
The Thinnest Of Clients: Controlling It All Via Cellphone

Frank Stajano∗† Alan Jones∗

fstajano@orl.co.uk ajones@orl.co.uk

Abstract

The thin client paradigm aims to give users access to central
resources through inexpensive and easily deployed comput-
ing systems. But, however “thin” the client hardware, mobile
users in the field still have the burden of carrying it. To alle-
viate this problem, we decided to adopt as our client a piece
of hardware that many mobile users already carry with them
anyway: the cellphone.

This paper presents our experience in researching, imple-
menting, deploying and using a system whereby users, wher-
ever they are, can query and control their personalised com-
puting resources and services by typing short messages on the
keypad of their cellphone. Our system has been deployed and
in use for over a year and has given us valuable insights on
how to design and build a personal information service.

I. Motivation

A. Caravan or hotel?

Most of the practical offerings that attempt to solve the prob-
lems of the mobile user involve carrying around a smaller and
somewhat feature-impaired version of the user’s deskbound
computing equipment. From laptops and notebooks to PDAs
and palmtops, manufacturers have over the years explored
most of the spectrum that spans the seemingly inevitable trade-
off between functionality and portability.

Another way to attack the problem, which we have been
pursuing at ORL for several years now [1, 2, 3] makes it possi-
ble to avoid the trade-off and thus benefit from great function-
ality and portability at the same time: it’s what we like to call
the“Would you rather stay in a caravan or in a hotel?”alter-
native. It’s the realisation that, instead of bringing with you a
portable computer with a scaled-down version of your environ-
ment, like a caravanner, you can instead travel lightly and use
the comfortable facilities available at destination, like a hotel
user, making your home environment accessible on the remote
computer by means of special software such as our VNC [3]
system.

B. What if no computers around?

The underlying assumption of this successful approach has
been that it will be possible for the mobile user to temporarily
log on to a locally available computer with suitable network
connectivity. What, however, if this assumption no longer
holds? It is not totally inconceivable for the user to travel to
a location not served by computers or in which the local com-
puting facilites won’t be easily available to a visitor. It is also

∗ORL, the Olivetti and Oracle Research Laboratory, 24a Trumpington
Street, Cambridge CB2 1QA, UK.

†University of Cambridge Computer Laboratory, New Museums Site,
Cambridge CB2 3QG, UK.

possible for the user to wish to access computing resources
(particularly for simple tasks such as looking up a timetable)
while on a train or waiting in a bus queue.

The traditional answer to this need has been to provide spe-
cial miniaturised computers, with varying degrees of data con-
nectivity, sufficiently small that a user could actually be per-
suaded to carry them around all the time: we refer to palmtops,
of which we have personally been keen users since 1991. We
have to admit, though, to our fondness for computer gadgets:
from data-linked wristwatch to palmtop computer and from
bicycle-mounted GPS receiver to pocket web browser, each
of us usually carries more electronic gizmos than the regular
human being has pockets. We thus reluctantly recognise that
the palmtop solution is still mostly dedicated to a niche mar-
ket: if we were to propose a solution based on carrying a new
electronic device, however useful, we would probably get an
enthusiastic response from the closed community of our fellow
gadget freaks, but we wouldn’t be able to persuade the wider
community to adopt it.

The shocking revelation is, however, that thereis one elec-
tronic gadget that regular human beings carry around sponta-
neously everywhere they go—the cellphone. We noticed that,
if we could use this ubiquitous representative of the digital
world as a gateway into the global cloud of computers and
communications, we would then be in a position to offer a
practical solution to a majority of mobile users. This strat-
egy is a natural extension of the thin client“caravan or hotel”
paradigm of making use of existing available facilities instead
of forcing the user to carry around new equipment; the subtle
difference here is that the useris actually having to carry an
accessory around, but it’s something that the user was willing
to carry anyway, regardless of our intervention.

C. The SMS server

It would be foolish to claim that a system whose user interface
consists of the 12-key alphanumeric keypad and tiny display
of a standard cellphone could possibly match the capabilities
of a real computer system—be it a fixed desktop system, a
virtually remoted session, a laptop or even a humble palmtop.
Our system is certainly not a complete solution for the mobile
user who needs to access computing resources. It is, how-
ever, a convenient addition to the array of solutions available
to that user. It adds some extra facilities that make particular
sense to the user on the move, some of which aren’t normally
accessible in a convenient form even from the most complete
desktop systems. The ubiquity of the cellphone (any manufac-
turer’s model will work as long as it supports the GSM stan-
dard’s Short Message Service) means that our system is always
available anywhere and at any time, without the user having to
remember to carry any special supplementary equipment.

As a matter of illustration, here are some of the possibilities
opened up by our system; all the scenarios described, unless

1

otherwise noted, have actually been implemented at our lab-
oratory and have been available for daily use since approxi-
mately mid-1997 to members of our staff.

