The Implementation of a Distributed Framework
to support ‘ Follow Me' Applications

Pete Steggles, Paul Webster, Andy Harter
The Olivetti and Oracle Research Laboratory,
24a Trumpington Street, Cambridge, England.

{psteggles,pwebster,aharter} @orl.co.uk

Abstract

Follow me applications support user mobility by
adapting their behaviour to follow a user as he moves
around a building. In order to adapt sensibly to their
current environment, such applications need to know
about the location and status of people and computing
resources. This information needs to be readily acces
sible and must be up-to-date and accurate. As such a
system involves human interaction, this presents some
real-time constraints.

This paper describes a framework for supporting
such applications. It is based around a 3-tier architec-
ture comprising a centralised database, a middle layer
of parallel serversand a collectionof distributed clients.
Some clients gather information from the environment,
and are long running. Other clients are mobile ap-
plications, which must respond rapidly to environmen-
tal changes. As all these applicationsare in daily use,
robustness and availability are key additional require-
ments.

The framework uses on-demand loading of CORBA
objectsand is sufficiently flexible and scal ableto be ap-
plied to a wide variety of other application areas.

The paper also describes some experiences of de-
ploying a substantial CORBA based system. |In par-
ticular, it shows how a design evolves due to chang-
ing requirements and problems encountered, and illus-
trates the importance of being ableto rapidly prototype
systems prior to deployment in order to adapt to these
changes and to expl ore alternative solutions.
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1 Introduction

Oneof ORL’sprimary research interestsis support-
ing the mobile user in a home or office environ-

ment. The ultimate goal of this kind of work is to
allow users to move freely around a building with-
out undue degradation in the computing and com-
muni cations resources available to them. As the
user moves around the building his applications,
multimedia streams and telephone calls will al be
able to come with him, specialising themselves to
their current environment as they follow him.

Such mobile applications require rich informa-
tion about their environment, gathered from arange
of environmental sensors and resource monitors.
Typically they need to know about the |ocation of
peopleand resources, and arange of machine prop-
erties such asinput/output facilities, processing ca-
pability and network connectivity. Up to now this
information has been gathered and stored by ap-
plications using ad-hoc techniques. Though this
is temptingly easy to implement for small exam-
ples, it is hard to maintain and becomes increas-
ingly problematic as new kinds of sensor and re-
source are introduced.

The goa of ORL's SPIRIT system [1] is to
gather information about the environment and
present it in a form suitable for mobile applica
tions. Data is gathered from a range of sensor
sources, including the active badge system [2], a
fine-grained location system using ultrasound [3],
monitorsof termina activity, and monitorsof CPU,
disk and network activity. Theselatter monitorsrun
on each machine at ORL and so represent multi-
ple data collection sources. The resulting data is
combined with static data about the building, peo-
pleand equipment, and is presented in an easily ac-
cessible form suitable for mobile applications.

This system must fulfil the following require-
ments:



e The precise mix of information required by
new mobile applicationsis hard to predict, so
it should be easy to extend both the data mod-
elled by the system and the queries supported.

¢ Mobile applications have long periods of in-
activity (while users are stationary) punctu-
ated by short periods of high activity (when
users move). So, whiletotal query throughput
is quite low, individual queries must be per-
formed quickly.

e Thedataprocessed by the system rangesfrom
valuable, static data about people and re-
sources, through periodic machine status up-
dates, to ultrasound location data streams pro-
ducing tens of updates per second. This must
all be collated and presented to applicationsin
an easy-to-use framework.

e Applications must be able to run indefinitely,
even while the system undergoes continued
development work. Applications should not
be harmed if the machine(s) running the sys-
tem go down, for example while data is
backed up or the software is upgraded. Some
temporary loss of service is acceptableif ma-
chines go down.

e The system must scale up to hundreds of het-
erogeneous machines and mobile users. It
should be easy to write client applications; the
client-specific code required should be mini-
mal and collected data should be presented in
acomprehensible way.

