
Enhancing Distributed Systems with

Low-Latency Networking

S. L. Pope, S. J. Hodges, G. E. Mapp, D. E. Roberts & A. Hopper†

Olivetti and Oracle Research Laboratory
24a Trumpington Street,

Cambridge,
England.

† Cambridge University Engineering Department
Trumpington Street,

Cambridge,
England.

{spope, sjhodges, gmapp, droberts, ahopper}@orl.co.uk

May 27, 1998

Abstract

Recently several network technologies which support user-level com-
munication between processes using a shared-memory interface have be-
come available [4, 7]. These technologies offer very low latency, high
bandwidth communication by eliminating the need for software protocol
stacks. Whilst there has been much research on the use of such networks
in the context of parallel computing [5, 6, 13], relatively little work has
been done on their suitability for distributed applications. This paper de-
scribes the work undertaken to integrate the Scalable Coherent Interface
(SCI) interconnect with the standard NFS server and a CORBA 2.0 com-
pliant ORB over Linux. It is shown that impressive performance increases
can be achieved without modification to either the operating system or
the distributed application.

Keywords: SCI, CORBA, NFS.

1 Introduction

The computing environment at the Olivetti & Oracle Research Laboratory
(ORL) is highly heterogenous, supporting our work in multimedia and sen-
sor driven systems. We require a high bandwidth and low latency network
infra-structure for applications, data and hardware. We were keen to explore
opportunities for improving the performance of our existing distributed applica-
tions through the use of high speed interconnect technology and believed that an

1

improvement in latency could have a direct effect on many of our existing appli-
cations. One obvious example is NFS where many operations, such as traversing
a directory structure are limited by the latency of the communication between
client and server. We also identified CORBA as a piece of our infra-structure
where there was scope for a performance improvement which would be passed
on to many of our distributed applications.

Given this starting point, we first decided to examine the existing intercon-
nects which were available for our system. We were looking for an interconnect
which offered a bandwidth which was greater than the usable IO bandwidth of
our workstations1, but which would scale to well over a Gbps and which was
sufficiently mature to operate within our heterogeneous environment of work-
stations. In our lab, this means PCs with Linux or NT and Sun workstations
and servers.

We chose SCI from Dolphin Interconnect Solutions as an attractive tech-
nology which met the above criteria and which also offered a memory mapped
paradigm for access which we thought could lead to very low latencies in our sys-
tem. Dolphin were generous enough to provide access to the hardware interface
and drivers, a prerequisite for any serious development effort.

This paper will describe the work undertaken at ORL to integrate the SCI
interconnect with the standard Linux NFS server and our in house CORBA 2.0
compliant ORB, omniORB2. Other interconnect technologies [5, 1] would have
been equally valid for our experiments. However it is outside the scope of this
paper to provide a comparison between the different technologies.

We show in this paper that through attention to the software overheads and
communication paradigms at all levels of the system, it is possible to obtain
significant performance improvements for existing distributed applications by
running over a low-latency interconnect without heavy modifications to either
operating systems or the applications.

2 Dolphin PCI-SCI card

Figure 1 illustrates how SCI cards may be used to interconnect PCI systems.
The board allows a processor in one node to directly access the memory of
another connected node. The processor achieves this by executing ordinary
load store instructions addressing the part of its physical address space that
is allocated to the SCI interface on the PCI bus. Different parts of the local
physical address space may be mapped to different remote memory nodes.

When the PCI-SCI interface receives a read or write request from the PCI
bus, it transmits a SCI request packet on the interconnect. The 32 bit PCI
address is mapped into a 64 bit SCI address, where the 16 most significant bits
contain the target node identity. At its destination, the SCI packet is checked
for compliance with address restrictions. If the destination address and source
node are legal, the received request is then executed as a PCI transaction, using
a mapping from the 48 lower bits of the SCI address to a 32 bit PCI address.

1Around 300 Mbps for a Pentium Pro 200Mhz FX

2

After completing the request, PCI-SCI interface of the target node generates
an SCI response packet containing the transfer status and returns it to the
requester. At the requesting side, this SCI packet is translated into a response
on the PCI bus.

