repold the ORB is expecting. This comes from the unmarshal function
that tells the ORB to receive the object reference.

Using the Repold received, the ORB searches its proxyObjectFactory list for an
exact match. If there is an exact match, all is well because the runtime can use the
is_a() method of the proxyFactory to check if the expected Repold is the same
as the received Repold or if it is one of its base interfaces. If the answer is positive,
the IOR passes the type checking test and the ORB can proceed to create an object
reference in its own address space to represent the IOR.

However, the ORB may fail to find a match in its proxyObjectFactory list. This
means that the ORB has no local knowledge of the Repold. There are three possible
causes:

1. The remote end is another ORB and it sends a null string as the Repold.

2. The ORB is expecting an object reference of interface A. The remote end sends
the Repold of B which is an interface that inherits from A. The stubs of A are
linked into the executable but the stubs of B are not.

3. The remote end has sent a duff IOR.

To handle this situation, the ORB must find out the type information dynami-
cally. This is explained in the next section.

7.3 Interface Inheritance

When the ORB receives an IOR of interface type B when it expects the type to be
A, it must find out if B inherits from A. When the ORB has no local knowledge of
the type B, it must work out the type of B dynamically.

The CORBA specification defines an Interface Repository (IR) from which IDL
interfaces can be queried dynamically. In the above situation, the ORB could con-
tact the IR to find out the type of B. However, this approach assumes that an IR is
always available and contains the up-to-date information of all the interfaces used
in the domain. This assumption may not be valid in many applications.

An alternative is to use the _is_a() operation to work out the actual type of
an object. This approach is simpler and more robust than the previous one because
no 3rd party is involved.

class Object{
CORBA::Boolean _is_a(const char* type_id);
%

76 CHAPTER 7. INTERFACE TYPE CHECKING

The _is_a() operation is part of the CORBA::Object interface and must be
implemented by every object. The input argument is a Repold. The function re-
turns true(1) if the object is really an instance of that type, including if that type is
a base type of the most derived type of that object.

In the situation above, the ORB would invoke the _is_a() operation on the
object and ask if the object is of type A before it processes any application invocation
on the object.

Notice that the _is_a() call is not performed when the IOR is unmarshalled.
It is performed just prior to the first application invocation on the object. This
leads to some interesting failure modes if B reports that it is not an A. Consider the
following example:

/I IDL
interface h
interface A { .}
interface { .. }
interface {
A op1();
Object op2();
%

/I C++

C_ptr objC;

A _ptr objA;
CORBA::Object_ptr objR;

{ ..

OO0 w>

objA = objC->0pl();
(void) objA->_non_existent();

O ® N e W N e

objR
objA

If the stubs of A,B,C,D are linked into the executable and:

0bjC->0p2();
A::_narrow(objR);

-
o

Case1 C:opl() and C:op2() return a B. Lines 6-10 complete successfully.
The remote object is only contacted at line 7.

Case2 C:opl() and C:op2() return a D. This condition only occurs if the
runtime of the remote end is buggy. The ORB raises a CORBA::Marshal ex-
ception at line 1 because it knows it has received an interface of the wrong

type.

If only the stubs of A are linked into the executable and:

Case1 C:opl() and C:op2() return a B. Lines 6-10 complete successfully.
When lines 7 and 10 are executed, the object is contacted to ask if it is an A.

Case2 C:opl() and C:op2() return a D. This condition only occurs if the
runtime of the remote end is buggy. Line 6 completes and no exception is

7.3. INTERFACE INHERITANCE 77

raised. At line 7, the object is contacted to ask if it is an A. If the answer is no,
a CORBA::INV_OBJREF exception is raised. The application will also see a
CORBA::INV_OBJREF at line 10.

78

CHAPTER 7. INTERFACE TYPE CHECKING

Chapter 8

Connection Management

This chapter describes how omniORB manages network connections.

8.1 Background

In CORBA, the ORB is the ‘middleware’ that allows a client to invoke an operation
on an object without regard to its implementation or location. In order to invoke
an operation on an object, a client needs to ‘bind” to the object by acquiring its ob-
ject reference. Such a reference may be obtained as the result of an operation on
another object (such as a naming service) or by conversion from a stringified repre-
sentation. If the object is in a different address space, the binding process involves
the ORB building a proxy object in the client’s address space. The ORB arranges
for invocations on the proxy object to be transparently mapped to equivalent invo-
cations on the implementation object.

For the sake of interoperability, CORBA mandates that all ORBs should support
IIOP as the means to communicate remote invocations over a TCP/IP connection.
IIOP is asymmetric with respect to the roles of the parties at the two ends of a
connection. At one end is the client which can only initiate remote invocations. At
the other end is the server which can only receive remote invocations.

Notice that in CORBA, as in most distributed systems, remote bindings are
established implicitly without application intervention. This provides the illusion
that all objects are local, a property known as ‘location transparency’. CORBA
does not specify when such bindings should be established or how they should be
multiplexed over the underlying network connections. Instead, ORBs are free to
implement implicit binding by a variety of means.

The rest of this chapter describes how omniORB manages network connections
and the programming interface to fine tune the management policy.

79

80 CHAPTER 8. CONNECTION MANAGEMENT

8.2 The Model

omniORB is designed from the ground up to be fully multi-threaded. The objec-
tive is to maximise the degree of concurrency and at the same time eliminate any
unnecessary thread overhead. Another objective is to minimise the interference
by the activities of other threads on the progress of a remote invocation. In other
words, thread ‘cross-talk’ should be minimised within the ORB. To achieve these
objectives, the degree of multiplexing at every level is kept to a minimum.

On the client side of a connection, the thread that invokes on a proxy object
drives the IIOP protocol directly and blocks on the connection to receive the reply.
On the server side, a dedicated thread blocks on the connection. When it receives
a request, it performs the up-call to the object and sends the reply when the up-call
returns. There is no thread switching along the call chain.

With this design, there is at most one call in-flight at any time on a connec-
tion. If there is only one connection, concurrent invocations to the same remote
address space would have to be serialised. To eliminate this limitation, omniORB
implements a dynamic policy—multiple connections to the same remote address
space are created on demand and cached when there are concurrent invocations in
progress.

To be more precise, a network connection to another address space is only es-
tablished when a remote invocation is about to be made. Therefore, there may be
one or more object references in one address space that refer to objects in a different
address space but unless the application invokes on these objects, no network con-
nection is made. The maximum number of connections opened to another address
space is 5 by default. Since 2.6.0, this parameter can be changed by setting the vari-
able omniORB::maxTcpConnectionPerServer before calling ORB_init()

It is wasteful to leave a connection open when it has been left unused for a
considerable time. Too many idle connections could block out new connections to
a server when it runs out of spare communication channels. For example, most
Unix platforms have a limit on the number of file handles a process can open. 64
is the usual default limit. The value can be increased to a maximum of a thousand
or more by changing the ‘ulimit” in the shell.

8.3 Idle Connection Shutdown and Remote Call Timeout

Inside the ORB, a thread is dedicated to scan for idle connections. The thread looks
after both the outgoing connections and the incoming connections.

When a connection is idle for a period of time, the connection is shutdown.
Similarly, if a remote call has not completed within a defined period of time, the
connection is shutdown and the ORB will return COMM_FAILURHo the client.

How often the internal thread scans the connections is determined by the value
of the scan granularity. This value is defaulted to 5 seconds and can be changed us-
ing the command-line option -ORBscanGranularity or using the omniORB::

8.4. INTEROPERABILITY CONSIDERATIONS 81

scanGranularity call. Notice that this value determines the precision the ORB
is able to keep to the value of the idle connection or remote call timeout.

How long the ORB will wait before it shuts down an idle connection is deter-
mined by the idleConnectionPeriods. There are separate values for incoming and
outgoing connections. The default values are 180 and 120 seconds for incoming
and outgoing connections respectively. These values can be changed using the
command-line options -ORBinConScanPeriod and -ORBoutConScanPeriod
They can also be controlled by the omniORB::idleConnectionScanPeriod()
call.

Similarly, how long the ORB will wait for a remote call to complete is deter-
mined by the parameter clientCallTimeOutPeriod for the client side and the server-
CallTimeOutPeroid for the server side. By default calls will not timeout on either
the client or server side.

The timeouts can be changed using the omniORB::callTimeOutPeriod()
call, or with the command line options -ORBclientCallTimeOutPeriod and
-ORBserverCallTimeOutPeriod

The APIs are documented in include/omniORB3/omniORB.h

class omniORB {
public:

static void scanGranularity(CORBA::ULong sec);
static CORBA::ULong scanGranularity();

enum idleConnType { idlelncoming, idleOutgoing };

static void idleConnectionScanPeriod(idleConnType direction, CORBA::ULong sec);

static CORBA::ULong idleConnectionScanPeriod(idleConnType direction);
enum callTimeOutType { clientSide, serverSide };
static void callTimeOutPeriod(callTimeOutType direction, CORBA::ULong sec);

static CORBA::ULong callTimeOutPeriod(callTimeOutType direction);
I3

The scan can be disabled completely by setting the scan granularity to 0.

8.4 Interoperability Considerations

The IIOP specification allows both the client and the server to shutdown a con-
nection unilaterally. When one end is about to shutdown a connection, it should
send a closeConnection message to the other end. It should also make sure that the
message will reach the other end before it proceeds to shutdown the connection.

82 CHAPTER 8. CONNECTION MANAGEMENT

The client should distinguish between an orderly and an abnormal connec-
tion shutdown. When a client receives a closeConnection message before the con-
nection is closed, the condition is an orderly shutdown. If the message is not re-
ceived, the condition is an abnormal shutdown. In an abnormal shutdown, the
ORB should raise a COMM_FAILURException whereas in an orderly shutdown,
the ORB should not raise an exception and should try to re-establish a new connec-
tion transparently.

omniORB implements these semantics completely. However, it is known that
some ORBs are not (yet) able to distinguish between an orderly and an abnor-
mal shutdown. Usually this is manifested as the client in these ORBs seeing a
COMM_FAILURBCccasionally when connected to an omniORB server. The work-
around is either to catch the exception in the application code and retry, or to turn
off the idle connection shutdown inside the omniORB server.

8.5 Connection Acceptance

omniORB provides the hook to implement a connection acceptance policy. Inside
the ORB runtime, a thread is dedicated to receive new connections. When the
thread is given the handle of a new connection by the operating system, it calls the
policy module to decide if the connection can be accepted. If the answer is yes, the
ORB will start serving requests coming in from that connection. Otherwise, the
connection is shutdown immediately.

There can be a number of policy module implementations. The basic one is a
dummy module which just accepts every connection.

In addition, a host-based access control module is available on Unix platforms.
The module uses the IP address of the client to decide if the connection can be
accepted. The module is implemented using tcp_wrappers 7.6. The access con-
trol policy can be defined as rules in two access control files: hosts.allow and
hosts.deny . The syntax of the rules is described in the manual page hosts_
access(5) which can be found in appendix A. The syntax defines a simple ac-
cess control language that is based on client (host name/address, user name), and
server (process name, host name/address) patterns. When searching for a match
on the server process name, the ORB uses the value of omniORB::serverName
ORB_init() uses the argument argv[0] to set the default value of this variable.
This can be overridden by the application with the -ORBserverName <string>
command line argument

The default location of the access control files is /etc . This can be overridden
by the extra options in omniORB.cfg . For instance:

omniORB configuration file - extra options
GATEKEEPER_ALLOWFILE /project/omni/var/hosts.allow

GATEKEEPER_DENYFILE /project/omni/var/hosts.deny

8.5. CONNECTION ACCEPTANCE 83

As each policy module is implemented as a separate library, the choice of policy
module is determined at program linkage time. For instance, if the host-based
access control module is in use:

% egl -ORBtraceLevel 2
omniORB gateKeeper is tcpwrapGK 1.0 - based on tcp_wrappers_7.6
| said,"Hello!". The Object said,"Hello!"

Whereas if the dummy module is in use:

% egl -ORBtracelLevel 2
omniORB gateKeeper is not installed. All incoming are accepted.
| said,"Hello!". The Object said,"Hello!"

84

CHAPTER 8. CONNECTION MANAGEMENT

Chapter 9

Type Any and TypeCode

The CORBA specification provides for a type that can hold the value of any OMG
IDL type. This type is known as type Any. The OMG also specifies a pseudo-object,
TypeCode, that can encode a description of any type specifiable in OMG IDL.