Thispaper beginswith ageneral overview of the
chosen architecture for the implemented system. It
then discussesthe way in which CORBA has been
used to alow users and services to be distributed.
In particular, the mechanism for providing high re-
liability is presented. To support large numbers of
clients, some filtering of the datais required. The
different techniques adopted are discussed, along
with some preliminary figures. Finally, some expe-
riences in building the system and deploying it are
presented.

Figure 1. System overview

2 System Overview

The chosen solution was a three-tier architecture
as shown in Figure 1. The bottom layer uses the
Oracle 7 RDBMS to provide information persis-
tence. The middle tier features a set of distributed
CORBA objects corresponding to real objects in
the environment. The top tier of CORBA clients
represents the sensor systems feeding the database
as well as the mobile applications utilising the
stored information. Thisarchitecture provides per-
sistence and the ability to make arbitrary queries
on the database, yet also includes support for afast
data path that bypassesthe bottom tier.

Oracle 7 is a relational database but includes
the key features needed to build an object-oriented
layer over it. These features include table cluster-
ing and stored procedureswrittenin PL/SQL [4]. A
simple object oriented modelling language was de-
signed along with a code generation utility known
asOuija[5]. Thisautomatically generatesthe Ora-
cle, CORBA IDL and C++ code necessary to create
aremotely-accessi bl e object model on the database
from a textual description of the data model. The
code generation processisillustrated in Figure 2.

Effectively, Ouijaprovides an object modelling
language plus a CORBA mapping for PL/SQL.
Objects are represented on the server by sets of
database rows; objects operations are represented
by packages of PL/SQL operations. Each object
may have a counterpart in the middle tier which
acts as a proxy, receiving CORBA cdls and for-
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Figure 2: Ouijacode generation

warding them to an appropriate PL/SQL operation
using Oracle's proprietary APl [6]. The Oracle
DDL for the object model, the PL/SQL package
signatures and the middle tier proxy serversare all
generated automatically. The basic CORBA ob-
jects generated by Ouijahave no state apart from a
unique object identifier. They can be extended us-
ing any combination of C++ inheritance, for exam-
ple to implement object caching strategies, or by
using IDL inheritance, to provide facilities irrele-
vant to the database.

3 Architecture

3.1 On-demand Loading

Insidethe database a persistent object isreferred to
by auniqueidentifier. Thisis made up of acombi-
nation of a type code, identifying the objects most
derived type, and a unique instance number. This
identifier is a primary key for the database table(s)
containing the data representing that object.

When a persistent object is made available ex-
ternally using CORBA, a special object reference
is manufactured for it. A standard CORBA refer-
ence has the following main components:

1. therepository ID of the most derived type

2. a key uniquely identifying the object within
the ORB

3. a networking component; for I1OP this is
made up of the IP address and port number on
which the ORB islistening

The object reference manufactured for a persis-
tent object sets these components to these values:

1. the repository ID of the persistent object’s
most derived type (asdefined by itstype code)

2. the persistent object’s unique instance num-
ber, as used within the database

3. awdl known IP address and port number for
aspecial object loader process which provides
the object |oading mechanism

Consider Figure 3. When a proxy server starts
up it creates a factory for each of the object types
whichit implements. Thesefactoriesare registered
with the object loader, which maintains a mapping
from the type code to the appropriate factory.

Any method which returns an object reference
will return a manufactured object reference (1).
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Figure 3: On-demand object loading

When a method is first invoked on one of these
references (2), it would normally cause an OB-
JECT_NOT_EXIST exception in the ORB of the
loader as the reference is for a non-existent ob-
ject. The object loader uses our own ORB, om-
niORB2 [7], that has been specialy enhanced so
that any invalid object keys can be passed to a
user-defined handler. Thisroutine decodes the key
intoitstype code and instance number components.
Thetype codeis used to identify the proxy factory
handling the class of objects, which is then sent
a load reguest that includes the unique object in-
stance number (3).

The CORBA object corresponding to theidenti-
fier islooked up in the address space of the proxy
and a new object is created if noneisfound. The
resulting object reference is returned to the loader
which sends this new object back to the client
(4) using a GIOP LOCATION_FORWARD mes-
sage [8]. On receipt of this message, the client’s
ORB transparently retries the operation with the
new address it has been forwarded (5). In addi-
tion, if at any time the forwarded reference should
become invalid, the client’s ORB transparently re-
sorts back to the origina object reference. This
causes the object to be rel oaded.