By manipulating the operating system’s virtual page tables, it is possible for
a user-level process to communicate with a remote machine without calling a
kernel-level device driver. Using this hardware, a single user-level dword write
to remote memory has been timed at 2.5µs or 12.8Mbps. Clearly in order to
achieve high throughputs it is necessary to transfer N dwords in a time much
less than 2.5Nµs. To solve this problem the Dolphin PCI-SCI bridge imple-
ments a streaming mechanism to achieve high-throughput whilst maintaining
low-latency. This is explained in more detail in [11]. However, because a lo-
cal PCI bus must be locked whilst a remote load instruction is executed, the
throughput achievable when reading from remote memory is correspondingly
less than when writing.

Host bridge

PCI Bus

Processor
Bus

PCI/SCI

MemoryCPU

Host bridge

PCI Bus

Processor
Bus

MemoryCPU

PCI/SCI

SCI Interconnect

Figure 1: Two PCI systems connected using SCI.

3 Driver software

A Linux driver was written for the SCI cards based on Dolphin’s own Windows
NT driver. This mainly involved writing routines for manipulating the Linux
virtual-memory tables, to allow a user-level process to map the SCI aperture into
its address space. Several additional functions were implemented to facilitate
experimentation including: an event channel to signal and wakeup a blocked

3

process on a remote node and write-gathering2 on certain portions of the address
space for performance on Pentium Pro platforms.

Once a shared memory channel has been set up, there is no software involved
in the transportation of raw data, hence the performance of both our Linux
driver and Dolphin’s Windows NT driver, when write-gathering was disabled,
were identical. All of the results which follow were taken on 200MHz Pentium
Pro computers with FX440 PCI chipsets and running the Linux 2.0.30 kernel.
These were interconnected by a point-to-point SCI network. The raw write
performance measured through the interconnect was 220Mbps without write-
gathering and 520Mbps with write-gathering enabled.

During the development of the driver various receiver side blocking strategies
were investigated. Damianakis et al argue in [3] that a hybrid spin-then-block
mechanism offers the best overall performance in a wide variety of situations.
Our experimentation suggested that when slow interrupts3 are used it is fairer
to simply block pending an interrupt. Because of the low overhead of the Linux
scheduler this also provides substantial performance benefits in a loaded system:
no CPU time is wasted spinning, and in the majority of cases the CPU is
immediately returned to the process by the scheduler. The results of these
experiments are outside of the scope of this paper and will be reported elsewhere.

4 Communication abstractions

Although the hardware manages the transportation of data through the shared
memory channel, it is necessary to ensure that synchronisation is maintained
between the applications at the end points of the channel. Effective management
of the shared memory is the key to achieving good performance and different
communication abstractions suit different applications. This section describes
the two abstractions we implemented.

The first is a simple locking mechanism over a shared memory segment. This
was found to be sufficient for the omniORB2 application and was implemented
as a user level library. The second is a more elaborate shared circular buffer
abstraction. This was implemented as both a kernel and user level BSD socket
protocol and was able to support the full semantics of the BSD socket.

4.1 Locked shared memory

The locked shared memory abstraction is perhaps the simplest means of man-
aging a shared memory buffer, forming a pair of uni-directional channels. As
shown in Figure 2, at the point that a sender wishes to transmit data on a

2Where successive discontiguous writes are amalgamated by the host PCI bridge into a
contiguous block of given size before bursting the writes to the SCI card.

3Linux offers two types of interrupts: fast and slow. The main difference is that after a
slow interrupt has been handled the scheduler is invoked, thus allowing a process which was
added to the run-queue during the interrupt routine to gain immediate access to the CPU. By
contrast, a fast interrupt does not call the scheduler and therefore a newly unblocked process
may have to wait a full scheduling quantum before it can progress.

4

connection, the shared memory library acquires the Tx semaphore (1), copies
the data into the shared memory segment (2), and releases the Rx semaphore
(3). Assuming the receiver had been blocked on the Rx semaphore, it can then
acquire the Rx semaphore (4), copy the data out of the buffer (5) and release
the Tx semaphore (6). Note that the buffer abstraction was structured for
performance reasons such that reads are always made from local memory.