In this chapter, an example demonstrating the use of type Any is presented.
This is followed by sections describing the behaviour of type Any and TypeCode in
omniORB. For further information on type Any, refer to the C++ Mapping section
of the CORBA 2.3 specification [OMG99a], and for more information on TypeCode,
refer to the Interface Repository chapter in the CORBA core section of the CORBA
2.3 specification.

Warning

Since 2.8.0, omniORB has been updated to CORBA 2.3. In order to com-
ply with the 2.3 specification, it is necessary to change the semantics of
the extraction of string, object reference and typecode from an Any. The mem-
ory of the extracted values of these types now belongs to the Any value.
The storage is freed when the Any value is deallocated. Previously the ex-
tracted value was a copy and the application was responsible for releas-
ing the storage. It is not possible to detect the old usage at compile time.
In particular, unmodified code that uses the affected Any extraction op-
erators will most certainly cause runtime errors to occur. To smooth the
transition from the old usage to the new, an ORB configuration variable
omniORB::omniORB_27_CompatibleAnyExtraction can be set to re-
vert the any extraction operators to the old semantics.

9.1 Example using type Any
Before going through this example, you should make sure that you have read and

understood the examples in chapter 2. The source code for this example is included
in the omniORB distribution, in the directory src/examples/anyExample A

85

86 CHAPTER 9. TYPE ANY AND TYPECODE
listing of the source code is provided at the end of this chapter.

9.1.1 Type Any in IDL

Type Any allows one to delay the decision on the type used in an operation un-
til run-time. To use type any in IDL, use the keyword any, as in the following
example:

/I IDL

interface anyExample {
any testOp(in any mesg);

g

The operation testOp()() in this example can now take any value expressible
in OMG IDL as an argument, and can also return any type expressible in OMG IDL.

Type Any is mapped into C++ as the type CORBA::Any. When passed as an
argument or as a result of an operation, the following rules apply:

In InOut Out Return
const CORBA::Any& CORBA::Any& CORBA:Any*& CORBA::Any*

So, the above IDL would map to the following C++:
/I C++

class anyExample_i : public virtual _sk _anyExample {
public:

anyExample_i() { }

virtual ~anyExample_i() { }

virtual CORBA::Any* testOp(const CORBA::Any& a);

3

9.1.2 Inserting and Extracting Basic Types from an Any

The question now arises as to how values are inserted into and removed from an
Any. This is achieved using two overloaded operators: <<= and >>=.
To insert a value into an Any, the <<= operator is used, as in this example:

/I C++

CORBA::Any an_any;
CORBA::Long | = 100;
an_any <<= |[;

Note that the overloaded <<= operator has a return type of void .
To extract a value, the >>= operator is used, as in this example (where the Any
contains a long):

/I C++
CORBA::Long |;

9.1. EXAMPLE USING TYPE ANY 87

an_any >>= |;

cout << "This is a long: " << | << endl;

The overloaded >>= operator returns a CORBA::Boolean . If an attempt is
made to extract a value from an Any when it contains a different type of value (e.g.
an attempt to extract a long from an Any containing a double), the overloaded >>=
operator will return False; otherwise it will return True. Thus, a common tactic to
extract values from an Any is as follows:

/I C++

CORBA::Long |,

CORBA::Double d;

const char* str; /I From CORBA 2.3 onwards, uses const char*
/I instead of char*.

if (an_any >>= 1) {
cout << "Long: " << | << endl;

else if (an_any >>= d) {
cout << "Double: " << d << end|;
}
else if (an_any >>= str) {
cout << "String: " << str << endl,
/I Since 2.8.0 the storage of the extracted string is still
/l owned by the any.
/I In pre-omniORB 2.8.0 releases, the string returned is a copy.

else {
cout << "Unknown value." << endl;

9.1.3 Inserting and Extracting Constructed Types from an Any

It is also possible to insert and extract constructed types and object references
from an Any. omniidl will generate insertion and extraction operators for the con-
structed type. Note that it is necessary to specify the -WBa command-line flag
when running omniidl in order to generate these operators. The following exam-
ple illustrates the use of constructed types with type Any:

/I 1IDL

struct testStruct {
long |,
short s;

3

interface anyExample {
any testOp(in any mesg);

h

88 CHAPTER 9. TYPE ANY AND TYPECODE

Upon compiling the above IDL with omniidl -bcxx -Wba , the following
overloaded operators are generated:

1. void operator<<=(CORBA::Any&, const testStruct&)
2. void operator<<=(CORBA::Any&, testStruct*)

3. CORBA::Boolean operator>>=(const CORBA::Any&,
const testStruct*&)

Operators of this form are generated for all constructed types, and for inter-
faces.

The first operator, (1), copies the constructed type, and inserts it into the Any.
The second operator, (2), inserts the constructed type into the Any, and then man-
ages it. Note that if the second operator is used, the Any consumes the constructed
type, and the caller should not use the pointer to access the data after insertion.
The following is an example of how to insert a value into an Any using operator
(1):

Il C++

CORBA::Any an_any;

testStruct t;

t.| = 456;

ts = 8;

an_any <<= t;

The third operator, (3), is used to extract the constructed type from the Any,
and can be used as follows:

const testStruct* tp; /I From CORBA 2.3 onwards, use
/I const testStruct* instead of testStruct*

if (an_any >>= tp) {

cout << "testStruct: |. " << tp->l << endl;

cout << " s: " << tp->s << end|;
}
else {

cout << "Unknown value contained in Any." << endl;
}

As with basic types, if an attempt is made to extract a type from an Any that
does not contain a value of that type, the extraction operator returns False. If the
Any does contain that type, the extraction operator returns True. If the extrac-
tion is successful, the caller’s pointer will point to memory managed by the Any.
The caller must not delete or otherwise change this storage, and should not use
this storage after the contents of the Any are replaced (either by insertion or as-
signment), or after the Any has been destroyed. In particular, management of the
pointer should not be assigned to a _var type.

9.2. TYPE ANY IN OMNIORB 89

If the extraction fails, the caller’s pointer will be set to point to null.

Note that there are special rules for inserting and extracting arrays (using the
_forany types), and for inserting and extracting bounded strings, booleans, chars,
and octets. Please refer to the C++ Mapping chapter of the CORBA 2.3 specifica-
tion [OMG99a] for further information.

Warning

In pre-omniORB 2.8.0 releases, it was unclear in the CORBA specification
whether or not object references should be managed by an Any. The omni-
ORB implementation leaves management of an extracted object reference
to the caller. Therefore, the programmer should release object references
and TypeCodes that have been extracted from an Any. The same also ap-
plies to string extraction. CORBA 2.3 has clarified this issue and decreed
that the management of an extracted object reference still belongs to the
Any! Since 2.8.0, the omniORB implementation conforms to the CORBA
2.3 specification. For backward compatibility, the runtime variable omni-
ORB::omniORB_27_CompatibleAnyExtraction can be set to 1 to get
back the old behaviour. Notice that this should be used as a transitional
measure and in the long run, applications should be written to use the new
behaviour.

9.2 Type Any in omniORB

This section contains some notes on the use and behaviour of type Any in omni-
ORB.

Generating Insertion and Extraction Operators. To generate type Any insertion
and extraction operators for constructed types and interfaces, the -Wba command
line flag should be specified when running omniidl.

TypeCode comparison when extracting from an Any. When an attempt is made
to extract a type from an Any, the TypeCode of the type is checked for equivalence
with the TypeCode of the type stored by the Any. The equivalent() test in the
TypeCode interface is used for this purpose'.

Examples:

/I IDL 1
typedef double Doublel;

struct Testl {

'In pre-omniORB 2.8.0 releases, omniORB performs an equality test and will ignore any alias
TypeCodes (tk_alias) when making this comparison. The semantics is similar to the equiva-
lent() testin the TypeCode interface of CORBA 2.3.

90 CHAPTER 9. TYPE ANY AND TYPECODE

Doublel a;
h

/Il IDL 2
typedef double Double2;

struct Testl {
Double2 a;

h
If an attempt is made to extract the type Testl defined in IDL 1 from an Any

containing the Testl defined in IDL 2, this will succeed (and vice-versa), as the
two types differ only by an alias.

Top-level aliases. When a type is inserted into an Any, the Any stores both the
value of the type and the TypeCode for that type. The treatment of top-level aliases
from omniORB 2.8.0 onwards is different from pre-omniORB 2.8.0 releases.

In pre-omniORB 2.8.0 releases, if there are any top-level tk_alias ~ TypeCodes
in the TypeCode, they will be removed from the TypeCode stored in the Any. Note
that this does not affect the _tc_ TypeCode generated to represent the type (see
section on TypeCode, below). This behaviour is necessary, as two types that differ
only by a top-level alias can use the same insertion and extraction operators. If the
tk_alias is not removed, one of the types could be transmitted with an incorrect
tk_alias TypeCode. Example:

/Il IDL 3

typedef sequence<double> segDoublel;
typedef sequence<double> seqDouble2;
typedef seqDouble2 seqDouble3;

If either seqDoublel or seqDouble2 is inserted into an Any, the TypeCode
stored in the Any will be for a sequence<double> , and not for an alias to a
sequence<double>

From omniORB 2.8.0 onwards, there are two changes. Firstly, in the example,
seqDoublel and segDouble2 are now distinct types and therefore each has its
own set of C++ operators for Any insertion and extraction. Secondly, the top level
aliases are not removed. For example, if seqDouble3 is inserted into an Any,
the insertion operator for seqDouble2 is invoked (because seqDouble3 isjust a
C++ typedef of seqDouble2). Therefore, the TypeCode in the Any would be that
of seqDouble2. If this is not desirable, one can use the new member function “void
type(TypeCode_ptr) " of the Any interface to explicitly set the TypeCode to the
correct one.

Removing aliases from TypeCodes. Some ORBs (such as Orbix) will not accept
TypeCodes containing tk_alias TypeCodes. When using type Any while inter-
operating with these ORBs, it is necessary to remove tk_alias TypeCodes from
throughout the TypeCode representing a constructed type.

9.3. TYPECODE IN OMNIORB 91

To remove all tk_alias TypeCodes from TypeCodes stored in Anys, supply
the -ORBtcAliasExpand 1 ~ command-line flag when running an omniORB ex-
ecutable. There will be some (small) performance penalty when inserting values
into an Any.

Note that the _tc_ TypeCodes generated for all constructed types will con-
tain the complete TypeCode for the type (including any tk_alias TypeCodes),
regardless of whether the -ORBtcAliasExpand flag is set to 1 or not.

Recursive TypeCodes. omniORB (as of version 2.7) supports recursive Type-
Codes. This means that types such as the following can be inserted or extracted
from an Any:

/I IDL 4
struct Test4 {
sequence<Test4> a;

h

Type-unsafe construction and insertion. If using the type-unsafe Any construc-
tor, or the CORBA::Any::replace() member function, ensure that the value
returned by the CORBA::Any::value() member function and the TypeCode re-
turned by the CORBA::Any::type() member function are used as arguments
to the constructor or function. Using other values or TypeCodes may result in a
mismatch, and is undefined behaviour.

Note that a non-CORBA 2 function,

CORBA::ULong CORBA::Any::NP_length() const

is supplied. This member function returns the length of the value returned by
the CORBA::Any::value() member function. It may be necessary to use this
function if the Any’s value is to be stored in a file.

Threads and type Any. Inserting and extracting simultaneously from the same
Any (in 2 different threads) is undefined behaviour.

Extracting simultaneously from the same Any (in 2 or more different threads)
also leads to undefined behaviour. It was decided not to protect the Any with a
mutex, as this condition should rarely arise, and adding a mutex would lead to
performance penalties.

9.3 TypeCode in omniORB

This section contains some notes on the use and behaviour of TypeCode in omni-
ORB

92 CHAPTER 9. TYPE ANY AND TYPECODE

TypeCodes in IDL. When using TypeCodes in IDL, note that they are defined in
the CORBA scope. Therefore, CORBA::TypeCode should be used. Example:

/l IDL 5
struct Test5 {

long length;

CORBA:: TypeCode desc;
%

orb.idl Inclusion of the file orb.idl in IDL using CORBA::TypeCode is op-
tional. An empty orb.idl file is provided for compatibility purposes.