Objects within the database are therefore only
alocated an object implementation in one of the
proxiesif and when they arefirst used. Thisallows
the system to support potentially large numbers of
objects without committing resources in advance.
The proxy is simply a cache of persistent objects;
any state which is to be made persistent must be
stored within the database. Thisis because the ob-
ject may be unloaded from the proxy at any time.

The object loader may appear to be a bottle-
neck. This is not the case, even though all ob-
ject references need to be sent to it upon creation.
Once the object is created, no further accessto the
loader isrequired. In the resource monitoring sys-
tem the majority of the object references are peri-
odically re-used for database updates by extremely
long running clients; the number of object method
invocationsthat use the object |oader therefore rep-
resent a negligible percentage.

Providing this on-demand loading isthe key for
achieving the goals set down in the system require-
ments.

3.2 Robustness

Consider what happens when aproxy crashes. The
object reference of the previously loaded object is
invalid, so client operations on the object will fail.
In this case, the client needs to resort back to the
origina persistent identifier. This re-contacts the
object loader and attemptsto re-load the object. As
the proxy is down, thiswill asofail. At this stage,
the clients ORB enters a polling loop whereby it
sleeps and then retries the operation. Eventually,
the proxy will be restarted and the object loader
will cause the object to be loaded in the new proxy.
Whilethis causesadelay in service availability, all
clients continueto run once the proxy serviceisre-
stored.

3.3 Maintenance

A similar approach provides the ability for system
upgrades to take place without disruption to ex-
isting clients. A new proxy is started in paralel
with the existing one. This registers with the ob-
ject loader so that any new objects that are loaded
will be created using the new proxy. Any existing
clientswill continueto use the old proxy. At some
stage, the old proxy can be killed, at which point
any existing object references will becomeinvalid.
At the next method invocation, theclient will resort
back to the original persistent ID and cause the ob-
ject to be reloaded from the new proxy without any
perceived interruption to avail ability.



3.4 Scalability

The proxiesare designedto belong running and the
database may contain thousands of abjects. Over
time, thesewill be loaded into the proxy and would
cause the proxy to consume resources even though
only a subset of the objects may ever be in active
use. Theproblemisknowingwhenitissafeto dis-
pose of an object in one of the proxies. CORBA
object references may be stored indefinitely and in
avariety of forms including textua off-line refer-
ences. This makes distributed garbage collection
impossi blewithout complex client negotiation. By
using on-demand loading, any object may simply
be disposed of as and when system resources need
reclaiming. Should the object be later referenced,
it will be reloaded on demand from the database.
In the implementation, each object loaded by a
proxy has an associated LRU counter. Thisis up-
dated whenever an operation is called on the ob-
ject. Limits can be set on the maximum number
of loaded aobjectsin any given proxy, and the LRU
counter will be automatically used to dispose of an
existing object prior to loading the new one.

4 Performance

4.1 Proxy Filtering

When dedling withreal time updates, thereisinsuf-
ficient storage bandwidth for every transaction to
be passed via the database. In these cases, a fast-
path for real-time datais provided as shown by ar-
row (b) in Figure 1. Thisisused, for example, by a
spatial indexing service which is sent the raw sen-
sor streamsdirectly for subsequent processing. The
results of this processing may then be stored in the
database and used in subsequent database queries.

Real time data may aso be stored and retrieved
directly from the proxy servers. This ensures
clients gain the best response time and the most up
to date information. Periodically, the information
stored in the proxy can be stored into the database
to alow its usein more complex resource queries.
In this way, the proxy acts like a write through
cache. Should the proxy crash, any cached values
will belost. However, the nature of the datameans
that oncethe proxy isrestarted, theva uesthat were
lost would be out of date anyway.
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Figure 4: Potential areas for parallelism

4.2 Client Filtering

Domain-specific knowledge can beemployedtore-
duce the number of updates sent to the proxies.
When dealing with machine monitoring, the types
of information to be sent to the database can be
broadly classified as stateinformation and resource
level information.