Direction of channel

Receiver’s Local Memory

Sender’s Local Memory

1. Sender Lock Tx (Read/Write)

2. Sender Copy Data In (Write)

3. Sender Unlock Rx (Write)

4. Receiver Lock Rx (Read/Write)

5. Receiver Copy Data Out (Read)

6. Receiver Unlock Tx (Write)

Direction of channel

U
se

r
L

ev
el

 I
nt

er
fa

ce
 (

R
ea

d
/ W

ri
te

)

Shared Virtual Memory
U

se
r

L
ev

el
 I

nt
er

fa
ce

 (
R

ea
d

/ W
ri

te
)

Figure 2: A Bi-Directional Channel Using a Locked Shared Memory Buffer.

This scheme will not effectively support a fully asynchronous bi-directional
link. A sender may not proceed until the previous send has been read by the
receiver. This is not a problem given the asymmetry of the communication
protocol used by an application such as omniORB2, but would result in deadlock
for other applications. The circular buffer socket abstraction described next
avoids this problem.

4.2 SCI Sockets

Our locked shared memory communication abstraction was extended to a man-
aged circular buffer. This was intended to enable fully asynchronous commu-
nication and streaming of data. The circular buffer abstraction was sufficiently
powerful to support a BSD socket protocol and was necessary for our support
for NFS over SCI.

5

The SCI socket library maps each socket onto a shared circular buffer, with
access controlled using Peterson’s mutual exclusion algorithm [15]. A shared
buffer has a number of event channels which are used to signal different events
associated with the shared buffer. The first channel is used to signal to the
receiver that a sender has put data into an empty shared buffer. When this
occurs, the receiver is woken up if it was blocked waiting for data to arrive or if
the server was blocked on a select call, it is signalled that data was now available
on this socket. The second channel is used at connection time to signal that a
remote end has mapped in a local buffer, i.e. a connection is being established.
This is needed to support the select call for listening sockets.

The design of the circular buffer also addressed the asymmetric performance
for reading and writing which is characteristic of SCI. Each connection has an
associated socket pair, one socket for reading and one for writing. The read
socket is mapped to the local shared buffer while the write socket is mapped
onto the remote buffer at the other end of the connection. Thus while socket
writes were done remotely, any socket reads were local to the machine avoiding
slow remote reads altogether. The read socket is created when the user issues
a socket call. The write socket is created when a connection is made. However,
the user makes all socket library calls with the read socket and is not aware of
the write socket which is managed entirely by the SCI socket library. Figure 3
shows a connection between two endpoints using SCI sockets.

Endpoint A Endpoint B

circular
 buffer

write socket

read socket

write socket

circular
 buffer

read socket

Figure 3: A connection between endpoints A and B using the SCI Socket Library

5 NFS over SCI

The NFS protocol [10] is an example of a mature distributed application which
is part of our general infra-structure. Many of the common NFS operations
such as those needed when traversing a directory structure are limited by the
latency of the communication between the client and server and so we expected
a performance improvement of NFS over the low latency SCI interconnect.

6

The NFS server is single threaded and achieves multiplexing through use of
the BSD select system call. This represents a markedly different approach in
engineering terms to that of omniORB2 (described in section 6) and required a
network abstraction which supported the complete BSD socket interface.

To support NFS, we extended the standard SunRPC mechanism to sup-
port SCI connections. This involved writing files to support SCI sockets in the
client and server stub libraries, thus allowing the NFS Server to support SCI
connections as well as traditional TCP and UDP ones.

5.1 Benchmark testing

The benchmarking suite nfsbench [8] developed by Olaf Kirch was used to test
the SCI NFS server. The suite supports a number of tests including nfsping
which sends a storm of NULL calls with a 1K payload to gauge network capacity
and interface latency. The nfswrite test creates a 4 Mbyte file using a maximum
4K byte transfer size. The nfsread test reads data back from this file using the
same transfer size. The nfspebbles benchmark creates several directories and
files and runs a mix of operations on them. For our test the Legato mix - the
one used in nhfsstone [14] - was employed. For all tests default values were
used for all other parameters.

The tests were run over 10 Mbits/s Ethernet, Classical IP over ATM running
at 155 Mbits/s and SCI. Results were also obtained for the case when the client
and server are on the same machine. Write-gathering had no significant effect
on the results shown because of the large mix of operations.