Generating TypeCodes for constructed types. To generate a TypeCode for con-
structed types, specify the -Wba command-line flag when running omniidl. This
will generate a _tc_ TypeCode describing the type, at the same scope as the type
(as per the CORBA 2.3 specification). Example:

/I IDL 6
struct Test6 {
double a;
sequence<long> b;
g
A TypeCode, _tc_Test6 , will be generated to describe the struct Test6 . The
operations defined in the TypeCode interface (see section 10.7 of the CORBA 2.3
specification [OMG99a]) can be used to query the TypeCode about the type it rep-
resents.

TypeCode equality. The behaviour of CORBA::TypeCode::equal() member
function from omniORB 2.8.0 onwards is different from pre-omniORB 2.8.0 re-
leases. In summary, the pre-omniORB 2.8.0 is close to the semantics of the new
CORBA:: TypeCode::equivalent() member function. Details are as follows:

The CORBA:: TypeCode::equal()() member function will now return true
only if the two TypeCodes are exactly the same. tk_alias =~ TypeCodes are included
in this comparison, unlike the comparison made when values are extracted from
an Any (see section on Any, above).

In pre-omniORB 2.8.0 releases, equality test would ignore the optional fields
when one of the fields in the two typecodes is empty. For example, if one of the
TypeCodes being checked is a tk_struct , tk_union , tk_enum , or tk_alias
and has an empty repository ID parameter, then the repository ID parameter will
be ignored when checking for equality. Similarly, if the name or member_name pa-
rameters of a TypeCode are empty strings, they will be ignored for equality check-
ing purposes. This is because a CORBA 2 ORB does not have to include these
parameters in a TypeCode (see the Interoperability section of the CORBA 2 specifi-
cation [OMGY96]). Note that these (optional) parameters are included in TypeCodes
generated by omniORB.

9.3. TYPECODE IN OMNIORB 93

Since CORBA 2.3, the issue of TypeCode equality has been clarified. There
is now a new member CORBA::TypeCode::equivalent() which provides the
semantics of the CORBA:: TypeCode::equal() as implemented in omniORB re-
leases prior to 2.8.0. So from omniORB 2.8.0 onwards, the CORBA::TypeCode::
equal() function has been changed to enforce strict equality. The pre-2.8.0 be-
haviour can be obtained with equivalent()

94 CHAPTER 9. TYPE ANY AND TYPECODE

9.4 Source Listing
9.4.1 anyExample_impl.cc

/I anyExample_impl.cc - This is the source code of the example used in

/1 Chapter 9 "Type Any and TypeCode" of the omniORB
I users guide.

1

/1 This is the object implementation.

1
/I Usage: anyExample_impl
1

1 On startup, the object reference is printed to cerr as a
I stringified I0OR. This string should be used as the argument to
1 anyExample_clt.

1

#include <iostream.h>
#include <anyExample.hh>

class anyExample_i : public POA_anyExample {
public:

inline anyExample_i() {}

virtual ~anyExample_i() {}

virtual CORBA::Any* testOp(const CORBA::Any& a);

3

CORBA::Any* anyExample_i::testOp(const CORBA::Any& a)
{

cout << "Any received, containing: " << endl;

#ifndef NO_FLOAT
CORBA::Double d;
#endif

CORBA::Long |,
const char* str;

testStruct* tp;

if (@a>=1){
cout << "Long: " << | << end];
}
#ifndef NO_FLOAT
else if (a >>= d) {
cout << "Double: " << d << end|
}
#endif
else if (a >>= str) {

9.4. SOURCE LISTING 95

}

cout << "String: " << str << endl,

}
else if (a >>= tp) {
cout << "testStruct: |: " << tp->| << endl;
cout << " s: " << tp->s << endl;
}
else {
cout << "Unknown value." << endl;
}

CORBA::Any* ap = new CORBA:Any;
*ap <<= (CORBA:ULong) 314;

cout << "Returning Any containing: ULong: 314\n" << endl;
return ap;

i e

int main(int argc, char** argv)

{

try {
CORBA::ORB_var orb = CORBA:ORB_init(argc, argv, "omniORB3");
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
anyExample_i* myobj = new anyExample_i();
PortableServer::Objectld_var myobjid = poa->activate_object(myobj);
obj = myobj->_this();
CORBA::String_var sior(orb->object_to_string(obj));
cerr << " << (char*)sior << " << end|;
myobj->_remove_ref();
PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();
orb->run();
orb->destroy();

}

catch(CORBA::SystemException&) {

cerr << "Caught CORBA::SystemException." << endl;
}
catch(CORBA::Exception&) {

cerr << "Caught CORBA::Exception." << endl;

96 CHAPTER 9. TYPE ANY AND TYPECODE

}
catch(omniORB::fatalException& fe) {

cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fefile() << endl;

cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
catch(...) {
cerr << "Caught unknown exception." << endl;
}
return O;

9.4. SOURCE LISTING 97

9.4.2 anyExample_clt.cc

/I anyExample clt.cc - This is the source code of the example used in

I Chapter 9 "Type Any and TypeCode" of the omniORB
1 users guide.

1

1 This is the client.

I
/Il Usage: anyExample_clt <object reference>
1

#include <iostream.h>
#include <anyExample.hh>

static void invokeOp(anyExample_ptr& tobj, const CORBA::Any& a)

{
CORBA::Any_var bp;

cout << "Invoking operation." << endl;
bp = tobj->testOp(a);

cout << "Operation completed. Returned Any: ";
CORBA::ULong ul;

if (bp >>= ul) {
cout << "ULong: " << ul << "\n" << endl;
}
else {
cout << "Unknown value." << "\n" << endl;
}
}
static void hello(anyExample_ptr tobj)
{
CORBA::Any a;

/I Sending Long

CORBA:Long | = 100;

a <<= |;

cout << "Sending Any containing Long: " << | << endl;
invokeOp(tobj,a);

/I Sending Double
#ifndef NO_FLOAT
CORBA::Double d = 1.2345;
a <<= d;
cout << "Sending Any containing Double: " << d << endl;
invokeOp(tobj,a);
#endif

98

CHAPTER 9. TYPE ANY AND TYPECODE

/I Sending String

const char* str = "Hello";

a <<= str;

cout << "Sending Any containing String: " << str << endl;
invokeOp(tobj,a);

/I Sending testStruct [Struct defined in IDL]
testStruct t;

tI = 456;

ts = 8;

a <<=t

cout << "Sending Any containing testStruct: I: " << tl << endl;

cout << " s: " << ts << endl

invokeOp(tobj,a);
}

WO T T]

int main(int argc, char** argv)
{

try {
CORBA::ORB_var orb = CORBA::ORB init(argc, argv, "omniORB3");

if(argc '= 2) {
cerr << "usage: anyExample_clt <object reference>" << end|;
return 1,

}

CORBA::Object_var obj = orb->string_to_object(argv[1]);
anyExample_var ref = anyExample::_narrow(obj);
if(CORBA::is_nil(ref)) {
cerr << "Can't narrow reference to type anyExample (or it was nil)."
<< endl;
return 1;

}
hello(ref);

orb->destroy();
}
catch(CORBA::COMM_FAILURE& ex) {
cerr << "Caught system exception COMM_FAILURE -- unable to contact the "
<< "object." << endl;
}
catch(CORBA::SystemException&) {
cerr << "Caught a CORBA::SystemException." << endl;
}
catch(CORBA::Exception&) {
cerr << "Caught CORBA::Exception." << endl;

9.4. SOURCE LISTING

}
catch(omniORB::fatalException& fe) {

cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fefile() << endl;

cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
catch(...) {
cerr << "Caught unknown exception." << endl;
}
return O;

100 CHAPTER 9. TYPE ANY AND TYPECODE

Chapter 10

Dynamic Management of Any
Values

In CORBA specification 2.2, a new facility—DynAny was introduced. Previously, it
was not possible to insert or extract constructed and other complex types from an
Any without using the stub code generated by an idl compiler for these types. This
makes it impossible to write generic servers (bridges, event channels supporting
filtering, etc.) because these servers can not have static knowledge of all the possi-
ble data types that they have to handle.

To fill this gap, the DynAny facility is defined to enable traversal of the data
value associated with an Any at runtime and extraction of its constituents. This
facility also enables the construction of an Any at runtime, without having static
knowledge of its types.

This chapter describes how DynAny may be used. For completeness, you
should also read the DynAny specification defined in Chapter 9 of the CORBA
2.3 specification. Where possible, the implementation in omniORB adheres closely
to the specification. However, there are areas in the specification that are ambigu-
ous or lacking in details. A number of these issues are currently opened with the
ORB revision task force. Until the issues are resolved, it is possible that a different
implementation may choose to interpret the specification differently. This chap-
ter provides clarifications to the specification, explains the interpretation used and
offers some advice and warnings on potential portability problems.

Notice that the DynAny interface has been changed in CORBA 2.3, particularly
with the addition of the support for the IDL type valuetype . Future releases of
omniORB will be updated to implement the interface as defined in CORBA 2.3.

10.1 C++ mapping

/I namespace CORBA

class ORB {

101

102

CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

public:

3

class InconsistentTypeCode : public UserException { ... };
DynAny ptr create_dyn_any(const Any& value);
DynAny ptr create_basic_dyn_any(TypeCode_ptr tc);
DynStruct_ptr create_dyn_struct(TypeCode_ptr tc);
DynSequence_ptr create_dyn_sequence(TypeCode_ptr tc);
DynArray _ptr create_dyn_array(TypeCode_ptr tc);
DynUnion_ptr create_dyn_union(TypeCode_ptr tc);

DynEnum_ptr create_dyn_enum(TypeCode_ptr tc);

typedef DynAny* DynAny_ptr;
class DynAny var { ... };

class DynAny {
public:

class Invalid : public UserException { ... };

class Invalidvalue : public UserException { ... };
class TypeMismatch : public UserException { ... };
class InvalidSeq : public UserException { ... };

typedef _CORBA_Unbounded_Sequence__ Octet OctetSeq;
TypeCode_ptr type() const;

void assign(DynAny_ptr dyn_any) throw(Invalid,SystemException);
void from_any(const Any& value) throw(Invalid,SystemException);
Any* to_any() throw(lnvalid,SystemException);

void destroy();

DynAny_ptr copy();

DynAny_ptr current_component();
Boolean next();

Boolean seek(Long index);

void rewind();

void insert_boolean(Boolean value) throw(InvalidValue,SystemException);

void insert_octet(Octet value) throw(InvalidValue,SystemException);

10.1. C++ MAPPING

void
void
void
void
void
void
void
void
void
void
void

insert_char(Char value) throw(InvalidValue,SystemException);
insert_short(Short value) throw(InvalidValue,SystemException);
insert_ushort(UShort value) throw(InvalidValue,SystemException);
insert_long(Long value) throw(InvalidValue,SystemException);
insert_ulong(ULong value) throw(InvalidValue,SystemException);
insert_float(Float value) throw(InvalidValue,SystemException);
insert_double(Double value) throw(lnvalidValue,SystemException);
insert_string(const char* value) throw(InvalidValue,SystemException);
insert_reference(Object_ptr v) throw(InvalidValue,SystemException);

insert_typecode(TypeCode_ptr v) throw(InvalidValue,SystemException);

insert_any(const Any& value) throw(InvalidValue,SystemException);

Boolean get_boolean() throw(TypeMismatch,SystemException);
Octet get_octet() throw(TypeMismatch,SystemException);

Char get_char() throw(TypeMismatch,SystemException);

Short get_short() throw(TypeMismatch,SystemException);

UShort get_ushort() throw(TypeMismatch,SystemException);

Long get long() throw(TypeMismatch,SystemException);

ULong get_ulong() throw(TypeMismatch,SystemException);

Float get float() throw(TypeMismatch,SystemException);

Double get double() throw(TypeMismatch,SystemException);
char* get_string() throw(TypeMismatch,SystemException);
Object_ptr get_reference() throw(TypeMismatch,SystemException);
TypeCode_ptr get_typecode() throw(TypeMismatch,SystemException);

Any*

get_any() throw(TypeMismatch,SystemException);

static DynAny_ptr _duplicate(DynAny_ptr);
static DynAny_ptr _narrow(DynAny_ptr);
static DynAny_ptr _nil();

h

/I DynFixed is not supported.

typedef DynEnum* DynEnum_ptr;
class DynEnum_var { ... };

class DynEnum : public DynAny {

public:

char* value_as_string();

void value_as_string(const char* value);
ULong value_as_ulong();

void value_as_ulong(ULong value);

static DynEnum_ptr _duplicate(DynEnum_ptr);
static DynEnum_ptr _narrow(DynAny_ptr);
static DynEnum_ptr _nil();

103

104

CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

typedef char* FieldName;
typedef String_var FieldName_var;

struct NameValuePair {
String_member id;
Any value;

J§

typedef _CORBA_ConstrType_Variable_Var<NameValuePair> NameValuePair_var;
typedef _CORBA_Unbounded_Sequence<NameValuePair > NameValuePairSeq;

typedef DynStruct* DynStruct_ptr;
class DynStruct_var { ... };

class DynStruct : public DynAny {
public:

char* current_member_name();

TCKind current_member_kind();

NameValuePairSeq* get_members();

void set_members(const NameValuePairSeq& NVSeqVal)
throw(InvalidSeq,SystemException);

static DynStruct_ptr _duplicate(DynStruct_ptr);
static DynStruct_ptr _narrow(DynAny_ptr);
static DynStruct_ptr _nil();

3

typedef DynUnion* DynUnion_ptr;
class DynUnion_var { ... };

class DynUnion : public DynAny {
public:

Boolean set_as_default();

void set_as_default(Boolean value);
DynAny_ptr discriminator();

TCKind discriminator_kind();
DynAny_ptr member();

char* member_name();

void member_name(const char* value);
TCKind member_kind();

static DynUnion_ptr _duplicate(DynUnion_ptr);
static DynUnion_ptr _narrow(DynAny_ptr);
static DynUnion_ptr _nil();

2

typedef _CORBA_Unbounded_Sequence<Any > AnySeq;

10.2.