State information includes aspects such as the
name of the CD-ROM currently loaded in a given
drive, and changes very infrequently. The database
needs only to be notified of the changes. Simi-
larly, when dealing with a scalar value which rep-
resents some resource level, one can define bands
which correspond to notiona states. The database
isonly notified when the band of the resourcelevel
changes. For example, we could define CPU load
bands of 0-30%, 30-70%, and 70-100%.

Client filtering has the disadvantage that the
monitored values available will not represent cur-
rent state. Using CORBA, a feedback channel
could easily be added to alow the databaseto throt-
tle back the number of updates when it is heavily
|loaded and increasetherate of updatewhenitisless
loaded.

4.3 Parallelism

In the cases where filtering is not appropriate, the
architecture supports a number of levels of paral-



lelism to allow performance to be improved. Con-
sider Figure 4.

At the most basic level, more disks may be used
for the database and they can be organised into a
RAID structure to allow data to be striped to im-
prove storage bandwidth. Similarly, multiple disk
controllersmay be used to provide concurrent disk
acCesses.

As each proxy isfocused on a particular object
type, each generally only refers to a subset of the
overal data. The Oracle database used inthiswork
supports a paralel server mode, whereby a num-
ber of database servers refer to the same database.
Proxies can be partitioned amongst the multiple
database instances and requests may then be pro-
cessed in paraléd. The on-demand |oading mecha
nism also means that if one database is being par-
ticularly heavily utilised, some of the proxies may
be moved to one of the other databaseswithout dis-
rupting client access.

The architecture supportsone more level of par-
aldism. A specia redirection proxy may register
with the object loader to receive proxy object load
requests. A number of copies of the same proxy
then register with the redirector. When arequest to
|load an object isreceived, theredirector selectsone
of the proxies and forwards the request to it. This
selection may be on the basis of machine load or
take other factors into account such as client geo-
graphical location.

44 Results

The system is still in the testing stage an has not
been fully deployed on a large population of ma-
chines and users, but initia testing indicates that
performance targets should be achieved.

Currently the database and proxiesrun onasin-
gle processor Sun Ultra-1 workstation (167MHz)
with 4 standard 2GB disks.

Using omniORB2 on this machine, the round
trip time to echo a null string is around 500;:s for
intra-machine communication and around 700us
for inter-
machine communications (using 10 MBit/s Ether-
net). A typical Ouijaround trip time (client-proxy-
database-proxy-client) is3msfor intramachinein-
vocations and about 3.5ms for inter-machine invo-
cations, again under the same conditions.

The real time location system generates events
at about 25Hz. Necessary computation lags these
events by about 40ms. Compared to thisfigure, the
extra lag of about 1ms introduced by distribution
using CORBA is not significant.

When attempting to support large numbers of
machines, the client side filtering in the monitors
manages to generaly remove between 80-99% of
the updates (about 97% on average). The current
system monitorsthe CPU, motherboard, disks, net-
work cards and processes of lifetime greater than
30 seconds on each machine. Thisproduces, on av-
erage, afigure of about 6 fairly small update trans-
actions per minute per machine. The other users of
database resources are updates of dataabout spatial
rel ationshi psbetween objectsand users, and thein-
tegrated spatial resource queriesthemselves. These
loads are quite small in comparison to the update
load caused by resource monitoring.

The above figures indicate that it is feasible to
monitor at least two hundred machines and users
whilemaintaining good query responsetimesusing
the current server hardware.

It should be noted that operations are automat-
icaly queued in the proxies. This can smooth
out the occasional transaction peaks such as under
‘start of day’ conditions, e.g. after apower cut, but
will result in poor query response times on these
rare occasions.

Finally, it should be noted that the parallel nature
of the overall architecture provides much scope to
leverage additional CPUs, disks and network con-
nections on the server side.

5 Experiences

Using themodelling language, aninitial datamodel
representing the complete ORL system resources
database was written in around 6 months. Thiswas
implemented into aworking database in 2 months.
Since then it has undergone two revisions. The
first involved mgjor changes to the complete data
model, but took only around 2 months to change
the model and implementation. The second in-
volved reorganisation of the member functionsand
took about 1 month. Clearly, these system changes
could not have been made without the rapid proto-
typing capability provided by the Ouijatool. The



current deployed system features 33 entities, 16 re-
lationships and 680 interface methods, all organ-
ised as 17 modules. This collection is set to grow
as other projects add their own modules to the
database.