1. The user can, while queueing for a taxi or sitting in a
pub, consult any of a multitude of information servers
giving train time tables, weather forecast, traffic condi-
tions, stock market quotes, currency exchange rates and
so forth.

2. One of our colleagues, having released some very suc-
cessful free software on the company’s web page, has
written an ego-stroking personal handler telling him the
number of times his package has been downloaded so far.

3. Another service that we thought of a long time ago, and
that we shall deploy as soon as the sensing technology
from a sibling project is ready, will allow the car user
heading for the office to query the availability of parking
spaces at the front and back of our premises, thus avoid-
ing a trial-and-error process that is made time-consuming
by morning traffic.

4. Instead of polling for information, the user can also con-
figure the system so as to be notified asynchronously
when an event of interest occurs: the cellphone will then
discretely beep with an explanatory message when the
share price goes outside a predefined band, when the
download counter exceeds 10000 or when a news item
mentioning your company appears on the teletext.

5. The same “filtering and pushing” concept can be prof-
itably applied to email: a warning will be sent out when,
for example, mail from the boss (or Significant Other)
is received. This indeed highlights the usefulness of our
extremely thin client as acomplementto the other con-
nectivity options available to the mobile user: most of
the network-based activities that one typically performs
on one’s laptop while on the move consist ofcheckingfor
some event such as the arrival of important email. By ask-
ing the SMS server to monitor such events, or by request-
ing a condensed listing of the headers of the messages so
far received, the user can be notified of whether and when
it is really worthwhile to connect back to base over that
expensive intercontinental modem connection.

6. Speaking of email, the user can of course send a brief
email message directly from the cellphone; but there’s
more: the gateway is bidirectional and the message’s
headers are composed in such a way that, if the recipi-
ent replies via email, the system will forward the reply to
the originating phone.

7. In conjunction with our Active Badge system [4], the
user from the field can obtain the phone number to which
a colleague is nearest and phone the colleague directly
without going through reception; conversely, the user can
also post an “away” message on the Active Badge sys-
tem, specifying her whereabouts and cellphone number,
to allow other colleagues to contact her.

8. The GPS navigation application running in one of our
cars uses the SMS service to exchange information with
the server. The location information is made available to
the Active Badge service so that colleagues and friends
can access it in a familiar way: instead of just in the
usual in-building locations such asMeeting room or
Reception area, the user may now also be reported as
beingIn car near Luton.

9. Finally, given a computer-controlled “smart home” setup
(which we haven’t wired in yet), the user living on her
own could, before cycling home, send a command from
the phone to turn on the central heating system just at the
right time for the house to be warm when she’s back.

II. How it works

A. Physical structure

At the lowest level, the system relies on the “Short Message
Service” (SMS) [5] defined by the European GSM standard
for digital cellphones. SMS provides a way to transmit tex-
tual messages of up to 160 characters between GSM handsets.
Contrary to the conventional voice call service, the short mes-
sage service does not require end to end connectivity; it is in-
stead a store and forward service, much like email, in which
the sender delivers the message to the network without knowl-
edge of the connectivity status of the recipient, leaving to the
network the task of buffering the message and delivering it
when the recipient is next sighted. In normal use, the sender
composes the message on the 12-key alphanumeric keypad of
the phone and the receiver reads the message off the unit’s tiny
alphanumeric display, scrolling where appropriate. The physi-
cal limitations of the terminal equipment, imposed by the man-
ufacturers’ desire to produce the smallest possible handsets,
make the 160 character constraint more than reasonable for
normal human-driven interaction, since messages much longer
than this would be impractical to both type and read on a typi-
cal GSM phone.

The system we built consists of a fixed “SMS server” at our
laboratory interacting with GSM handsets carried by members
of our staff. The server’s hardware is a Linux PC with a per-
manent internet connection on one side and a PCMCIA con-
nection to a GSM handset on the other. The server acts as
a bridge between the “computer and internet” world and the
“cellphone” world. The server software, written in Python [6],

2 Mobile Computing and Communications Review, Volume 2, Number 4

runs 24 hours a day and listens for requests from both sides:
computer events such as the arrival of mail can trigger phone
events such as the sending of a short message, and vice versa.

B. Phone-initiated requests

The phone-initiated requests are those in which the user
“pulls” information out of the server when she desires. The
typical “pull” interaction involves, for the server, one incom-
ing and one outgoing short message. First, the user sends a
short message requesting a particular service. The server then
performs the service and sends out a response to the originat-
ing phone. In the case of a query, such as “tell me the current
share price of Coca Cola”, sending out the response is actually
a fundamental part of the service; whereas in the case of an
action, such as “send this email tofriend@company.com”,
it is not actuallynecessaryfor the server to send an SMS re-
ply to the user. It must however be noted that the store and
forward nature of SMS transport, with no a priori guarantees
about the delivery, gives the user the feeling of sending mes-
sages into a black hole: without a response from the other end,
the sender can’t tell whether the message is being successfully
acted upon, whether it is being delayed by traffic in the net-
work or whether it has been ignored due to equipment failure
at the server end. For this reason we decided that, as a matter
of good user interface, the server should always1 send a reply
to an incoming short message, regardless of the nature of the
requested service, just to make the caller aware of the comple-
tion of the operation.