THE DYNANY INTERFACE 105

typedef DynSequence* DynSequence_ptr;
class DynSequence var { ... };

class DynSequence : public DynAny {
public:

h

ULong length();

void length (ULong value);

AnySeq* get_elements();

void set elements(const AnySeq& value) throw(InvalidValue,SystemException);

static DynSequence_ptr _duplicate(DynSequence_ptr);
static DynSequence_ptr _narrow(DynAny_ptr);
static DynSequence_ptr _nil();

typedef DynArray* DynArray_ptr;
class DynArray var { ... };

class DynArray : public DynAny {
public:

h

AnySeq* get_elements();
void set_elements(const AnySeqg& value) throw(InvalidValue,SystemException);

static DynArray_ptr _duplicate(DynArray_ptr);
static DynArray_ptr _narrow(DynAny_ptr);
static DynArray_ptr _nil();

10.2 The DynAny Interface

10.2.1 Example: extract data values from an Any

If an Any contains a value of one of the basic data types, its value can be extracted
using the pre-defined operators in the Any interface. When the value is a struct or
other non-basic types, one can use the DynAny interface to extract its constituent
values.

In this section, we use a struct as an example to illustrate how the DynAny
interface can be used.

The example struct is as follows:

1

IDL

struct exampleStructl {

h

string s;
double d;
long l;

106 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

To create a DynAny from an Any value, one uses the create_dyn_any()
method:

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB_init.

Any v;
/I Initialise v to contain a value of type exampleStructl.

CORBA::DynAny_var dv = orb->create_dyn_any(v);

Like CORBA object and pseudo object references, a DynAny_ptr can be man-
aged by a _var type (DynAny_var) which will release the DynAny_ptr automat-
ically when the variable goes out of scope.

10.2.1.1 Iterate through the components

Once the DynAny object is created, we can use the DynAny interface to extract the
individual components in exampleStructl . The DynAny interface provides a
number of functions to extract and insert component values. These functions are
defined to operate on the component identified by the current component pointer.

A current component pointer is an internal state of a DynAny object. When a
DynAny object is created, the pointer is initialised to point to the first component
of the any value.

The pointer can be advanced to the next component with the next() opera-
tion. The function returns FALSE (0) if there are no more components. Otherwise
it returns TRUE (1). When the any value in the DynAny object contains only one
component, the next()() operation always returns FALSE(0).

Another way of adjusting the pointer is the seek() operation. The function
returns FALSE (0) if there is no component at the specified index. Otherwise it
returns TRUE (1). The index value of the first component is zero. Therefore, a
seek(0) call rewinds the pointer to the first component, this is also equivalent to
a call to the rewind() operation.

For completeness, we should also mention here the current_component()
operation. This operation causes the DynAny object to return a reference to an-
other DynAny object that can be used to access the current component. It is pos-
sible that the current component pointer is not pointing to a valid component, for
instance, the next() operation has been invoked and there is no more compo-
nent. Under this circumstance, the current_component() operation returns a
nil DynAny object reference'. For components which are just basic data types, call-
ing current_component() is an overkill because we can just use the basic type
extraction and insertion functions directly.

!Testing a nil DynAny object with CORBA::is_nil() returns TRUE(1). The CORBA 2.2 specification
does not specify what is the return value of this function when the current component pointer is in-
valid. To ensure portability, it is best to avoid calling current_component() under this condition.

10.2. THE DYNANY INTERFACE 107

10.2.1.2 Extract basic type components

In our example, the component values can be extracted as follows:

CORBA::String_var s =
CORBA::Double d
CORBA::Long I

dv->get_string();
= dv->get_double();
= dv->get_long();

Each get basic type operation has the side-effect of advancing the current com-
ponent pointer. For instance:

CORBA::String_var s = dv->get_string();
is equivalent to:

CORBA::DynAny_var temp = dv->current_component();
CORBA::String_var s = temp->get_string();
dv->next();

The get operations ensure that the current component is of the same type as
requested. Otherwise, the object throws a TypeMismatch exception. If the current
component pointer is invalid when a get operation is called, the object also throws
a TypeMismatch exception?.

To repeatedly access the components, one can use the rewind() or seek()
operations to manipulate the current component pointer. For instance, to access
the d member in exampleStructl directly:

dv->seek(1); /I position current component to member d.
CORBA::Double d = dv->get_double();

10.2.1.3 Extract complex components

When a component is not one of the basic data types, it is not possible to extract
its value using the get operations. Instead, a DynAny object has to be created from
which the component is accessed.

Consider this example:

/I DL
struct exampleStruct2 {
string m1,;
exampleStructl m2;
I3
In order to extract the data members within m2 (of type exampleStructl),
we use current_component() as follows:

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB _init.

>The CORBA 2.2 specification does not define the behavior of this error condition. To ensure
portability, it is best to avoid calling the get operations when the current component pointer is known
to be invalid.

108 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

Any v;
/I Initialise v to contain a value of type exampleStruct2.

CORBA::DynAny_var dv = orb->create_dyn_any(v);

CORBA::String_var m1 = dv->get_string(); /I extract member ml
CORBA::DynAny_var dm = dv->current_component(); /I DynAny reference to m2
CORBA::String_var s = dm->get_string(); /I m2.s

CORBA::Double d = dm->get_double(); /I m2.d

CORBA::Long | = dm->get_long(); /I m2.l

10.2.1.4 Clean-up

Now we finish off this example with a description on destroying DynAny objects.
There are two points to remember:

1. A DynAny reference (DynAny_ptr) is like any CORBA object or psuedo ob-
ject reference and should be handled in the same way. In particular, one has
to call the CORBA::release() operation to indicate that a DynAny refer-
ence will no longer be accessed. In the example, this is done automatically
by DynAny_var .

2. A DynAny object and its references are separate entities, just as a CORBA
object implementation and its object references are different entities. While
CORBA:release() will release any resources associated with a DynAny_
ptr , one has to separately destroy the DynAny object to avoid any memory
leak. This is done by calling the destroy()() operation.

In the example, the DynAny object can be destroyed as follows:
/I C++

CORBA::DynAny var dv = orb->create_dyn_any(v);
dv->destroy();

/I From now on, one should not invoke any operation in dv.
/I Otherwise the behaviour is undefined.

10.2.2 Example: insert data values into an Any

Using the DynAny interface, one can create an Any value from scratch. In this ex-
ample, we are going to create an Any containing a value of the exampleStructl
type.

First, we have to create a DynAny to store the value using one of the create_
dyn() functions. Because exampleStructl isa struct, we use the create_dyn_
struct() operation.

10.2. THE DYNANY INTERFACE

Il C++

CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB _init.

/I create the TypeCode for exampleStruct.
StructMemberSeq tc_members;
tc_members.length(3);

tc_members[0].name = (const char*)"s"

109

tc_members[0].type = CORBA::TypeCode::_duplicate(CORBA::_tc_string);

tc_members[0].type_def = CORBA::IDLType::_nil();
tc_members[l].name = (const char*)"d";

tc_members[l].type = CORBA:: TypeCode:: duplicate(CORBA::_tc_double);

tc_members[1].type_def = CORBA:IDLType::_nil();
tc_members[2].name = (const char*)"l";

tc_members[2].type = CORBA::TypeCode::_duplicate(CORBA::_tc_long);

tc_members[2].type_def = CORBA::IDLType::_nil();

CORBA::TypeCode_var tc = orb->create_struct_tc("IDL:exampleStruct1:1.0",
"exampleStructl",
tc_members);

/I create the DynAny object to represent the any value
CORBA::DynAny var dv = orb->create_dyn_struct(tc);

10.2.2.1 Insert basic type components

Once the DynAny object is created, we can use the DynAny interface to insert
the components. The DynAny interface provides a number of insert operations to
insert basic types into the any value. In our example, the component values can be

inserted as follows:

CORBA::String_var s =
CORBA::Double d
CORBA::Long I

(const char*)"Hello";
= 1416

dv->insert_string(s);
dv->insert_double(d);
dv->insert_long(l);

Each insert basic type operation has the side-effect of advancing the current

component pointer. For instance:
dv->insert_string(s);
is equivalent to:

CORBA::DynAny_var temp = dv->current_component();
temp->insert_string(s);
dv->next();

The insert operations ensure that the current component is of the same type as

the inserted value. Otherwise, the object throws an InvalidValue

exception. If

110 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

the current component pointer is invalid when an insert operation is called, the
object also throws a InvalidValue exception®.

Sometimes, one may just want to modify one component in an Any value. For
instance, one may just want to change the value of the double member in exam-
pleStructl . This can be done as follows:

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB_init.

Any v;
. /I Initialise v to contain a value of type exampleStructl.

CORBA::Double d = 6.28;
CORBA::DynAny var dv = orb->create_dyn_any(v);

dv->seek(1);
dv->insert_double(d); /I Change the value of the member d.

Finally, the any value can be obtained from the DynAny object using the to_any()
operation:

CORBA::Any var v = dv->to_any(); /I Obtain the any value.

10.2.2.2 Insert complex components

When a component is not one of the basic data types, it is not possible to insert
its value using the insert operations. Instead, a DynAny object has to be created
through which the component can be inserted.

In our example, one can insert component values into exampleStruct2 as
follows:

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var fc;
/I create the TypeCode for exampleStruct2.

/I create the DynAny object to represent the any value
CORBA::DynAny var dv = orb->create_dyn_struct(tc);

CORBA::String_var ml1 =
CORBA::String_var m2s =
CORBA::Double m2d
CORBA::Long m2l

(const char*)"Greetings";
(const char*)"Hello";
= 3.1416;
= 1,

3The CORBA 2.2 specification does not define the behavior of this error condition. To ensure
portability, it is best to avoid calling the insert operations when the current component pointer is
known to be invalid.

10.3. THE DYNSTRUCT INTERFACE 111

dv->insert_string(m1); /I insert member ml

CORBA::DynAny_var dm = dv->current_component(); /I DynAny reference to m2
dm->insert_string(m2s); /I insert member m2.s

dm->insert_double(m2d); /I insert member m2.d

dm->insert_long(m2l); /I insert member m2.I

CORBA::Any var v = dv->to_any(); /I obtain the any value

dv->destroy(); /I destroy the DynAny object.

/I No operation should be invoked on dv
/I from this point on except CORBA:release.

In addition to the DynAny interface, a number of derived interfaces are de-
fined. These interfaces are specialisation of the DynAny interface to facilitate the
handling of any values containing non-basic types: struct, sequence, array, enum
and union®. The next few sections will provide more details on these interfaces.

10.3 The DynStruct Interface

When a DynAny object is created through the create_dyn_any() operation
and the any value contains a struct type, a DynStruct object is created. The
DynAny reference returned can be narrowed to a DynStruct reference using the
CORBA::DynStruct::_narrow() operation.

