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Abstract

The paper describes the design and implementation of omniTrans-
port, a lightweight, user level transport protocol which has been tailored
for the asymmetric communication requirements of a CORBA 2.0 compli-
ant ORB, omniORB2. The protocol is shown to interwork with omniORB2
and has outperformed a leading in kernel TCP implementation.

1 Introduction

OmniORB2 is an implementation of the 2.0 specification of the Common Ob-
ject Request Broker Architecture (CORBA). It forms the backbone of the dis-
tributed object infrastructure at ORL and is motivated by our need for a multi-
threaded ORB to run over our in-house developed hardware and software
platforms. OmniORB2 is the fastest CORBA 2.0 ORB currently available [5]
and is publicly available under the GNU Public Licenses.

This paper will describe the implementation and performance of a lightweight,
user level transport protocol for omniORB2 called omniTransport. The design
of omniTransport is motivated by the need to support omniORB2 on platforms
and networks which require a high performance, reliable transport protocol,
but which do not support TCP or for which a TCP port would be inappropri-
ate. For instance, the Medusa distributed multi-media system [8] was devel-
oped over what was a new ATM network infra-structure and was forced to use
its own message-passing system partly because the RPC systems at the time
were found not to be able to deliver the performance required.

The omniTransport protocol has been designed for use over an ATM net-
work, but would be suitable for any network which offers in-order delivery
semantics. Unlike other user level transport protocols, omniTransport is not
a general purpose design, but is instead targeted to support asymmetric in-
teractions where one end always plays the role of the client and the other the
server. This asymmetry means that it is possible for omniTransport to be single
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threaded at both the client and the server side. This should be contrasted with
other general purpose user level transport protocols, such as [9, 3, 7] where it
is necessary for a thread to always be available for the processing of incoming
data and to generate acknowledgements for received data. Inter-thread com-
munication is a major performance bottleneck in a user-level transport pro-
tocol. By its elimination, omniTransport is able to outperform a leading TCP
implementation within the bounds of our interaction style.

The performance of omniTransport does not require a complicated imple-
mentation and it should be noted that this paper will describe in full its al-
gorithms and state transitions. The protocol, while simple is able to perform
well, fulfills the architectural considerations embodied in [2] and support the
requirements of omniORB2 over the whole range of call types, sizes and sup-
ports exactly-once and at-most-once delivery on a per call basis.

2 OmniORB2 Overview

The primary function of an ORB is to provide the means for object invocation
between two address spaces. Where the two address spaces are separated by
a network, the ORB must manage the transfer of data over the network. Om-
niORB2 uses the thread-per-connection model in preference to other threading
models in order to maximise the possible degree of concurrency while keeping
thread overheads to a minimum and to avoid the interference by the activities
of other threads on the progress of a remote invocation. Each connection com-
municates with the remote address space through the strand abstraction of a
bidirectional data channel. The strand allows a client to specify whether a call
should be invoked with exactly-once or at-most-once semantics and is able to
handle bulk data, such as a sequence of octets, with very little overhead (zero
copy). We believe that exactly-once semantics are desirable for request-reply
interactions and at-most-once semantics are more suitable for one-way calls.
This is particularly true when one-way calls are used to transmit isochronous
data. With this data type, retransmission should be avoided because undesir-
able jitters would otherwise be introduced.

The scope of this paper is restricted to describing the omniTransport pro-
tocol used by omniORB2 in the reliable transfer of data over an unreliable
network. A more complete description of omniORB2 is presented in [4, 6].

2.1 The OmniTransport Interface

OmniTransport has been designed to work in a general request-response style
environment and so can be thought of as logically separate from the strand ab-
straction as shown in Figure 1. The basic interface to omniTransport is through
three functions, send, receive and reclaim. The omniORB2 strand passes the
send function a number of buffers which are to be reliably delivered to the
other side; calls the receive function to accept buffers from the other side and
calls the reclaim function to reclaim any acknowledged buffers which are held
by the transport. Additionally, the send function may be passed a parameter
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Figure 1: omniTransport and omniORB2

which indicates that a request is either complete or partial. The receive func-
tion may be passed a parameter which indicates that the omniORB2 strand is
expecting a new response.