5.1 Positive Experiences

From thiswork, it has shown that middleware does
work and can be used as the basis for high per-
formance, high reliability applications. The sys-
tem has been deployed on a humber of machine
architectures, including Solaris 2.4, Linux, DEC
OSF/1, Windows 95 and Windows NT. Long run-
ning monitoring clients on each of these machine
types have been shown to be robust to network
faults and machine crashes. These clients are also
unaffected by routine system maintenance, which
often involves shutting down the proxies and/or
database and restarting them. Sincethe systemwas
first started, some clientshaverun uninterruptedfor
months at atime.

Performance is good, though actua figures are
hard to measure as there are so many aspects of
the system which are still undergoing tuning. With
proxy and client filtering in place, the system can
cope with al the monitoring clients and still main-
tain sufficient response to service mobile clients.

In terms of using the information, the use of
CORBA has meant it is very easy to write new
clients. Writing the proxy servers is harder, but
most of the code is automatically generated. Use
of C++ and STL hasallowed the sourcecodesizeto
remain small and allowseasy extension of the prox-
ies by overriding the generated code.

5.2 Negative Experiences

Not everything went to plan. The original strat-
egy was for user querying and maintenance ap-
plications to be written using Java. In practice,
this highlighted that none of the currently avail-
able Java ORBs fully implement the 11OP proto-
col [9]. Many did not support heterogeneous archi-
tectures by having broken marshaling codethat as-
sumed that the endian of values was fixed. None
of them correctly supported the location forward-
ing messages used to support the on-demand | oad-
ing. Finally, the Java security feature of only being

able to contact the network address of the machine
which served the application was served from pre-
cludestheuse of any of the proxy distributiontech-
niques.

Despite considerableinvestment in trying to cir-
cumvent these problems, the Java approach had
to be abandoned and CGI was chosen to provide
a portable user-interface to the information in the
database.

The main disadvan-
tage found with using CORBA was the size of the
stub code generated. The stubs generated by om-
niORB2 are amongst the smallest of any available
ORB, but when atypica monitor refersto the stubs
from three or four modules, the stub code still rep-
resentsaround 97% of thetotal linesof code. Much
of thiscode implementstheinterfacesfor querying
the database. With Javano longer being used, most
of thisis now redundant, so it is hoped the next re-
vision of themodel will reducethe code size some-
what.

6 Conclusions

From our experiences, it is clear that using high
quality CORBA middleware can provide many im-
portant benefits to developers of distributed sys-
tems with very few performance costs or other
limitations. Performance measurements on om-
niORB2 [10, 11] indicate that it has a very small
call overhead and there is little performance gain
by adopting custom communi cations protocolsim-
plemented using low level socket calls. The dlight
performance hit is more than offset by the much
richer RPC abstraction provided, which hidesmany
of the implementation details from client applica
tion authors. This includes the problems encoun-
tered when dealing with heterogeneous computer
architectures and also the provision of support for
robustnessto network or server failures.

While clients are easy to write using CORBA,
the servers are more complex. In this work, this
has been addressed by the use of an automated code
generation tool which alows much of the process
of server construction to be automated. Using this
tool, it is easy to prototype new datamodels and to
adapt existing onesto reflect changes in system re-
quirements.



Directions where middleware support could be
improved include the provision of fully CORBA
compliant Java ORBs and the problem of the size
of the CORBA stub code generated. In thislatter
case, the praoblem can easily be reduced with the
provision of better linkerswhich can recognise and
ignore functionsthat are never called.

Through the use of CORBA middleware a ro-
bust and scalable framework has been produced.
This scalability applies to both the number of ob-
jectswhich it can support and to the amount of per-
formance which can gained through optimising the
clients and tuning the database. Future work will
focus on how to best approach this process in or-
der to meet the performance requirements of cur-
rent and future applications.
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