In the previous example, the components are extracted using the get oper-
ations. Alternatively, the DynStruct interface provides an additional operation
(get_members())toreturn all the components in a single call. The returned value
is a sequence of name value pairs. The member name is given in the name field and
its value is returned as an Any value. For example, an alternative way to extract
the components in the previous example is as follows:

/I C++

CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB_init.

Any v;

/I Initialise v to contain a value of type exampleStructl.
CORBA::DynAny_var dv = orb->create_dyn_any(v);

CORBA::DynStruct_var ds = CORBA::DynStruct::_narrow(dv);
CORBA::NameValuePairSeq* sq = ds->get_ members();
char* S;

CORBA::Double d;

CORBA::Long l;

(*sq)[0].value >>= s; /I 1st element contains member s

*In the CORBA 2.2 specification, the DynFixed interface is defined to handle the fixed data type.
This is not supported in this implementation.

112 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

(*sq)[1].value >>= d; /l 2nd element contains member d
(*sqg)[2].value >>= |, /I 3rd element contains member |

Similarly, the DynStruct interface provides an additional operation (set_members()

to insert all the components in a single call. The following is an alternative way to
insert the components of the type exampleStructl into an Any value:

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB _init.

CORBA::TypeCode_var tc;
/I create the TypeCode for exampleStructl.

/I create the DynAny object to represent the any value
CORBA::DynAny var dv = orb->create_dyn_struct(tc);

CORBA::String_var s =
CORBA::Double d
CORBA::Long I

(const char*)"Hello";
3.1416;
1

CORBA::NameValuePairSeq sq;
sqg.length(3);
sq[0].id = (const char*)"s";
sq[0].value <<= CORBA::Any::from_string(s,0);
/I 1st element contains member s
sq[1].id = (const char*)"d";

sq[l].value <<= d; /I 2nd element contains member d
sq[2].id = (const char*)"l';
sq[2].value <<= |[; /I 3rd element contains member |

dv->set_members(sq);

Notice that the name-value pairs in the argument to set_members() must
match the members of the struct exactly or the object would throw the Invalid-
Seq exception.

In addition to the current_component() operation, the DynStruct interface
provides two operations: current_member_name() and current_member_
kind() , to return information about the current component.

10.4 The DynSequence Interface

Like struct values, sequence values can be traversed using the operations intro-
duced in section 10.2. The first sequence element can be accessed as the first Dyn-
Any component, the second sequence element as the second DynAny component
and so on.

To extract component values from an Any containing a sequence, the length of
the sequence can be obtained using the get length operation in the DynSequence
interface. Here is an example to extract the components of a sequence of long:

)

10.5. THE DYNARRAY INTERFACE 113

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB _init.
Any v;

/I Initialise v to contain a value of a sequence of long
CORBA :DynAny_var dv = orb->create_dyn_any(v);

CORBA::DynSequence_var ds = CORBA:.DynSequence::_narrow(dv);

CORBA::ULong len = ds->length(); /I extract the length of the sequence

CORBA::ULong index;

for (index = 0; index < len; index++) {
CORBA::Long v = ds->get_long();
cerr << "[" << index << "] = " << v << end|

}

Conversely, the set length operation is provided to set the length of the se-
quence. Here is an example to insert the components of a sequence of long:

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var ftc;
/I create the TypeCode for a sequence of long.

/I create the DynAny object to represent the any value
CORBA::DynSequence_var ds = orb->create_dyn_sequence(tc);

CORBA::ULong len = 3
ds->length(len); /I set the length of the sequence
CORBA::ULong index;

for (index = 0; index < len; index++) {
ds->insert_long(index); /I insert a sequence element
}

Similar to the DynStruct interface, the get_elements() operation is provided
to return all the sequence elements and the set_elements() operation is pro-
vided to insert all the sequence elements.

10.5 The DynArray Interface

Array values are handled by the DynArray interface. The DynArray interface is
the same as the DynSequence interface except that the former does not provide the
set length and get length operations.

114 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

10.6 The DynEnum Interface

Enum values are handled by the DynEnum interface. A DynEnum object contains
a single component which is the enum value. This value cannot be extracted or
inserted using the get and insert operations of the DynAny interface. Instead, two
pairs of operations are provided to handle this value.

The value_as_string() operation allows the enum value to be extracted or
inserted as a string. The value_as_ulong() operation allows the enum value to
be extracted or inserted as an unsigned long.

10.7 The DynUnion Interface

Union values are handled by the DynUnion interface. Unfortunately, the CORBA
2.2 specification does not define the DynUnion interface in sufficient details to nail
down its intended usage’. In this section, we try to fill in the gaps and describe a
sensible way to use the DynUnion interface. Where necessary, the semantics of the
operations is clarified. It is possible that the behavior of this interface in another
ORB is different from this implementation. Where appropriate, we give warnings
on usage that might cause problems with portability.

In relation to the current component pointer (section 10.2.1.1), a DynUnion ob-
ject contains two components. The first component (with the index value equals 0)
is the discriminator value, the second one is the member value. Therefore, one can
use the seek() and current_component() operations to obtain a reference to
the DynAny objects that handle the two components. However, it is better to use
the operations defined in the DynUnion interface to manipulate these components
as the semantics of the operations is easier to understand.

10.7.1 Three Categories of Union

Before we continue, it is important to understand that unions can be classified into
the following categories:

1. One that has a default branch defined in the IDL. This will be called explicit
default union in the rest of this section.

2. One that has no default branch and not all the possible values of the discrim-
inator type are covered by the branch labels in the IDL. This will be called
implicit default union.

3. One that has no default branch but all the possible values of the discriminator
type are covered. This will be called no default union.

>This interface is currently an open issue with the ORB revision task force.

10.7. THE DYNUNION INTERFACE 115

Of the three categories, the implicit default union is interesting because by def-
inition if the discriminator value is not equal to any of the branch labels, the union
has no member. That is, the union value consists solely of the discriminator value.

10.7.2 Example: extract data values from a union
10.7.2.1 Explicit default union

Consider a union of the following type:

/I IDL

union exampleUnionl switch(boolean) {
case TRUE: long |;

default: double d;

g
The most straightforward way to extract the member value is as follows:

Il C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB_init.

Any v;
. /I Initialise v to contain a value of type exampleUnionl.

CORBA::DynAny var dv = orb->create_dyn_any(v);
CORBA::DynUnion_var du = CORBA::DynUnion::_narrow(dv);

CORBA::String_var di = du->member_name();
CORBA::DynAny var dm = du->member();

if (strcmp((const char*)di,"l") == 0) {
/I branch label is TRUE
CORBA::Long v = dm->get_long();
cerr << "l = " << v << endl;

}

if (strcmp((const char*)di,"d") == 0) {
/I Is default branch
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl

}

In the example, the operation member_name() is used to determine which
branch the union has been instantiated. The operation member() is used to obtain
a reference to the DynAny object that handles the member.

Alternatively, the branch can be determined by reading the discriminator value:

Il C++

CORBA::DynAny_var di = du->discriminator();
CORBA::DynAny _var dm = du->member();

116 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

CORBA::Boolean di_v = di->get_boolean();

switch (di_v) {

case 1:
CORBA::Long v = dm->get_long();
cerr << "l = " << v << end|;
break;
default:
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl
}
The operation discriminator() is used to obtain the value of the discrimi-
nator.
Finally, the third way to determine the branch is to test if the default is selected:
/I C++
switch (dv->set_as_default()) {
case 1:
CORBA::Double v = dm->get_double();
cerr << "d = " << v << endl
break;
default:
CORBA::Long v = dm->get_long();
cerr << "l = " << v << endl;
}
The operation set_as_default()() returns TRUE (1) if the discriminator

has been assigned a valid default value.

10.7.2.2 Implicit default union

Consider a union of the following type:

/I IDL

union exampleUnion2 switch(long) {
case 1: long |;

case 2: double d;

3

This example is similar to the previous one but there is no default branch. The
description above also applies to this example. However, the discriminator may
be set to neither 1 nor 2. Under this condition, the implicit default is selected and
the union value contains the discriminator only!

When the discriminator contains an implicit default value, one might ask what
is the value returned by the member_name() and member() operation. Since
there is no member in the union value, omniORB returns a null string and a nil
DynAny reference respectively. This behavior is not specified in the CORBA 2.2
specification. To ensure that your application is portable, it is best to avoid call-

10.7. THE DYNUNION INTERFACE 117

ing these operations when the DynUnion object might contain an implicit default
value.

10.7.2.3 No default union

This is the last union category. For instance:

/I 1DL

union exampleUnion3 switch(boolean) {
case TRUE: long I;

case FALSE: double d;

h
In this example, all the possible values of the discriminator are used as union la-
bels. There is no default branch. The only difference between this category and the

explicit default union is that the set_as_default() operation always returns
FALSE (0).

10.7.3 Example: insert data values into a union

Writing into a union involves selecting the union branch with the appropriate dis-
criminator value and then writing the member value. There are three ways to set
the discriminator value:

1. Use the member_name()() write operation to specify the union branch by
specifying the union member directly. This operation has the side effect of
setting the discriminator to the label value of the branch.

2. Write the label value of a union branch into the DynAny object that handles
the discriminator.

3. If the union has a default branch, either explicitly or implicitly, use the set_
as_default()() write operation to set the discriminator to a valid default
value.

The following example shows the three ways of writing into a union:

/I C++
CORBA::ORB_ptr orb; /I orb initialised by CORBA::ORB_init.

CORBA::TypeCode_var ftc;
/I create the TypeCode for exampleUnionl.

/I create the DynAny object to represent the any value
CORBA::DynUnion_var dv = orb->create_dyn_union(tc);

CORBA::Any_var v;
DynAny_ptr dm;

118 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

/I Use member_name to select the union branch
dv->member_name("l");

dm = dv->member();

dm->insert_long(10);

v = dv->to_any(); /I transfer to an Any
CORBA::release(dm);

/I Setting the discriminator value to select the union branch
CORBA::DynAny_var di = dv->discriminator();

di->insert_boolean(1); /I set discriminator to label TRUE
dm = dv->member();

dm->insert_long(20);

v = dv->to_any(); /I transfer to an Any
CORBA::release(dm);

/I Use set_as default to select the default union branch
dv->set_as_default(1);

dm = dv->member();

dm->insert_double(3.14);

v = dv->to_any(); /I transfer to an Any
CORBA::release(dm);

dv->destroy();

10.7.3.1 Ambiguous usage

1. When the discriminator is set to a different value, a different member branch
is selected. Suppose the application has previously obtained a DynAny refer-
ence to a union member when it changes the discriminator value. As a result
of the value change, the union is now instantiated to another union branch,
i.e. a call to the member() operation will now return a reference to a different
DynAny object. If the application continues to access the DynAny object of
the old union member, the behavior of the ORB under this condition is not
defined by the CORBA 2.2 specification. With omniORB, the DynAny ob-
ject of the old union member is detached from the union when a new union
branch is selected. Therefore reading or writing this object will not have any
relation to the current value of the union. To avoid this ambiguity, the ref-
erence to the old union member should be released before a different union
branch is selected.

2. The write operation set_as_default() takes a boolean argument. It is
ambiguous to call this function with the argument set to FALSE (0). With
omniORB, such a call will be silently ignored.

3. Itis also ambiguous to pass the value TRUE (1) to the set_as_default()
operation when the union is a no default union (10.7.1). With omniORB, such
a call will be silently ignored.

10.8. DUPLICATE DYNANY REFERENCES 119

4. When the discriminator value is not set, calling the member() operation is
ambiguous. With omniORB, such a call will return a nil DynAny reference.
Similarly, a call to the member_kind() operation under this condition will
return tk_null

To ensure portability, it is best to avoid using the DynUnion interface and not
to rely on the ORB to behave as omniORB does under these ambiguous conditions.

10.8 Duplicate DynAny References

Like any CORBA object and psuedo object references, a DynAny reference can
be duplicated using the _duplicate()() operations. When an application has
obtained multiple DynAny references to the same DynAny object, it should be
noted that a change made to the object by invoking on one reference is also visi-
ble through the other references. In particular, if a call through one reference has
caused the current component pointer to be changed, subsequent calls through
other references will operate on the new current component pointer.

10.9 Other Operations

The following is a short summary of the other operations in the DynAny interface
which have not been covered in previous sections:

assign() initialises a DynAny object with another DynAny object. The two ob-
jects must have the same typecode.

from_any() initialises a DynAny object from the value in an any. The typecode
in the two objects must be the same.

copy() creates a new DynAny object whose value is a deep copy of the current
object.

type() returns the typecode associated with the DynAny object.