Packet Handler

Protocol Engine

Filter Module

Protocol Engine

Packet Handler
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Receive Buffer
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omniORB2 Strand

Figure 2: Structure of the omniTransport Implementation

This interface is sufficient to implement a reliable request-response proto-
col for omniORB2 and is used in this paper for clarity. However, it should be
noted that for performance reasons, the interface between omniTransport and
the strand is collapsed in the implementation.
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3 Structure of omniTransport

The structure of the omniTransport implementation is as shown in Figure 2
and comprises of:

1. A protocol engine, which manages the transport’s state machines and
timers and is responsible for high level protocol decisions, such as ac-
knowledgement (ack) or negative-acknowledgement (nack) generation.

2. A filter module, which is used during packet reception to examine in-
coming packet headers, dealing with situations such as repeated or dropped
packets. The filter module adds contextual information to a received
packet before input to the protocol engine. For example, a received packet
might be passed to the protocol engine as an out of sequence received packet.

3. A packet handler, which is responsible for the fragmentation, transmis-
sion and reception (with timeout) of packets and the insertion of omni-
Transport headers.

Packet Type Scope Description
EOF External End of file
BAD External Hard communication problem
ABORT External Abort stub processing of call
PARTIAL External on-wire Partial request made
COMPLETE External on-wire Complete request made
CALL ACK Internal on-wire Acknowledge buffers
NACK Internal on-wire Request retransmission of buffers
RECLAIM Internal on-wire Request acknowledgement for received buffers
RECLAIM ACK Internal on-wire Acknowledge received buffers on a reclaim
TMO Internal Timeout has occurred
SEQ Internal Call or fragment was out of sequence

Table 1: omniTransport Message Types

The type of messages sent between each level of the implementation is
restricted as indicated by the scope field in Table 1. Between the omniORB2
strand and the protocol module, messages have external scope, between the
protocol engine and the filter module, messages have internal scope and to or
from the packet handler with on-wire scope.

All packets generated by omniTransport contain a header as shown in the
Table 2. The message type may be one of on wire scope. If the exactly-once
semantics field is set, then the transport should attempt to ensure reliable de-
livery for the call. The message size indicates the size of the packet in bytes,
including the header. The call sequence and packet sequence numbers are
used to maintain the correct sequence of buffers for and within each call us-
ing the standard sequence space operations. Finally, a header can be marked as
having been fragmented by omniTransport.
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Number of Bytes Type Name
1 CARD8 message type
1 BOOL exactly-once semantics
2 CARD16 message size
1 CARD8 call sequence number
1 CARD8 packet sequence number
1 BOOL fragmented
1 CARD8 padding

Table 2: omniTransport Header Format

OmniTransport does not support the re-ordering of out of order packets.
This assumption is in line with our target ATM networks. However, out of or-
der packets could be re-ordered within omniTransport without changes to the
protocol on the wire. OmniTransport also assumes the presentation of check-
summed packets and that the underlying network discards packets with the
wrong checksum. An extension to provide checksumming by omniTransport
would require extra space to be reserved in the header for a checksum field.

The next section will describe how the protocol supports the reliable trans-
fer of data using the above network primitives.

4 OmniTransport Protocol and Algorithms

4.1 Normal Protocol Operation

The state machine of the protocol engine starts in the idle state, with the trans-
port awaiting either an exactly-once or at-most-once call to be initiated by a
client omniORB2 strand. This section will describe the state transitions for
the client and server during both an exactly-once (or request-reply) and an
at-most-once (one-way) call. It should be noted that a client may interleave
at-most-once with exactly-once calls.

The exactly-once client side state transitions are reflected in the state ma-
chine shown in Figure 3. The following describes the actions and state transi-
tions used in making an exactly-once call.

• If the client has a request which fits into a single buffer, it will call send
(i) passing in the buffer with the complete flag set. OmniTransport will
ensure that the buffer is sent on the network and will retain the buffer
in case its retransmission is required. The state machine will move into
the waiting for reply state, with the transport awaiting a reply from the
server for the request.