5.2 Results

The results are shown in Table 1. All of the SCI results are within 30% of
the local results. nfsping shows the lowest relative improvement due to the
overhead of signalling to the receiver that new data is now in the buffer. For a
simple NFS call this event mechanism must be used twice, resulting in an ad-
ditional overhead of 71µs, which is significant for small packet transfers. This
has a smaller effect for the nfswrite and nfsread results where larger transfer
sizes are used. The nfspebbles results for SCI almost matches the throughput
of the local results because a mixture of file and directory operations – some of
which take longer than reading or writing – also reduces the relative overhead
of signalling. Though better results can be obtained using a faster event mech-
anism, the results reported for SCI are significantly better than Ethernet or
ATM which form the current networking infra-structure of most organisations.

6 CORBA over SCI

OmniORB2 is an implementation of the 2.0 specification of the Common Object
Request Broker Architecture (CORBA). It forms the backbone of ORL’s dis-
tributed object infrastructure and is motivated by our need for a multi-threaded

7

Throughput(Mbit/s) Avg. RTT(ms)
nfsping
Ethernet 4.036 2.10
IP/ATM 18.12 0.40
SCI 28.65 0.20
Local 40.36 0.10
nfswrite
Ethernet 6.26 5.30
IP/ATM 26.49 1.20
SCI 45.92 0.60
Local 52.18 0.50
nfsread
Ethernet 6.38 5.30
IP/ATM 30.96 1.00
SCI 55.44 0.50
Local 70.15 0.40
nfspebbles
Ethernet 2.12 3.60
IP/ATM 8.48 0.80
SCI 12.71 0.60
Local 12.92 0.50

Table 1: NFS results.

8

ORB to run our in-house developed hardware and software platforms. It is ex-
pected that performance improvements to omniORB2 gained through the use
of a low latency interconnect will have an immediate effect on the whole envi-
ronment. There are also other good reasons for choosing omniORB2 as a test
case for our interconnect: omniORB2 is the fastest CORBA 2.0 ORB currently
available [9] and is publicly available under a GPL Source License.

OmniORB2 has a structure whereby a thread is dedicated to a connection
at both the client and server and multiplexing is achieved through scheduling
between a number of blocking threads. To the standard omniORB2 package
we added the user level communication abstraction using locked shared mem-
ory (described in section 4.1) over SCI in place of TCP. Over this transport
abstraction we ran the standard GIOP (General Inter Orb Protocol).

With these modifications we were able to make a direct comparison of our
work with omniORB2 over different transport and network types. Our modified
ORB is capable of serving objects over SCI without compromising itself for
TCP and simultaneous access to an object is possible through all the supported
network types.

For comparison, we also implemented the shared memory transport using
the standard System V shared memory primitives, portable over all our Unix
platforms. The intra-machine shared memory performance was significantly
better that both inter and intra machine TCP/ATM performance for all our
platforms for both latency and bandwidth tests.

The figures shown in the table below offer a comparison between an om-
niORB2 Null RPC for a shared memory transport for intra-machine on two
platforms and SCI on our Linux 200 Mhz Pentium Pro platform. Also included
is the inter-machine time for Linux using TCP over a 155Mbps ATM network.
At the IIOP level, the Null RPC required 73 bytes for the request and 29 bytes
for the response.

Platform Transport Latency(us)
Intra 167 Mhz Solaris UltraSparc SYS V Shared Memory 510
Inter 200 Mhz Linux Pentium Pro TCP Socket 470
Intra 200 Mhz Linux Pentium Pro SYS V Shared Memory 270
Inter 200 Mhz Linux Pentium Pro SCI Shared Memory 156

These results illustrate a significant improvement in latency when using the
SCI transport. It has been estimated that for the Linux platform, 110us is spent
in the ORB with protocol and marshalling overhead, the remainder being spent
in performing transmission and synchronisation through the shared buffer. It is
interesting to note that the inter-machine time using SCI is significantly faster
than intra-machine using standard shared memory primitives. This is due to
the parallelisation of the GIOP and the avoidance of a context switch between
the client and server and should be contrasted with the inter-machine NFS
results presented in section 5. These had approached, but never exceeded the
intra-machine NFS results. This difference is because omniORB2 takes a more
aggressive approach to parallelising its protocol than does NFS.

9

1

10

100

1000

64 256 1024 4096 16384 65536 262144 1.04858e+06

T
hr

uo
gh

pu
t(

M
bp

s)

Sequence Size(bytes)

SCI
Intra-Machine SHM

SCI Write Gather

Figure 4: omniORB2 throughput results.