1. “Pull” services: the handlers

For phone-initiated requests, we modelled the structure and
behaviour of the SMS server on that of a web server respond-
ing to CGI requests. The server receives a request specifying
a particular service and some optional parameters; then, based
on the requested service, the server spawns one of a number
of external handlers, passing it the parameters supplied by the
user; finally, when the handler completes, its output is returned
to the user in the short message reply that the server sends to
signal completion. This architecture allows us to build a mod-
ular system whose range of services can be expanded at any
time by simply writing a new handler.

Handlers are separate executables that do not have to be
linked to the server and can be written in any language a de-
veloper may be familiar with, including shell scripts. The API
connecting the server to the handlers is purposefully kept ex-
tremely simple. The first word of the short message received
by the server identifies one of the available handlers; the re-
maining words are passed on verbatim to the handler as com-
mand line parameters; finally, anything that the handler prints
on its standard output while it runs is collated into a string,
prefixed by the name of the handler and, after truncation to
160 characters, sent back as the server’s response. If execution
of the handler exceeds a predefined time limit, the handler is
terminated and the server sends out a response that says so.

1Actually, to guard against bugs and potential abuses, the server will stop
sending replies after certain safeguard quotas are exceeded, as detailed in sec-
tion III.

SMS server RAIL
handler

RAIL
CAMBRIDGE
LONDON spawn

stdoutRAIL:
CAMBRIDGE:17:23
LONDON KINGS
CROSS:18:28

1. Theshare handlergives you a current quote for a secu-
rity listed on any of a number of American and Euro-
pean stock markets. Numerous options allow you to see,
among other things, the profit or loss since you bought
the shares, with optional currency conversion in case
of securities listed on a foreign exchange. Information
sources consulted includewww.stockmaster.com and
www.yahoo.com.

2. The weather handlertakes in a city name and gives
you a week’s worth of daily forecasts with expected
weather and minimum and maximum temperature (from
weather.yahoo.com).

3. Theactive badge handlertells you the location and near-
est phone of a named colleague. The “away” subser-
vice lets you post a message to say where you can be
reached—this is normally done in advance through a ded-
icated application running on our computer system, and
it is particularly useful to be able to perform this oper-
ation when one already is away from the office, having
forgotten to register the message before leaving.

4. Theemail handler, as in fact the “away” service we just
mentioned, isn’t strictly speaking a “pull” service, but
still uses the handler architecture. It lets you send a short
email message to any user on the internet.

5. Thetrain handlertakes in the names of two British towns
and gives you the time of the next available train from one
to the other. It can optionally also show travelling times
for times and days other than “right now”. Information
comes from thewww.railtrack.co.ukweb site.

6. Thecurrency handlergives you conversion rates between
any two currencies or converts a given amount of any cur-
rency into any other, using the service atwww.xe.net.

7. Theroad handleraccepts the name of a major road and
searches BBC2’s teletext pages for relevant traffic con-
gestion information.

It ought to be apparent that most of these “pull” services
follow a common pattern. In a research environment geared
towards experimentation such as our laboratory, the ease with
which new handlers can be plugged into the server might eas-
ily have encouraged a “copy and modify” style of program-
ming in which every new handler is derived by slightly editing
the previous one, with maintenance nightmares when one of
the old handlers is updated (or fixed) and the newer handlers
still contain variants of the old code.

We were careful to avoid this trap by distilling the common
behaviour into general purpose classes from which a new han-
dler can inherit. Though the great variety of possible cases still

Mobile Computing and Communications Review, Volume 2, Number 4 3

means that some tweaking may be required, in many circum-
stances defining a new handler is simply a matter of deriving
a subclass describing the source web site and redefining a reg-
ular expression meant to match the pages from the site and to
extract the relevant fields from it. The rest of the logic, from
querying the server with HTTP (potentially filling CGI forms
along the way) to filtering the result through the regular ex-
pression and massaging the extracted fields into a concise out-
put message, not to mention error handling, is dealt with by
the common code in the parent class.

C. Computer-initiated requests

The SMS server’s facilites can be accessed by other comput-
ers on the network via a simple socket-based API. The client
connects to the server on a well-known port and transmits the
recipient’s phone number and the message to be sent. This
can be done from any programming language that can talk to
sockets.