• If a number of buffers are required to satisfy the client’s request, then the
client must call send (ii) with the partial flag set. This will move the state
machine into the request in progress state, from which any number of
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Figure 3: Client State Machine (Exactly-Once Semantics)

calls (iii) to send with the partial flag set can be made by the client to
transmit further buffers corresponding to the request. On the final call
to send for the request, the client must set the complete flag (iv), which
will move the transport into the waiting for reply state.

• The client will then call receive to await the response from the server,
passing in a buffer which will be filled with data from the server. Again,
a number of calls to receive (v) might be required to consume all the data
transmitted by the server. Finally, a packet will be received which was
sent with the complete flag set. This information is used by the transport
to make the state transition to the idle state (vi) and await a new request.

The protocol makes use of the property that theN + 1 call is an implicit ac-
knowledgement for the N call and so explicit acknowledgements are not gen-
erated on the wire for an on-going interaction between a client and a server.
However, if the client goes idle for a significant amount of time, then the pro-
tocol requires that an ack be generated by the client for the last response from
the server. Hence, on each call, the client side is required to set and clear an
acknowledgement timer, which when fired will generate the required ack. It is
only in this situation that omniTransport is not single threaded, since the client
thread is processing elsewhere. Care has been taken in the implementation to
ensure that in most cases no synchronisation between threads is required to
either set or clear a timer.

Further optimisations to the acknowledgement timer have also been made
in order to eliminate time from the bottleneck path of a call. For example, the
acknowledgement timer is set by the client before the results which it is to
acknowledge have been received even though this causes some awkwardness
in the case when results are late. These optimisations mean that there is little
overhead in an omniTransport call over and above transmitting the raw data.
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Figure 4: Server State Machine (Exactly-Once Semantics)

The exactly-once server side state transitions are shown in Figure 4. The
server omniORB2 strand first calls receive (i) to await a request from the client.
Buffers corresponding to a request are returned and the strand will up-call,
making the request to an application level object. A response is then made
and the omniORB2 strand will call send, indicating to omniTransport when
the response is complete (ii).

IDLE

REQUEST IN PROGRESSSend Partial

Send Partial Send Complete

Send Complete

Figure 5: Client State Machine (One-Way Semantics)

The one-way client side state transitions as shown in Figure 5 are a subset
of the transitions for an exactly-once client side call. After any complete send,
the protocol moves back to the idle state and awaits a new call.

The one-way server side state transitions as shown in Figure 6 are the same
as the client side except that the inputs to the machine are driven by calls to
receive. Once a one-way request has been completely received, the transport
moves back into the idle state to await another request.

7



IDLE

REQUEST IN PROGRESSRecv Partial

Recv Partial Recv Complete

Recv Complete

Figure 6: Server State Machine (One-Way Semantics)

4.2 Error Conditions

It is in the cases that errors have occurred that the protocol engine is required
to perform non-trivial actions. The algorithms and state transitions used in an
error recovery situation are shown for the client side in Figure 7 and for the
server side in Figure 8.

Received NACK

Retransmit unacknowledged 
buffers

Dropped packetTimeout occurred

Hard network error

 Send NACK

Change state to ZOMBIE

Message type for received packet ?

(i)(i)(ii)

(iii)

START

Figure 7: Client Error Handling Protocol Engine

4.2.1 Client Side Errors

• If the client is expecting a response, but instead receives a timeout or an
out of sequence packet, then the client sends a nack to the server (i). The
sequence numbers of all packets indicates the call to which the packet
refers, thus the call sequence number of a nack indicates the call which is
being nacked. The packet sequence number of a nack is used to calculate
the buffers which require retransmission, namely all buffers for the call
with a packet sequence number ≥ the packet sequence number of the
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received nack.

• Similarly, on receipt of a nack from the server (ii), the client will retrans-
mit appropriate buffers which have been held for retransmission.

• If a hard network error is received (iii), omniTransport informs the stubs
and changes state to zombie. Once in the zombie state, no further oper-
ations are allowed for the connection.

This simple retransmission scheme is based on the low error rates on our
target networks and simplifies our implementation over other schemes such
as requesting the retransmission of lists of sequence pairs.