10

A second experiment to measure throughput on the Linux platform was also
made. Blocks of varying sizes were streamed from a client to a server object, with
the throughput being measured at the server. All data is transferred through
the ORB, with the oneway attribute set, hence the client does not expect an
acknowledgement from the server for data sent.

From the results shown in Figure 4, the intra-machine shared memory (SHM)
trace shows a throughput which dips as the size of the Pentium Pro cache is
reached. All the SCI traces show a drop off in performance as the size of the
shared memory buffer is reached (32K). This would have been improved had the
circular buffering abstraction (described in section 4.2) been used. The inter-
machine SCI throughput with write-gathering enabled exceeds intra-machine
SHM probably because of the avoidance of context switching. However, we
were unable to use the write-gathering option for block sizes of less than a
page without throughput being significantly reduced. The SCI trace shows a
throughput without write-gathering enabled which is substantially less. We
believe this in part to be due to problems with the PCI chip set on our FX
motherboards.

7 Conclusions

Whilst there has been much research on the use of memory-mapped networks in
the context of parallel computing relatively little work has been done on their
suitability for distributed applications. Several research groups have examined
RPC and socket interfaces using low-latency memory-mapped networks. In
particular, the SCILAN project at the University of Oslo [12] has implemented
a socket library for Windows NT over SCI which is akin to our socket library
implementation for Linux. The SHRIMP project at Princeton University has
also examined socket and RPC implementations [2]. Their Sun RPC compatible
latency results are comparable with our implementation. However, they have
also implemented non-compatible RPC mechanisms with very low round trip
times. Neither of these projects have yet reported the performance of real
distributed applications running over their socket implementations.

This paper has described our integration of the SCI interconnect with two
infra-structural distributed applications, the standard NFS server and our in
house CORBA 2.0 compliant ORB, omniORB2. Both these applications were
ported, rather than heavily modified to use the interconnect and were run over
an unmodified Linux operating system.

With this configuration, we have shown remarkable performance improve-
ments using a strategy whereby multiplexing in the system is achieved through
the operating system standard blocking and pre-emption facilities.

11

References

[1] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, and W. Su.
Myrinet – A Gigabit-per-Second Local-Area Network. IEEE Micro, 15(2),
1995.

[2] S. Damianakis, A. Bilas, C. Dubnicki, and E. Felton. Client-Server Com-
puting on Shrimp. IEEE Micro, 17(1), 1997.

[3] Stefanos Damianakis, Yuqun Chen, and Edward W. Felten. Reducing wait-
ing costs in user-level communication. In Proceedings of the 11th Interna-
tional Parallel Processing Symposium, April 1997.

[4] M. Fillo and R. Gillett. Architecture and Implementation of Memory Chan-
nel 2. Digital Technical Journal, 9(1), 1997.

[5] R. Gillett and R. Kaufmann. Using the Memory Channel Network. IEEE
Micro, 17(1), 1997.

[6] Lars Paul Huse and Knut Omang. Large Scientific Calculations on Dedi-
cated Clusters of Workstations. In The proceedings of International Con-
ference on Parallel and Distributed Systems, Euro-PDS’97, June 1997.

[7] IEEE. Standard for Scalable Coherent Interface, March 1992. IEEE Std
1596-1992.

[8] Olaf Kirch. NFS Test and Performance Measurement Suite.
ftp.mathematik.th-darmstadt.de/pub/linux/okir.

[9] S. L. Lo. The Implementation of a Low Call Overhead IIOP-based object
request broker. In ECOOP ’97 Workshop CORBA: Implementation, Use
and Evaluation, 1997.

[10] Sun Microsystems. NFS: Network File System Protocol Specification, 1989.
RFC 1050.

[11] S. Ryan, S. Gjessing, and M. Liaaen. Cluster communication using a PCI
to SCI interface. In IASTED Eighth International Conference on Parallel
and Distributed Computing and Systems, October 1996.

[12] S. J .Ryan and H. Bryhni. SCI for Local Area Networks. Technical Report
256, Department of Informatics, University of Oslo, 1998.

[13] Jens Simon and Oliver Heinz. Experiences with a SCI Multiprocessor Work-
station Cluster. In ARCS 97, June 1997.

[14] R. Stine. FYI on a network management tool catalog. RFC-1147, April
1990.

[15] A Tanenbaum. Operating Systems Design and Implementation. Prentice-
Hall, 1987.

12