To make it more convenient to call the SMS server from
shell scripts and similar glue languages in which it is easy to
spawn external processes but comparatively hard to interact
with sockets, a basic command-line utility calledsms-send
(which itself talks to the socket API) provides equivalent func-
tionality. It accepts the text of the message either on its stan-
dard input (handy for building pipelines of commands) or as a
command line argument.

One of the clients of this API is a CGI script sitting behind
a form that can be used to send a short message from a web
browser. Another one is the gateway from mail to SMS: email
sent to a special address will be transformed into a short mes-
sage and sent to the phone number specified in the subject2.

1. “Push” services: the watchers

The most interesting family of clients of this API, though, is
that of “push” services. These are little programs that send
short messages to the user’s phone when something interest-
ing happens, without the user having to manually poll for the
information.

1. Theshare watcheris triggered at regular intervals (e.g.
three times a day) by thecron system scheduler; it then
fetches the stock quote of interest from the web and
checks if it is in the “alert” range(s) specified by the user.
If so, a short message with the current quote is sent to the
user’s phone. Otherwise, the quote is ignored and nothing
is sent.

2. Thenews watcher, too, is triggered bycron; but, instead
of checking stock quotes on the web, it checks news items
on teletext. The latest news item at the time of invocation
is scanned for specific keywords that the user is interested
in. In case of match, the item is forwarded to the user’s
cellphone. If no match is found (or if the same news item
has already been sent), the item is ignored and nothing is
sent.

3. Themail watcheris triggered by email being delivered
to the user’s account. The user sets up a series of filters

2Due to the size constraints of SMS, only the sender, subject and first few
characters of the body are actually sent.

that, based on the value of particular header fields (e.g.
the sender is the boss), determine which messages are to
be forwarded to the cellphone.

As the reader will imagine, this list can be easily extended
by any user of the system who cares enough about a personal
pet feature to spend an afternoon to code it up using the avail-
able building blocks, as indeed happened with the “access log
watcher” that sends you a short message when your program
has been downloaded another thousand more times.

It is also worth noting that most if not all of the handlers
described in the “pull” section can readily be transformed into
watchers if desired by simply running them from acron job
and wrapping them into some logic that only sends out their
output if it meets certain conditions.

III. Security issues

We believe that a reliable system should have security de-
signed in from the start, rather than as a last-minute add-on;
however we also believe that, when the system is still at the
prototype stage, putting too much emphasis on the security
aspects may get in the way of the brainstorming and experi-
mentation, preventing the creators from trying out new ideas
because of the effort required to implement them with ironclad
security.

We thus did not regard security as a primary goal but we take
this opportunity to observe the potential threats and desirable
security features for a system of this nature.

A. Global safeguard and user identification

The first and most likely threat that we wanted to guard against
did not come from attackers but from bugs. Since the phone
company charges us for every short message we send, we
wanted to prevent errors in the plug-in components such as
watchers and handlers to be able to cause the server to send out
thousands of unwanted messages. To this end, we added a low-
level safeguard in the core of the server’s code: the “send mes-
sage” method of the phone object refuses to work unless the
“allowed outgoing messages for today” counter is above zero;
this global counter, which applies to the activity of the entire
server, is decremented every time the method is invoked and is
only reloaded at midnight or when the server is launched.

Some basic form of access control was also desirable. For
the first implementation we considered it sufficient to base the
identification on the phone number of the caller as supplied by
the cellular network in the header of the short message, and
we did not worry about attackers with the ability of forging
SMS headers. The server holds a configuration file with a list
of known phone numbers, each assigned to a class of phones
such as “staff” or “friends”. Each class is then assigned a set
of privileges.

B. The quota system

A system of quotas is in place to limit the resources that each
user may consume. For each class the SMS server admin-
istrator can set the maximum number of messages that each
individual user in the class can send in a day, as well as the

4 Mobile Computing and Communications Review, Volume 2, Number 4

maximum number that all the members of the class taken to-
gether can send (and similarly for receiving). The “friends”
class (for people outside our company that we allow to use the
system) has a reasonable quota of 10 messages/user/day and,
in a year of use, we have not seen anyone exceed this limit3.
The “unknown” class, which covers any phone not explicitly
listed by number, has low but non-zero quotas so that we can
demonstrate the system to anyone by using their own phone.
If they are interested, we can upgrade them to “friends”; in the
hypothetical case of abuse, we can always downgrade them to
“barred”, which has quotas of 0. Given the exploratory nature
of our project we find that assuming people to be trustworthy
by default serves us better than adopting a strict security policy
where nobody can use the server unless explicitly authorised.