4.2.2 Server Side Errors

Handling errors on the server side is similar to the client side, with some com-
plications. Firstly, the server must handle the differences between exactly-once
and one-way calls. This is not an issue for the client since it never will receive
a response from a one-way call. Secondly, because of the asymmetry in the
protocol, whereby all requests are initiated by the client, only the client can
advance the call sequence number. This means that the client should never re-
ceive packets corresponding to the next call while processing the current call,
while the server must handle this condition.
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Retransmit unacknowledged buffers

Yes

Dropped packet

Received packet is first of a new call? 

Yes

Adjust expected sequence 
number to match received 
packet and continue 
processing packet

Expecting new call ?
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No
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(iv)

(v)

(vi)
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Figure 8: Server Error Handling Protocol Engine
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• In the case that a timeout has occurred (i), the server should simply re-
transmit any buffers which are unacknowledged. When the timeout cor-
responds to an idle client, all buffers will already have been acknowl-
edged, so there is no action.

• If the server has received a nack (ii), then the client must have experi-
enced a dropped packet or timeout while awaiting a response from the
server. If the call sequence number corresponds to a call which the server
has just handled, then the client has not correctly received the response,
hence all buffers should be retransmitted (iii). Conversely, if the call se-
quence number of the nack corresponds to a call which the server has not
yet started to handle, then the server must not have received the new call
and the client is awaiting a response. In this case (iv), the received nack
implies that the response previously sent by the server has been correctly
received by the client and the client has sent a new call which has not
been received by the server. The server should acknowledge and free all
the buffers held from the previous call and nack the client to request a
retransmission of the lost request.

• If the server has noticed a dropped packet, then the correct response de-
pends on whether processing has been already started by the server on
the call. If so (v), then for an exactly-once call, the server should nack the
client for a retransmission. For a one-way call, there is no possibility of a
retransmission from the client and some buffers will have already been
passed up to the omniORB2 strand for unmarshalling. Hence, the server
must inform the strand to abort processing of the call. If processing had
not started on a call (vi), then if the received packet is the first packet of
a new call, the client and server are simply out of step with their call se-
quence numbers. Since the out of step sequence number could have been
caused by the loss of a complete one-way call from the client, the server
should proceed with the call. Finally, in case (vii), the server has noticed
a dropped packet from the start of a call. If the call is one-way, then the
server must ignore any further packets corresponding to the call, since it
cannot request a retransmission from the client. There is no requirement
to inform the omniORB2 strand since it has not started to process the call.
However, if the request has specified exactly-once semantics, then for the
same reasons as in case (iv), the server should acknowledge its previous
response and send a nack to the client to request a retransmission.

4.3 Buffer Reclamation

During operation of the protocol, buffers circulate between a buffer pool, held
by the omniORB2 strand and the transport; with the transport holding unac-
knowledged buffers for retransmission. In the case that a sender is required to
send more data than there are buffers available in the buffer pool, the reclaim
function of the transport must be used. A call to the reclaim function sends
the RECLAIM protocol message which requests the other side immediately
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acknowledge all unacknowledged buffers with a RECLAIM ACK message1.
When the acknowledgement has been received, these buffers can be passed
back to the buffer pool for re-use by the sender. The reclaim function can also
be thought of as a very crude, high level flow control mechanism as no more
buffers can be in flight than have been made available to a connection.

4.4 Buffer Fragmentation

1

2

HDR

HDR

Buffer with no space for a header

Split into two network packets

Figure 9: Header Insertion into a Zero Copied Buffer

The fragmentation feature of the packet handler is used by omniORB2 in
cases where the ORB is able to perform a zero copy operation from the appli-
cation to omniTransport. In this case, omniTransport will not be passed one
of the pre-defined buffers which contains space for the insertion of a header.
To avoid introducing a copy of the complete buffer, omniTransport copies out
a small amount from the buffer into a second buffer as shown in Figure 9.
The second buffer is sent as one network packet, leaving room at the head of
the original buffer for the inclusion of an omniTransport header. The original
buffer is then sent as second network packet.

5 Performance

The omniTransport protocol has been implemented over the Linux ATM API [1].
Our experimental configuration consists of two Pentium Pro 200Mhz proces-
sors interconnected using the Efficient Networks 155Mbps adaptor and an
ATML Virata VM1000 switch. Both processors were running the Linux kernel
version 2.0.25 and Linux ATM version 0.23. The system was also configured
with the single copy TCP and large IP window options set.