120 CHAPTER 10. DYNAMIC MANAGEMENT OF ANY VALUES

Chapter 11

The Dynamic Invocation Interface

The Dynamic Invocation Interface (or DII) allows applications to invoke operations
on CORBA objects about which they have no static information. That is to say the
application has not been linked with stub code which performs the remote oper-
ation invocation. Thus using the DII applications may invoke operations on any
CORBA object, possibly determining the object’s interface dynamically by using
an Interface Repository.

This chapter presents an overview of the Dynamic Invocation Interface. A toy
example use of the DII can be found in the omniORB distribution in the src/
examples/dii directory. The DII makes extensive use of the type Any, so ensure
that you have read chapter 9. For more information refer to the Dynamic Invoca-
tion Interface and C++ Mapping sections of the CORBA specification [OMG99al.

11.1 Overview

To invoke an operation on a CORBA object an application needs an object refer-
ence, the name of the operation and a list of the parameters. In addition the ap-
plication must know whether the operation is one-way, what user-defined excep-
tions it may throw, any user-context strings which must be supplied, a ‘context’
to take these values from and the type of the returned value. This information is
given by the IDL interface declaration, and so is normally made available to the
application via the stub code. In the DII this information is encapsulated in the
CORBA::Request pseudo-object.

To perform an operation invocation the application must obtain an instance of
a Request object, supply the information listed above and call one of the methods
to actually make the invocation. If the invocation causes an exception to be thrown
then this may be retrieved and inspected, or the return value on success.

121

122 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

11.2 Pseudo Objects

The DII defines a number of psuedo-object types, all defined in the CORBAames-
pace. These objects behave in many ways like CORBA objects. They should only
be accessed by reference (through foo_ptr or foo_var), may not be instantiated
directly and should be released by calling CORBA::release() '. A nil reference
should only be represented by foo::_nil()

These pseudo objects, although defined in pseudo-IDL in the specification do
not follow the normal mapping for CORBA objects. In particular the memory man-
agement rules are different—see the CORBA 2.3 specification [OMG99a] for more
details. New instances of these objects may only be created by the ORB. A number
of methods are defined in CORBA::ORBto do this.

11.2.1 Request

A Request encapsulates a single operation invocation. It may not be re-used—
even for another call with the same arguments.

class Request {

public:
virtual Object_ptr target() const;
virtual const char* operation() const;
virtual NVList_ptr arguments();
virtual NamedValue_ptr result();

virtual Environment_ptr env();

virtual ExceptionList_ptr exceptions();

virtual ContextList_ptr contexts();

virtual Context_ptr ctxt() const;
virtual void ctx(Context_ptr);

virtual Any& add_in_arg();

virtual Any& add_in_arg(const char* name);
virtual Any& add_inout_arg();

virtual Any& add_inout_arg(const char* name);
virtual Any& add_out_arg();

virtual Any& add_out_arg(const char* name);

virtual void set_return_type(TypeCode_ptr tc);
virtual Any& return_value();

virtual Status invoke();

virtual Status send_oneway();
virtual Status send_deferred();
virtual Status get_response();
virtual Boolean poll_response();

'if not managed by a _var type.

11.2. PSEUDO OBJECTS

123

static Request_ptr _duplicate(Request_ptr);
static Request_ptr _nil();

h

11.2.2 NamedValue

A pair consisting of a string and a value—encapsulated in an Any. The name is
optional. This type is used to encapsulate parameters and returned values.

class NamedValue {

public:

virtual const char* name() const;
/I Retains ownership of return value.

virtual Any* value() const;
/I Retains ownership of return value.

virtual Flags flags() const;

static NamedValue_ptr _duplicate(NamedValue_ptr);
static NamedValue_ptr _nil();

11.2.3 NVList

A list of NamedValue objects.
class NVList {

public:
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

ULong count() const;

NamedValue_ptr
NamedValue_ptr
NamedValue_ptr
NamedValue_ptr
NamedValue_ptr
NamedValue_ptr

add(Flags);

add_item(const char*, Flags);
add_value(const char*, const Any&, Flags);
add_item_consume(char*,Flags);
add_value_consume(char*, Any*, Flags);
item(ULong index);

Status remove (ULong);

static NVList_ptr _duplicate(NVList_ptr);
static NVList_ptr _nil();

11.2.4 Context

Represents a set of context strings.

class Context {

public:

124

CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

virtual const char* context name() const;

virtual CORBA::Context_ptr parent() const;

virtual CORBA::Status create_child(const char*, Context_out);

virtual CORBA::Status set_one_value(const char*, const CORBA::Any&);

virtual CORBA::Status set _values(CORBA::NVList_ptr);

virtual CORBA::Status delete_values(const char*);

virtual CORBA::Status get_values(const char* start_scope,
CORBA::Flags op_flags,
const char* pattern,
CORBA::NVList_out values);

/I Throws BAD_CONTEXT if <start_scope> is not found.

/Il Returns a nil NVList in <values> if no matches are found.

static Context_ptr _duplicate(Context_ptr);
static Context_ptr _nil();

11.2.5 ContextList

A ContextList is a list of strings, and is used to specify which strings from the
‘context” should be sent with an operation.

class ContextList {
public:

virtual ULong count() const;

virtual void add(const char* ctxt);
virtual void add_consume(char* ctxt);
/I consumes ctxt

virtual const char* item(ULong index);
/I retains ownership of return value

virtual Status remove(ULong index);

static ContextList_ptr _duplicate(ContextList_ptr);
static ContextList_ptr _nil();

11.2.6 ExceptionList

ExceptionList s contain a list of TypeCodes—and are used to specify which
user-defined exceptions an operation may throw.

class ExceptionList {
public:

virtual ULong count() const;

virtual void add(TypeCode ptr tc);

virtual void add_consume(TypeCode_ptr tc);
/[Consumes <tc>.

11.2.

PSEUDO OBJECTS 125

virtual TypeCode_ptr item(ULong index);
/I Retains ownership of return value.

virtual Status remove(ULong index);

static ExceptionList_ptr _duplicate(ExceptionList_ptr);
static ExceptionList_ptr _nil();

11.2.7 UnknownUserException

When a user-defined exception is thrown by an operation it is unmarshalled into
a value of type Any. This is encapsulated in an UnknownUserException . This
type follows all the usual rules for user-defined exceptions—it is not a pseudo
object, and its resources may be released by using delete

class UnknownUserException : public UserException {
public:

UnknownUserException(Any* ex);
/I Consumes <ex> which MUST be a UserException.

virtual ~UnknownUserException();
Any& exception();

virtual void _raise();

static const UnknownUserException* _downcast(const Exception*);
static UnknownUserException* _downcast(Exception*);

static UnknownUserException* _narrow(Exception®*);

/I _narrow is a deprecated function from CORBA 2.2,

/l use _downcast instead.

11.2.8 Environment

An Environment is used to hold an instance of a system exception or an Un-
knownUserException

class Environment {

virtual void exception(Exception*);
virtual Exception* exception() const;
virtual void clear();

static Environment_ptr _duplicate(Environment_ptr);
static Environment_ptr _nil();

126 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE
11.3 Creating Requests

CORBA::Object defines three methods which may be used to create a Request
object which may be used to perform a single operation invocation on that object:

class Object {

Status _create_request(Context_ptr ctx,
const char* operation,
NVList_ptr arg_list,
NamedValue ptr result,
Request_out request,
Flags req_flags);

Status _create_request(Context_ptr ctx,
const char* operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr exceptions,
ContextList_ptr ctxlist,
Request_out request,
Flags req_flags);

Request_ptr _request(const char* operation);

\

operation is the name of the operation—which is the same as the name given
in IDL. To access attributes the name should be prefixed by _get_ or _set_ .

In the first two cases above the list of parameters may be supplied. If the param-
eters are not supplied in these cases, or _request() is used then the parameters
(if any) may be specified using the add_*_arg() = methods on the Request . You
must use one method or the other—not a mixture of the two. For in/inout argu-
ments the value must be initialised, for out arguments only the type need be given.
Similarly the type of the result may be specified by passing a NamedValue which
contains an Any which has been initialised to contain a value of that type, or it may
be specified using the set_return_type() method of Request .

When using _create_request() , the management of any pseudo-object ref-
erences passed in remains the responsibility of the application. That is, the val-
ues are not consumed—and must be released using CORBA::release() . The
CORBA specification is unclear about when these values may be released, so to
be sure of portability do not release them until after the request has been released.
Values which are not needed need not be supplied—so if no parameters are speci-
fied then it defaults to an empty parameter list. If no result type is specified then it
defaults to void. A Context need only be given if a non-empty ContextList is
specified. The req_flags argument is not used in the C++ mapping.

11.4. INVOKING OPERATIONS 127

11.3.1 Examples

An operation might be specified in IDL as:
short anOpn(in string a);
An operation invocation may be created as follows:
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "omniORB3");

CORBA::NVList_var args;
orb->create_list(1, args);
(args->add(CORBA::ARG_IN)->value()) <<= (const char) "Hello World!";

CORBA::NamedValue_var result;
orb->create_named_value(result);
result->value()->replace(CORBA::_tc_short, 0);

CORBA::Request_var req = obj->_create_request(CORBA::Context::_nil(),
"anOpn", args, result, 0);

or alternatively and much more concisely:

CORBA::Request_var req = obj->_request("anOpn");
reg->add_in_arg() <<= (const char*) "Hello World!";
req->set_return_type(CORBA::_tc_short);

11.4 Invoking Operations

Once the Request object has been properly constructed, the operation may be
invoked by calling one of the following methods on the request object:

invoke() blocks until the request has completed. The application should then
test to see if an exception was raised. Since the CORBA spec is not clear about
whether or not system exceptions should be thrown from this method, a runtime
configuration variable is supplied so that you can specify the behavior:

namespace omniORB ({

CORBA::Boolean diiThrowsSysExceptions;

\

If this is FALSE, and the application should call the env() method of the re-
quest to retrieve an exception (it returns 0 (nil) if no exception was generated).
If it is TRUE then system exceptions will be thrown out of invoke() . User-
defined exceptions are always passed via env() , which will return a pointer to
a CORBA::UnknownUserException . The application can determine which type
of exception was returned by env()() by calling the _narrow() method defined
for each exception type.

128 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

Warning

In pre-omniORB 2.8.0 releases, the default value of diiThrowsSysExcep-
tions is FALSE. From omniORB 2.8.0 onwards, the default value is TRUE.

After determining that no exception was thrown the application may retrieve
any returned values by calling return_value() and arguments()

send_oneway() has the same semantics as a oneway IDL operation. It is im-
portant to note that oneway operations have at-most-once semantics, and it is not
guaranteed that they will not block. Any operation may be invoked ‘oneway” us-
ing the DII, even if it was not declared as ‘oneway’ in IDL. A system exception
may be generated, in which case it will either be thrown or may be retrieved using
env() depending on diiThrowsSysExceptions as above.

send_deferred() initiates the invocation, and then returns without waiting
for the result. At some point in the future the application must retrieve the re-
sult of the operation—but other than testing for completion of the operation the
application must not call any of the request’s methods in the meantime.

e get_response() blocks until the reply is received.

e poll_response() returns TRUE if the reply has been received, and FALSE
if not. It does not block.

Once poll_response() has returned TRUE, or get_response() has been
called and returned, the application may test for an exception and retrieve re-
turned values as above. If diiThrowsSysExceptions is true, then a system
exception may be thrown from get_response() . From omniORB 2.8.0 onwards,
poll_response() will raise a system exception if one has occurred during the
invocation. Previously, poll_response() would not raise an exception, so if
polling, the application also had to call another method to give the request an op-
portunity to raise the exception. This could be one of the methods to retrieve values
from the request, or get_response()

11.5 Multiple Requests

The following methods are provided by the ORB to enable multiple requests to be
invoked asynchronously.

namespace CORBA ({

class ORB {
public:

11.5. MULTIPLE REQUESTS 129

Status send_multiple_requests_oneway(const RequestSeq&);
Status send_multiple_requests_deferred(const RequestSeq&);
Boolean poll_next_response();

Status get_next_response(Request_out);

send_multiple_requests_oneway() is used to invoke a number of oneway
requests. An attempt will be made to invoke each of the requests, even if one or
more of the early requests fails. The application may check for failure of any of
the requests by testing the request’s env() method. System exceptions are never
raised by this method.

send_multiple_requests_deferred() will initiate an invocation of each
of the given requests, and return without waiting for the reply. At some point in the
future the application must retrieve the reply by calling get_next_response() ,
which returns a completed request. If no requests have yet completed it will block.
This method never throws exceptions—the request’s env() method must be used
to determine if an exception was generated. If not then any returned values may
then be queried.

poll_next_response() returns TRUE if there are any completed requests,
and FALSE otherwise, without blocking. If this returns true then the next call
to get_next_response() will not block. However, if another thread may also
be calling get_next_response() then it could retrieve the completed message
first—in which case this thread might block.