The “staff” class has rather high quotas (20 mes-
sages/user/day): we want members of our staff to be free to use
the service as much as they like, even from programs, while
still being protected from bugs in their own experimental soft-
ware that might cause an infinite loop sending out messages
one after another. In such a case the quota system protects
the user by eventually blocking service to their phone while
the server continues to work normally for everyone else (un-
like what happens when the global low-level safeguard is trig-
gered). Since we intended that, for staff members, the quota
ought to be a protection but not a limitation, users in this privi-
leged class have access to a special command that allows them
to manually reload their quota, from the phone, when it runs
out. Note that the quota system operates at a higher level than
the basic safeguard mentioned previously: that one cannot be
overridden by anyone other than by killing the server process4.

The alert reader will have noticed the anomaly of a staff
phone that runs out of quota and sends in another message to
reload its quota: why isn’t the “reload” message itself rejected,
since the quota has run out? A similar paradox becomes appar-
ent when the class quota runs out and a user, whose personal
quota is still intact, has its request rejected: the server should
definitely tell the user why this request can’t be serviced (the
user can’t possibly be expected to know that theclassquota
has been exceeded), but this explanatory reply can’t go through
if there is no quota left. We solve these problems by introduc-
ing two types of message, normal and special. All messages
are normal except “you’ve run out of quota” (from server to
client) and “reload” (from client to server), which are special.
The quotas mentioned above apply to normal messages, but
special messages have separate quotas. In most classes there
is a quota of one special message from server to client, through
which the user whose normal quota runs out can be told (but
not more than once) that this has happened. The quota of spe-
cial messages from client to server is 0 for all classes except
“staff”, which prevents any other class from performing the
“reload” operation.

C. Denial of service attacks

The structure of the quota system has been designed to guard
against various denial of service attacks. The presence of the
global safeguard counter prevents malicious users from mak-

3Part of this may be due to the fact that users, too, have to pay their own
phone bill for the short messages they send to the server.

4Or, more deviously, by changing the system date.

ing us pay an unlimited bill, but could allow them to bring the
server to a halt if they managed to send enough junk messages
that the server’s responses exhausted the global counter. How-
ever, no single user can do this because each user has an indi-
vidual quota that can’t be exceeded. Even if a great number of
malicious users were to all send junk messages to the server,
each within her quota, they still wouldn’t be able to bring it
down because they would first exhaust their5 class quota, leav-
ing the server available for the other classes of users.

There could still be a denial of service attack staged by a
large group of unknown users: first, a subgroup of them sends
out enough junk messages that the class quota for “unknown”
is exhausted; then, one by one, new unknown users send one
junk message each, forcing the server to send out a “sorry,
quota exhausted” reply (which, being “special”, isn’t subject to
the class quota limit as long as that particular recipient hasn’t
received it before). The trick being exploited in the attack is
that the “unknown” class, unlike the others whose members
are explicitly listed, does not have an upper limit on the num-
ber of members; consequently, assuming that there is no limit
on the number of phones that may be used in the attack, the
server can be tricked into sending out “sorry, quota exhausted”
messages until it hits its own global safeguard and shuts down.

After noting in passing that the attackers would have to pay
a combined phone bill as high as that that they would impose
on the server, we observe that this attack can be made inop-
erable by setting the quota of special messages from server to
client to 0 for class “unknown”. This in other words means that
the server will only send the polite explanatory “sorry, quota
exceeded” message to those phones that are explicitly listed
in its configuration file; unregistered phones will instead be
silently ignored when their quota is exceeded—and this seems
fair enough.

D. Logging

A simple but effective weapon in our security arsenal is a log-
ging facility that records all the invocations of the low level
operations of the server together with their parameters, includ-
ing header and body of all messages sent and received. This
is effective both as an intrusion detection tool and as a debug-
ging facility. While it is true that this may violate the users’
expectation of confidentiality about their email or share port-
folio, it is in fact rather common to grant the administrator
access to the Trusted Computing Base; after all, users ought to
be accustomed to their sysadmin being able to read their email
and private files. One user, our colleague Ken Wood, sug-
gested to trivially encrypt (e.g. with ROT-13) the body of the
short messages before dumping them to the log—not to add
any confidentiality but to make the ethical point that, while the
administrator is under a duty to regularly monitor the log for
anomalies and may need to be able to read any of the mes-
sages in the log to detect a particular problem, it should be
made clear that the administrator has no right to casually read
the bodies of the messages unless there is a specific need for
it.

5Hopefully these conspiring bad people would all be from the “unknown”
class. But, wherever their provenance, we’d clearly move them to the “barred”
class as soon as we found out!

Mobile Computing and Communications Review, Volume 2, Number 4 5

IV. Personalisation

A. Personal handlers

While the push services are clearly personalised, since each
user individually sets them up incron with the desired prefer-
ences, the pull services are, in the system so far described, the
same for all users. With a little but important change we made
the server substantially more flexible by introducing personal
handler directories. Again similarly to what happens in a web
server, users can now have ansms-bin directory in their home
directory and when a handler is invoked it is searched in there
before checking among the system handlers. This allows the
user to add new commands and also to substitute (hide) system
commands if desired.