5.1 Null Echo

The time to echo a zero length (null) string is measured. The following IDL
interface is used:

1A separate message was used rather than overloading the ACK message to simplify normal
ACK processing.
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interface echo {
string echoString(string mesg);

};

The average round trip time for 10000 invocations of a Null Echo server
was measured. Table 3 shows the results for omniORB2 over raw ATM (which
indicates the maximum performance of a transport on our platform), TCP over
ATM and omniTransport over ATM. This result shows a significant improve-
ment in latency over the Linux kernel TCP.

Transport Time per call (us)
omniOrb2/TCP/ATM 440
omniOrb2/omniTransport/ATM 380
omniOrb2/ATM 360

Table 3: omniORB2 Null Echo

5.2 Bulk Data Transfer

The performance in bulk data transfer is measured by sending multiple se-
quence of octets using either one-way or exactly-once operations. The follow-
ing IDL interface is used:

interface ttcp {
typedef sequence<char> Buffer;
oneway void receive_at_most_once(in Buffer data);

void receive_exactly_once(in Buffer data);
};

Throughput against sequence size was measured for a byte stream with one-
way semantics for a total transfer of 10 Mbytes is shown in Figure 10. A
byte sequence uses the zero copy capabilities of omniORB2 and hence does
not require any marshalling or copying within the ORB. This test is able to
saturate the link at 135 Mbps for a 4K sequence size2. An artifact of the Nagle
algorithm used in TCP3 accounts for the TCP throughput which is greater than
that of raw ATM for small sequence sizes. This is of course at the expense of
latency.

Throughput against sequence size was measured for a byte stream with
exactly-once semantics for a total transfer of 10 Mbytes is shown in Fig-
ure 11. Again, the byte sequence uses the zero copy capabilities of omniORB2
and hence does not require any marshalling or copying within the ORB. This
test differs from the previous in that a reply from each request must have been

2Direct socket programming will saturate at 3K.
3Delay the sending of small packets while there are outstanding acknowledgements.
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Figure 10: Inter-machine one-way throughput

processed by the client before a subsequent request is made. Nevertheless, the
test saturates the link at a sequence size of 16k.

There is no effect from the TCP Nagle algorithm in a request-response in-
teraction. However, it should be noted some tuning was required to obtain
the traces. For the TCP over ATM trace, a collapse occurred at 4k unless the
nodelay option was set4. Also for TCP over ATM, a marked throughput drop
occurred around 32k unless the socket send buffer size was adjusted from 64k
to 32k. A similar drop in throughput at 32k occurred for the raw ATM and om-
niTransport traces and was fixed with an adjustment of the maximum AAL5
packet size to 8k. This problem appears to be a function of the buddy scheme
used for memory allocation in the Linux Efficient Networks ATM driver, since
this test required both very large and very small blocks to be allocated for each
request-response.

As a further comparison, the same test was carried out for TCP over ATM
between a pair of 166 Mhz Sun Ultra workstations on the 155 Mbps ATM net-
work. The plot reached an asymptote of 61 Mbps at a sequence size of around
128K.

Throughput against sequence size was measured for a marshalled sequence
from a sustained burst of 10 Mbytes is shown in Figure 12. Each sequence
element consists of two 32 bit integers, hence omniORB2 stubs will copy and
marshall the sequence before transmission. As for the previous test, a reply is
expected from the server. This test is CPU bound for all sequence sizes. The
performance gain by using omniTransport over TCP is a result of the reduction
in protocol processing overhead.

4This was considered strange since nodelay simply disables the Nagle algorithm.
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Figure 11: Inter-machine request-response throughput
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6 Conclusions

Our results indicate that the omniTransport protocol outperforms the Linux in-
kernel TCP implementation over a wide range of throughputs and argument
types. The poor performance of the Solaris TCP implementation provides a
motivation for porting omniTransport onto native ATM programming inter-
faces available for Solaris, such as X-Open XTI. We are continuing with work
which will provide dynamic transport protocol selection for omniORB2 whilst
retaining its CORBA 2 compatibility.

More generally, this paper has shown that in the domain of request-response
applications, it is possible to use a lightweight user level transport protocol
and outperform a highly optimised general purpose in-kernel transport pro-
tocol.
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