There are no guarantee as to the order in which replies will be received. If mul-
tiple threads are using this interface then it is not even guaranteed that a thread
will receive replies to the requests it sent. Any thread may receive replies to re-
quests sent by any other thread. It is legal to call get_next_response() even if
no requests have yet been invoked—in which case the calling thread blocks until
another thread invokes a request and the reply is received.

130 CHAPTER 11. THE DYNAMIC INVOCATION INTERFACE

Chapter 12

The Dynamic Skeleton Interface

The Dynamic Skeleton Interface (or DSI) allows applications to provide implemen-
tations of the operations on CORBA objects without static knowledge of the ob-
ject’s interface. It is the server-side equivalent of the Dynamic Invocation Interface.

This chapter presents the Dynamic Skeleton Interface and explains how to use
it. A toy example use of the DSI can be found in the omniORB distribution in
the src/examples/dsi directory. For further information refer to the Dynamic
Skeleton Interface and C++ Mapping sections of the CORBA 2.3 specification.

The DSI interface has changed in CORBA 2.3. omniORB 3 uses the new map-
ping, but since the mapping depends on PortableServer::Current , which
is not yet implemented, not all facilities are available. This chapter describes an
approach to building DSI servers which works with omniORB 3.

12.1 Overview

When an ORB receives an invocation request, the information includes the object
reference and the name of the operation. Typically this information is used by the
ORB to select a servant object and call into the implementation of the operation
(which knows how to unmarshal the parameters etc.). The Dynamic Skeleton In-
terface however makes this information directly available to the application—so
that it can implement the operation (or pass it on to another server) without static
knowledge of the interface. In fact it is not even necessary for the server to always
implement the same interface on any particular object!

To provide an implementation for one or more objects an application must sub-
class PortableServer::Dynamiclmplementation and override the method
invoke() . An instance of this class is registered with a POA and is assigned an
object reference (see below). When the ORB receives a request for that object the
invoke() method is called and will be passed a CORBA::ServerRequest object
which provides:

e the operation name

131

132 CHAPTER 12. THE DYNAMIC SKELETON INTERFACE

e context strings
e access to the parameters
e a way to set the returned values

e a way to throw user-defined exceptions.

12.2 DSI Types

12.2.1 PortableServer::DynamicImplementation

This class must be sub-classed by the application to provide an implementation for
DSI objects. The method invoke() will be called for each operation invocation.

namespace PortableServer {

class Dynamiclmplementation : public virtual ServantBase {
public:
virtual ~Dynamiclmplementation();

CORBA::Object_ptr _this();
/I Must only be called from within invoke(). Caller must release
/I the reference returned.

virtual void invoke(CORBA::ServerRequest_ptr request) = 0;
virtual char* _primary_interface(const Objectld& oid, POA ptr poa) = O;

virtual CORBA::Boolean _is_a(const char* logical_type_id);
/I The default implementation uses _primary_interface(),
/I but may be overridden by subclasses.

12.2.2 ServerRequest

A ServerRequest object provides the interface between a dynamic implementa-
tion and the ORB.

namespace CORBA ({

class ServerRequest {

public:
virtual const char* operation() = 0;
virtual void arguments(NVList_ptr& parameters) = O;

virtual Context_ptr ctx() = 0;

12.3. CREATING DYNAMIC IMPLEMENTATIONS 133

virtual void set_result(const Any& value) = 0;
virtual void set_exception(const Any& value) = 0;
protected:

inline ServerRequest() {}
virtual ~ServerRequest();

k

12.3 Creating Dynamic Implementations

The application must override the invoke() = method of Dynamicimplementa-
tion to provide an implementation for DSI objects. This method must behave as
follows:

e It may be called concurrently by multiple threads of execution, and so must
be thread-safe.

¢ It may not throw any exceptions. Both user-defined and system exceptions
are passed in a value of type Any via a call to ServerRequest::set_
exception()

e The operations on the ServerRequest object must be carried out in the
correct order, as described below.

12.3.1 Operations on the ServerRequest

operation() will return the name of the operation, and may be called at any
time. For attribute access the operation name is the IDL name of the attribute,
prefixed by _get_ or _set_ . If the operation name is not recognised a CORBA::
BAD_OPERATIONxception should be passed back through set_exception()
This will allow the ORB to then see if it is one of the standard object operations.

Firstly arguments() must be called passing a CORBA::NVList ! which must
be initialised to contain the type and mode of the parameters. The ORB consumes
this value and will release it when the operation is complete. At this point any
in/inout arguments will be unmarshalled, and when this operation returns, their
values will be in the NVList . The application may set the value of inout/out argu-
ments by modifying this parameter list.

If the operation has user-context information, then ctx() must be called after
arguments() to retrieve it.

set_result() must then be called exactly once if the operation has a non-
void return value (unless an exception is thrown). The value passed should be an
Any allocated with new, and will be freed by the ORB.

!obtained by calling CORBA::ORB::create_|list()

134 CHAPTER 12. THE DYNAMIC SKELETON INTERFACE

At any point in the above sequence set_exception() may be called to set
a user-defined exception or a system exception. If this happens then no further
operations should be invoked on the ServerRequest object, and the invoke()
method should return.

Within the invoke() method _this() may be called to obtain the object ref-
erence. This method may not be used at any other time.

12.4 Registering Dynamic Objects

To use a Dynamiclmplementation servant, a CORBA object must be created
and associated with it, just as for any other servant. Dynamic servants can also be
created on demand by Servant Managers, just like static servants.

12.5 Example

This implementation of Dynamiclmplementation::invoke() is taken from an
example which can be found in the omniORB distribution. The echoString()
operation is declared in IDL as:

string echoString(in string mesg);

Here is the Dynamic Implementation Routine:

void
MyDynImpl::invoke(CORBA::ServerRequest_ptr request)
{

try {
if(strcmp(request->operation(), "echoString"))

throw CORBA::BAD_OPERATION(0, CORBA::COMPLETED_NO);

CORBA::NVList_ptr args;
orb->create_list(0, args);

CORBA::Any a;
a.replace(CORBA::_tc_string, 0);
args->add_value(™, a, CORBA::ARG_IN);

request->arguments(args);

const char* mesg;
*(args->item(0)->value()) >>= mesg;

CORBA::Any* result = new CORBA::Any();
*result <<= CORBA::Any::from_string(mesg, 0);
request->set_result(*result);

}

catch(CORBA::SystemException& ex){
CORBA:Any a;

12.5. EXAMPLE 135

a <<= ex;
request->set_exception(a);

}
catch(...){
cout << "echo_dsiimpl: MyDynImpl::invoke - caught an unknown exception."
<< endl;
CORBA:Any a;
a <<= CORBA:UNKNOWN(0, CORBA::COMPLETED_NO);
request->set_exception(a);

136 CHAPTER 12. THE DYNAMIC SKELETON INTERFACE

Appendix A

hosts _access(5)

DESCRIPTION

This manual page describes a simple access control language that is based on client
(host name/address, user name), and server (process name, host name/address)
patterns. Examples are given at the end. The impatient reader is encouraged to
skip to the EXAMPLES section for a quick introduction.

An extended version of the access control language is described in the hosts_
options(5) document. The extensions are turned on at program build time by
building with -DPROCESS_OPTIONS.

In the following text, daemon is the process name of a network daemon pro-
cess, and client is the name and/or address of a host requesting service. Network
daemon process names are specified in the inetd configuration file.

ACCESS CONTROL FILES

The access control software consults two files. The search stops at the first match:

o Access will be granted when a (daemon,client) pair matches an entry in the
/etc/hosts.allow file.

e Otherwise, access will be denied when a (daemon,client) pair matches an
entry in the /etc/hosts.deny file.

e Otherwise, access will be granted.

A non-existing access control file is treated as if it were an empty file. Thus,
access control can be turned off by providing no access control files.

ACCESS CONTROL RULES

Each access control file consists of zero or more lines of text. These lines are pro-
cessed in order of appearance. The search terminates when a match is found.

137

138 APPENDIX A. HOSTS_ACCESS(5)

¢ A newline character is ignored when it is preceded by a backslash character.
This permits you to break up long lines so that they are easier to edit.

e Blank lines or lines that begin with a # character are ignored. This permits
you to insert comments and whitespace so that the tables are easier to read.

e All other lines should satisfy the following format, things between [] being
optional: daemon_list : client_list [: shell_command]

daemon_list s a list of one or more daemon process names (argv[0] values)
or wildcards (see below).

client_list is a list of one or more host names, host addresses, patterns or
wildcards (see below) that will be matched against the client host name or address.

The more complex forms daemon@host and user@host are explained in the
sections on server endpoint patterns and on client username lookups, respectively.

List elements should be separated by blanks and /or commas.

With the exception of NIS (YP) netgroup lookups, all access control checks are
case insensitive.

PATTERNS

The access control language implements the following patterns:

o A string that begins with a . character. A host name is matched if the last
components of its name match the specified pattern. For example, the pattern
tue.nl matches the host name wzv.win.tue.nl

o A string that ends with a . character. A host address is matched if its first
numeric fields match the given string. For example, the pattern 131.155.
matches the address of (almost) every host on the Eindhoven University net-
work (131.155.x.x).

e A string that begins with an character is treated as an NIS (formerly YP)
netgroup name. A host name is matched if it is a host member of the specified
netgroup. Netgroup matches are not supported for daemon process names
or for client user names.

e An expression of the form n.n.n.n/m.m.m.m is interpreted as a ‘net/mask’
pair. A host address is matched if ‘net’ is equal to the bitwise AND of the ad-
dress and the ‘mask’. For example, the net/mask pattern 131.155.72.0/
255.255.254.0 matches every address in the range 131.155.72.0 to
131.155.73.255

139

WILDCARDS

The access control language supports explicit wildcards:

ALL
The universal wildcard, always matches.

LOCAL
Matches any host whose name does not contain a dot character.

UNKNOWN
Matches any user whose name is unknown, and matches any host whose
name or address are unknown. This pattern should be used with care: host
names may be unavailable due to temporary name server problems. A net-
work address will be unavailable when the software cannot figure out what
type of network it is talking to.

KNOWN
Matches any user whose name is known, and matches any host whose name
and address are known. This pattern should be used with care: host names
may be unavailable due to temporary name server problems. A network
address will be unavailable when the software cannot figure out what type
of network it is talking to.

PARANOID
Matches any host whose name does not match its address. When tcpd is
built with -DPARANOID (default mode), it drops requests from such clients
even before looking at the access control tables. Build without -DPARANOID
when you want more control over such requests.

OPERATORS

EXCEPT
Intended use is of the form: list_ 1 EXCEPT list_2 ; this construct matches
anything that matcheslist_ 1 unless it matcheslist_2 . The EXCEPToper-
ator can be used in daemon_lists and in client_lists . The EXCEPTop-
erator can be nested: if the control language would permit the use of paren-
theses, a EXCEPT b EXCEPT avould parse as (a EXCEPT (b EXCEPT
c)) .

SHELL COMMANDS

If the first-matched access control rule contains a shell command, that command
is subjected to %<letter> substitutions (see next section). The result is executed
by a /bin/sh child process with standard input, output and error connected to

140 APPENDIX A. HOSTS_ACCESS(5)

/dev/null. Specify an & at the end of the command if you do not want to wait
until it has completed.

Shell commands should not rely on the PATH setting of the inetd. Instead,
they should use absolute path names, or they should begin with an explicit PATH=
whatever statement.

The hosts_options(5) document describes an alternative language that uses the
shell command field in a different and incompatible way.

% EXPANSIONS

The following expansions are available within shell commands:

%a (%A) The client (server) host address.