The reference to the “home directory”, and the assumption
that users of the server have a home directory on our system, is
a unixism that we adopted merely for its convenience. It relies
on a mapping between phone numbers and userids, which we
provide in the same configuration file that lists the class of each
registered phone. Conceptually, though, users (think of people
in the “friends” class) should not be required to have a full lo-
gin account on our system in order to be able to set up person-
alised handlers: the only necessary items would be a storage
place for new binaries and a mapping from the phone number
of the caller to a list of personal handlers to be searched be-
fore the system ones; there is noinherentdependency on the
underlying OS’s structure of user accounts. In practice, how-
ever, one will want to allow these users to edit the list of han-
dlers and to add and remove binaries from the storage place,
all subject to some sensible form of access control (and indeed
access!). All in all, relying on the login account structure of
the underlying OS seemed to be the most practical solution, as
well as the one that users would find most natural.

B. Extreme mobility

Going back to the “caravan or hotel” alternative, an even more
extreme idea than using the cellphone that the user is already
carrying is. . . letting the user usesomeone else’scellphone,
without having to carry anything at all. So we designed an
alternative authentication architecture to support this idea.

The brute-force solution would be to ensure that each mes-
sage from client to server contain, as well as the command
itself, a userid and password pair through which the server can
establish the identity of the caller regardless of the particular
handset being used. If one were to worry about replay attacks
from GSM eavesdroppers (or, perhaps more probably, from
the owner of the borrowed handset in the memory of which
the user might have inadvertently left the short message it just
sent), a variant of this solution based on a one-time password
scheme [7] might be adopted.

Anyone who ever used a cellphone’s keypad to enter an
SMS message will however testify that having to enter a userid
and a (suitably long) passwordfor every commandcannot be
rated as a very practical solution. We thus designed a system
that, while user-centric instead of phone-centric to support mo-
bility between handsets, would not require authentication at
every transaction and would be friendly towards the relatively
common case of anonymous users.

With this new scheme, privileges and resources are allo-
cated to users, not to phones: it is now users, not phones,
that belong to the classes described in section III. However,
when a user performs the authentication procedure6 by send-
ing a short message of the formlogin userid password

[hours] , the server remembers the phone from which the
user was calling and assumes that, for the duration of a con-
figurable “activity window”, any messages from that phone
genuinely come from the above mentioned authenticated user.

The time duration of the activity window, which has a sen-
sible default (10 hours) and a maximum value (2 days), can be
set by the user while authenticating. It can also be cut short by
the user “logging out” of the phone with a special command (to
be issued e.g. when a borrowed phone is returned to its owner)
or by another user authenticating from the same phone. When
outside the activity window for a given phone, the caller is as-
sumed to be the “anonymous user” for that phone (each phone
has its own). Thus, for every incoming message, the server
always has a clear notion of who the caller is: either an au-
thenticated user or the anonymous user for that phone.

Every user, including the anonymous users, is assigned to
a class; for known users and for anonymous users of known
phones this mapping is performed explicitly by the server ad-
ministrator; for anonymous users of unknown phones, instead,
with a natural extension of the previous strategy, the assign-
ment is to a default low-privileged class called “unknown”.
Classes define quotas and lists of commands accessible to
users in the class.

Each user also has an additional list of “personal” com-
mands; these can be new executables or aliases for existing
handlers, possibly with additional default parameters (for ex-
ample I may alias a short command name to the existing share
handler called with the symbol for my favourite stock and with
the price at which I bought it three months ago, so that the han-
dler can return not just the current stock price but also the per-
centage profit or loss). For simplicity and uniformity there is
no separate alias definition language: aliases are implemented
as one-line shell scripts that call the relevant handlers, so in
fact all the personal commands can be seen as new executa-
bles.

The benefits of this scheme are as follows: users can freely
access the server through any available cellphone, even if they
don’t own one; they don’t have to continually retype their pass-
words during normal usage; and those who own a phone may,
if they so desire, delegate most of their privileges to the anony-
mous user of their phone, reserving password-based authenti-
cation only for the truly sensitive services and for those de-
pending on extensive personalisation.

C. Customising the handset

The Smart Messaging [8] enhancement proposed by GSM
manufacturer Nokia provides, among other things, a way to
redefine the menus of your Smart-Messaging-compliant cell-
phone by sending special messages to it from a previously des-
ignated phone.

We obtained a few such handsets and nominated our SMS

6Here too, the use of a one-time password scheme is possible and se-
lectable on a per-user basis depending on the individual user’s stance in the
trade-off between convenience and security.

6 Mobile Computing and Communications Review, Volume 2, Number 4

server as the accepted source for updates. We then wrote a
utility allowing a user to reprogram the menus on her hand-
set from her workstation. With this arrangement, the personal
commands referred to in the previous subsection (i.e. invoca-
tions of handlers with specific options preloaded, such asRAIL
CAMBRIDGE LONDON to enquire about the time of the next train
to London) can now be downloaded to the phone. The user can
now recall them by browsing through a list of choices instead
of having to type out the command and its options in full.

This level of handset personalisation could in theory be cou-
pled with the user authentication architecture previously de-
scribed, loading a new set of menus in the phone whenever an
activation window is opened (login) or closed (logout). But
storing (or worseoverwriting) state, and especially menus, in
a borrowed phone would rightly be felt as an intrusion by the
legitimate owner. (As a matter of fact, it would also be impos-
sible without manually enabling the handset to accept smart
messages from our SMS server.) We thus believe that, unless
the smart messaging specification is extended to explicitly al-
low multiple users per handset with each user’s state held in
a protected area7, it would be inappropriate to attempt to tele-
port a user’s own interface to someone else’s phone. We thus
currently only support customisation for the handset’s owner.

Another way in which Smart Messaging can enhance our
server is by providing extended responses when the destina-
tion phone is known to accept Smart Messages. The Active
Badge handler, which returns the location and nearest phone
of a colleague, could return the phone not just as a string but
as an active button that one could press to initiate the voice
call.

Endowing the handset with some intelligence is a field that
attracts considerable commercial interest, and Nokia’s Smart
Messaging is not the only offer. Unwired Planet [9] pro-
poses a similar architecture in which the handset is even more
customisable, to the point that it becomes a miniature web
browser. We haven’t tried this yet, simply because the tech-
nology was not yet as easily available as Nokia’s, but our sys-
tem is open and will readily interface to whatever devices will
prevail in the marketplace.

D. The Personal Information Service

The experience gained with the SMS server opens up new hori-
zons and leads us to consider the system we built as an ex-
ploratory prototype of a wider-ranging system which we call
the Personal Information Service.

In the new system that we propose, a multitude ofinforma-
tion sources(world wide web, teletext, CORBA services, sen-
sor systems, etc) may be consulted according touser-defined
rules in response toevents(timer, email arrival, incoming
SMS, sensor output above threshold, etc) so as to produce
information nuggetsthat, after various filtering and composi-
tion stages, will be delivered to the user through one of many
presentation devices(SMS, of course, but also email, person-
alised and self-updating web page, nearest computer display,
pager watch, telephone via text-to-speech synthesis, actuators
of various sorts, etc).

7Not that we are advocating this: it would probably add too much com-
plexity.

MSFT=$82

information
sources

retrieval
rules

events

information
nuggets

information
nuggets

presentation
devices

when timer,
check shares

WWWteletext CORBA

sensors

timer:
it's 14:30

sms from
0824-123456

email
from joe

SMS email
WWW text-to-speech

composition and
filtering rules if within 5%

of previous, don't send

if foreign share,
get exchange rate

1 USD = 0.61 GBP

MSFT = $82

$1 = £0.61

1 USD = 0.61 GBPMSFT = £50.02

The following points are noteworthy:

1. Pull and push must both be supported. In the above out-
line, both the user requests and the data-driven activations
are ultimately seen as “events” that trigger the extraction
of information nuggets from information sources.

2. The effectiveness of the system is greatly enhanced when
data from various independent sources is combined to
provide new information, like we did when joining the
stock prices from one web site with the currency ex-
change rates from another to give the user the net profit
or loss in local currency for foreign shares.

To enable these manipulations, the data extracted from
the various information sources needs to be “transduced”
into information nuggets represented in a common for-
mat. Based on our experience writing handlers and
generic library classes to support the creation of new han-
dlers, we recommend that this be some form of asso-
ciative array mapping field names to values (preferably
typed). This could in theory be wrapped up as an ob-
ject, but we would tend to warn against it: encapsula-
tion is likely to make it harder, not simpler, to merge two
nuggets into one, and we see the intelligence best placed
in the rules that know how to combine several nuggets
rather than in the methods of each single isolated nugget.