%c Client information: user@host, user@address, a host name, or just an ad-
dress, depending on how much information is available.

%d The daemon process name (argv[0] value).
%h (%H) The client (server) host name or address, if the host name is unavailable.
%n (%N) The client (server) host name (or "unknown" or "paranoid”).

%p The daemon process id.

%s Server information: daemon@host, daemon@address, or just a daemon name,
depending on how much information is available.

%u The client user name (or "unknown").

%%Expands to a single %character.

Characters in % expansions that may confuse the shell are replaced by under-
scores.

SERVER ENDPOINT PATTERNS

In order to distinguish clients by the network address that they connect to, use
patterns of the form:

process_name@host_pattern : client_list ...

Patterns like these can be used when the machine has different internet ad-
dresses with different internet hostnames. Service providers can use this facility
to offer FIP, GOPHER or WWW archives with internet names that may even be-
long to different organisations. See also the ‘twist” option in the hosts_options(5)
document. Some systems (Solaris, FreeBSD) can have more than one internet ad-
dress on one physical interface; with other systems you may have to resort to
SLIP or PPP pseudo interfaces that live in a dedicated network address space.

141

The host_pattern obeys the same syntax rules as host names and addresses
in client_list context. Usually, server endpoint information is available only
with connection-oriented services.

CLIENT USERNAME LOOKUP

When the client host supports the RFC 931 protocol or one of its descendants

(TAP, IDENT, RFC 1413) the wrapper programs can retrieve additional information

about the owner of a connection. Client username information, when available, is

logged together with the client host name, and can be used to match patterns like:
daemon_list : ... user_pattern@host_pattern ...

The daemon wrappers can be configured at compile time to perform rule-
driven username lookups (default) or to always interrogate the client host. In
the case of rule-driven username lookups, the above rule would cause username
lookup only when both the daemon_list and the host_pattern match.

A user pattern has the same syntax as a daemon process pattern, so the same
wildcards apply (netgroup membership is not supported). One should not get
carried away with username lookups, though.

e The client username information cannot be trusted when it is needed most,
i.e. when the client system has been compromised. In general, ALL and
(UN)KNOWN are the only user name patterns that make sense.

e Username lookups are possible only with TCP-based services, and only when
the client host runs a suitable daemon; in all other cases the result is ‘un-
known'.

e A well-known UNIX kernel bug may cause loss of service when username
lookups are blocked by a firewall. The wrapper README document de-
scribes a procedure to find out if your kernel has this bug.

e Username lookups may cause noticeable delays for non-UNIX users. The
default timeout for username lookups is 10 seconds: too short to cope with
slow networks, but long enough to irritate PC users.

Selective username lookups can alleviate the last problem. For example, a rule
like:

daemon_list : @pcnetgroup ALL@ALL

would match members of the pc netgroup without doing username lookups,
but would perform username lookups with all other systems.

DETECTING ADDRESS SPOOFING ATTACKS

A flaw in the sequence number generator of many TCP/IP implementations allows
intruders to easily impersonate trusted hosts and to break in via, for example, the

142 APPENDIX A. HOSTS_ACCESS(5)

remote shell service. The IDENT (RFC931 etc.) service can be used to detect such
and other host address spoofing attacks.

Before accepting a client request, the wrappers can use the IDENT service to
find out that the client did not send the request at all. When the client host pro-
vides IDENT service, a negative IDENT lookup result (the client matches UN-
KNOWN@ho$tis strong evidence of a host spoofing attack.

A positive IDENT lookup result (the client matches KNOWN@ho$tis less trust-
worthy. It is possible for an intruder to spoof both the client connection and the
IDENT lookup, although doing so is much harder than spoofing just a client con-
nection. It may also be that the client’s IDENT server is lying.

Note: IDENT lookups don’t work with UDP services.

EXAMPLES

The language is flexible enough that different types of access control policy can be
expressed with a minimum of fuss. Although the language uses two access control
tables, the most common policies can be implemented with one of the tables being
trivial or even empty.

When reading the examples below it is important to realise that the allow table
is scanned before the deny table, that the search terminates when a match is found,
and that access is granted when no match is found at all.

The examples use host and domain names. They can be improved by including
address and/or network/netmask information, to reduce the impact of temporary
name server lookup failures.

MOSTLY CLOSED

In this case, access is denied by default. Only explicitly authorised hosts are per-
mitted access.
The default policy (no access) is implemented with a trivial deny file:

letc/hosts.deny:
ALL: ALL

This denies all service to all hosts, unless they are permitted access by entries
in the allow file.
The explicitly authorised hosts are listed in the allow file. For example:

/etc/hosts.allow:
ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

The first rule permits access from hosts in the local domain (no . in the host
name) and from members of the some_netgroup netgroup. The second rule per-
mits access from all hosts in the foobar.edu domain (notice the leading dot),
with the exception of terminalserver.foobar.edu

143

MOSTLY OPEN

Here, access is granted by default; only explicitly specified hosts are refused ser-
vice.

The default policy (access granted) makes the allow file redundant so that it
can be omitted. The explicitly non-authorised hosts are listed in the deny file. For
example:

letc/hosts.deny:
ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

The first rule denies some hosts and domains all services; the second rule still
permits finger requests from other hosts and domains.

BOOBY TRAPS

The next example permits tftp requests from hosts in the local domain (notice the
leading dot). Requests from any other hosts are denied. Instead of the requested
file, a finger probe is sent to the offending host. The result is mailed to the supe-
ruser.

/etc/hosts.allow:
in.tftpd: LOCAL, .my.domain

letc/hosts.deny:
in.tftpd: ALL: (/some/where/safe\ finger -| @%h | \
/usr/ucb/mail -s %d-%h root) &

The safe_finger =~ command comes with the tcpd wrapper and should be in-
stalled in a suitable place. It limits possible damage from data sent by the remote
finger server. It gives better protection than the standard finger command.

The expansion of the %h (client host) and %d (service name) sequences is de-
scribed in the section on shell commands.

Warning: do not booby-trap your finger daemon, unless you are prepared for
infinite finger loops.

On network firewall systems this trick can be carried even further. The typical
network firewall only provides a limited set of services to the outer world. All
other services can be "bugged" just like the above tftp example. The result is an
excellent early-warning system.

DIAGNOSTICS

An error is reported when a syntax error is found in a host access control rule;
when the length of an access control rule exceeds the capacity of an internal buffer;
when an access control rule is not terminated by a newline character; when the
result of expansion would overflow an internal buffer; when a system call fails
that shouldnf. All problems are reported via the syslog daemon.

144 APPENDIX A. HOSTS_ACCESS(5)

FILES

/etc/hosts.allow , (daemon,client) pairs that are granted access.
letc/hosts.deny , (daemon,client) pairs that are denied access.
SEE ALSO

tcpd(8) tcp/ip daemon wrapper program.
tcpdchk(8), tcpdmatch(8), test programs.

BUGS

If a name server lookup times out, the host name will not be available to the access
control software, even though the host is registered.

Domain name server lookups are case insensitive; NIS (formerly YP) netgroup
lookups are case sensitive.

AUTHOR

Wietse Venema (wietse@wzv.win.tue.nl)
Department of Mathematics and Computing Science
Eindhoven University of Technology

Den Dolech 2, P.O. Box 513,

5600 MB Eindhoven, The Netherlands

Bibliography

[BLFIM98] T. Berners-Lee, R. Fielding, U.C. Irvine, and L. Masinter. Uniform Re-

[HV99]

[OMG9%6]

[OMGI8]

[OMG99a]

[OMG99Db]

[Ric96a]

[Ric96b]

source Identifiers (URI): Generic Syntax. RFC 2396, August 1998.

Michi Henning and Steve Vinoski. Advanced CORBA Programming with
C++. Addison-Wesley professional computing series, 1999.

Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification, 2.0 edition, 1996.

Object Management Group. CORBAServices: Common Object Services
Specification, December 1998.

Object Management Group. The Common Object Request Broker: Archi-
tecture and Specification, 2.3.1 edition, October 1999.

Object Management Group. INS Naming edited chapters document, De-
cember 1999. From http://www.omg.org/cgi-bin/doc?ptc/
99-12-03 .

Tristan Richardson. The OMNI Development Environment Version 4.0.
AT&T Laboratories Cambridge, November 1996.

Tristan Richardson. The OMNI Thread Abstraction. AT&T Laboratories
Cambridge, October 1996.

145

http://www.omg.org/cgi-bin/doc?ptc/99-12-03
http://www.omg.org/cgi-bin/doc?ptc/99-12-03

	Introduction
	Features
	CORBA 2.3 compliant
	Multithreading
	Portability
	Missing features

	Setting Up Your Environment
	Deprecated configuration file entries

	Platform specific variables

	The Basics
	The Echo Object Example
	Specifying the Echo interface in IDL
	Generating the C++ stubs
	Object References and Servants
	A Quick Tour of the C++ stubs
	Servant Object Implementation

	Writing the servant implementation
	Writing the client
	Example 1 --- Colocated Client and Implementation
	ORB initialisation
	Obtaining the Root POA
	Object initialisation
	Activating the POA
	Performing a call
	ORB destruction

	Example 2 --- Different Address Spaces
	Object Implementation: Generating a Stringified Object Reference
	Client: Using a Stringified Object Reference
	Catching System Exceptions
	Lifetime of a CORBA object

	Example 3 --- Using the Naming Service
	Obtaining the Root Context Object Reference
	The Naming Service Interface

	Example 4 --- Using tie implementation templates
	Source Listings
	eg1.cc
	eg2_impl.cc
	eg2_clt.cc
	eg3_impl.cc
	eg3_clt.cc
	eg3_tieimpl.cc
	dir.mk

	C++ language mapping
	Incompatibilities with pre-2.8.0 releases
	BOA compatibility

	Interoperable Naming Service
	Object URIs
	corbaloc
	corbaname

	Configuring resolve_initial_references
	ORBInitRef
	ORBDefaultInitRef
	omniORB configuration file
	Resolution order

	omniNames
	NamingContextExt
	Use with corbaname

	omniMapper
	Creating objects with simple object keys

	The IDL compiler
	Common options
	Preprocessor interactions
	Forward-declared interfaces
	Comments

	C++ back-end options
	Module splicing
	Flattened tie classes
	Generating example implementations

	Examples

	The omniORB API
	ORB initialisation options
	Hostname and port
	Run-time Tracing and Diagnostic Messages
	Server Name
	GIOP Message Size
	Object table size
	POA request holding timeout
	Obsolete Initial Object Reference Bootstrapping
	GIOP Lowest Common Denominator Mode
	Trapping omniORB Internal Errors
	System Exception Handlers
	CORBA::TRANSIENT handlers
	CORBA::COMM_FAILURE
	CORBA::SystemException

	Location forwarding

	Interface Type Checking
	Introduction
	Basic Interface Type Checking
	Interface Inheritance

	Connection Management
	Background
	The Model
	Idle Connection Shutdown and Remote Call Timeout
	Interoperability Considerations
	Connection Acceptance

	Type Any and TypeCode
	Example using type Any
	Type Any in IDL
	Inserting and Extracting Basic Types from an Any
	Inserting and Extracting Constructed Types from an Any

	Type Any in omniORB
	TypeCode in omniORB
	Source Listing
	anyExample_impl.cc
	anyExample_clt.cc

	Dynamic Management of Any Values
	C++ mapping
	The DynAny Interface
	Example: extract data values from an Any
	Iterate through the components
	Extract basic type components
	Extract complex components
	Clean-up

	Example: insert data values into an Any
	Insert basic type components
	Insert complex components

	The DynStruct Interface
	The DynSequence Interface
	The DynArray Interface
	The DynEnum Interface
	The DynUnion Interface
	Three Categories of Union
	Example: extract data values from a union
	Explicit default union
	Implicit default union
	No default union

	Example: insert data values into a union
	Ambiguous usage

	Duplicate DynAny References
	Other Operations

	The Dynamic Invocation Interface
	Overview
	Pseudo Objects
	Request
	NamedValue
	NVList
	Context
	ContextList
	ExceptionList
	UnknownUserException
	Environment

	Creating Requests
	Examples

	Invoking Operations
	Multiple Requests

	The Dynamic Skeleton Interface
	Overview
	DSI Types
	PortableServer::DynamicImplementation
	ServerRequest

	Creating Dynamic Implementations
	Operations on the ServerRequest

	Registering Dynamic Objects
	Example

	hosts_access(5)