3. The personalisation element is essential and will have to
appear at several stages. Firstly, the user must be able to
designate and schedule sequences of events that may gen-
erate information; this is what is done in the SMS server

Mobile Computing and Communications Review, Volume 2, Number 4 7

when the watchers are set up: a cron job schedules in-
vocations of the share watcher and a mail filter intercepts
incoming email. Secondly, the user must be able to define
rules specifying what to do when events occur and gen-
erate nuggets (“whenever a share nugget arrives, if it’s
for a foreign share, fetch an appropriate currency nugget
and combine them in this way”) as well as filters decid-
ing which nuggets are interesting and which ones should
be thrown away. This is going to be a non-trivial piece
of work and will require choosing a suitable language in
which to express the rules. We would advise against the
temptation of creating an ad-hoc language from scratch;
we recommend instead the adoption of an existing high
level embeddable scripting language [10] such as Tcl [11]
or Python [6], appropriately augmented with a few prim-
itives to handle the rules. But, even so, we feel that any
rule manipulation language that is sufficiently expressive
to be useful will be too complex for non-technical users to
manipulate directly. We envisage a system in which “rule
programmers” write libraries of generic rules from which
non-technical users can select, parameterise and combine
the appropriate ones as desired, perhaps through a visual
interface8. Thirdly, the user must be able to specify rules
to determine the preferred presentation device based on
the newly created nugget and on environmental informa-
tion such as the time of day, the last known position and
connectivity status of the user and so on.

V. Conclusions

The SMS server demonstrates how even a system with very
low input and output bandwidth such as SMS can be used
to provide the mobile user with valuable, non-trivial services.
Personalisation provides extra context thanks to which even a
very short message can yield a high information content.

We have built a personal information gathering system with
feeds from a variety of sources. The ubiquity of the cellphone
makes this system accessible from anywhere.

We see our project as anticipating many important features
of more sophisticated systems to come which will filter and
combine information from many sources according to person-
alised rules and deliver it through a variety of communication
devices. We have been working towards the most globally ac-
cessible service that we could implement, aiming at what we
call Global Smart Personalisation.

VI. Acknowledgements

We are grateful to our many colleagues who have been using
our system regularly since its deployment, providing valuable
stress-testing and user feedback. In particular we thank Steve
Hodges for inventing and implementing some handlers and
watchers early on and for eventually taking over the adminis-
tration of the server, Frazer Bennett for assistance in interfac-
ing to the Active Badge system and Quentin Stafford-Fraser

8Note that this does not preclude technically-minded users from writing
their own rules if they so wish; in fact, from our experience, we recommend
that the rule manipulation language and API be accessible and well docu-
mented.

for adding support for Nokia Smart Messaging and personal
handler directories.

VII. About the authors

Frank Stajano (http://www.orl.co.uk/~fms/) obtained
his Dr. Ing. degree (electronic engineering) from Rome in
1991. He has been a research scientist at ORL since 1992,
working on distributed multimedia, GUIs, reusable compo-
nents, databases, internet applications and other topics, always
with a strong interest in scripting and OO. He is currently with
the Computer Security Group at Cambridge’s Computer Labo-
ratory, investigating security aspects of ORL’s Piconet project.

Alan Jones is a principal research engineer at ORL. He
was awarded a B.A. in physics in 1981, a computer science
diploma in 1982, and a Ph.D. in computer science in 1986, all
from Cambridge University, England. He has worked on con-
trol systems, sensor devices, optimization, simulation, real-
time multimedia, and a variety of mathematically oriented
projects. Current interests include communication and navi-
gation systems, as both a keen user and a developer.

References

[1] Tristan Richardson, “Teleporting in an X Window Sys-
tem environment”,IEEE Pers. Comm.No. 3, 1994.

[2] Kenneth R. Wood, Tristan Richardson, Frazer Bennett,
Andy Harter, Andy Hopper, “Global Teleporting with
Java: Towards Ubiquitous Personalised Computing”,
Computer, Vol. 30, No. 2, 2/1997.

[3] Tristan Richardson, Quentin Stafford-Fraser, Kenneth
R. Wood, Andy Hopper, “Virtual Network Computing”,
IEEE Internet Computing, Vol. , No. 1, 1-2/1998.

[4] Roy Want, Andy Hopper, Veronica Falcao, Jonathon
Gibbons, “The Active Badge Location System”,ACM
Trans. Inf. Sys., Vol. 10, No. 1, 1/1992.

[5] ETSI, “Digital cellular telecommunications system
(Phase 2+), Technical realization of the Short Message
Service (SMS), Point-to-Point (PP)”, GSM 03.40 version
5.4.0, 11/1996.

[6] Guido van Rossum,Python Library Reference, Python
Reference Manual, May 1995, CWI Reports CS-R9524,
CS-R9525.

[7] Leslie Lamport, “Password Authentication with Inse-
cure Communication”,Comm. ACM, Vol. 24, No. 11,
11/1981.

[8] Nokia, Smart Messaging Specification, 1.0.0, 9/1997.
http://www.forum.nokia.com/

[9] Unwired Planet,Getting Started with the UP.SDK, V. 2.0,
1998. http://www.uplanet.com/

[10] John K. Ousterhout, “Scripting: Higher Level Program-
ming for the 21st Century”,IEEE Comp., 3/1998.

[11] John K. Ousterhout,Tcl and the Tk Toolkit, Addison-
Wesley, 1994.

8 Mobile Computing and Communications Review, Volume 2, Number 4

