
Global Teleporting with Java:

Towards ubiquitous personalised computing

Kenneth R. Wood∗, Tristan Richardson∗, Frazer Bennett∗,
Andy Harter∗, Andy Hopper∗†

∗The Olivetti & Oracle Research
Laboratory

Old Addenbrooke’s Site
24a Trumpington Street

Cambridge
CB2 1QA

United Kingdom

†University of Cambridge
Computer Laboratory

Pembroke Street
Cambridge
CB2 3QG

United Kingdom

Abstract
Previous work has described teleporting, an approach to mobile computing
in which it is the user’s personal application environment which is mobile
rather than the hardware on which the applications run. In this paper we
describe a new teleporting system which makes the user’s environment
available on any machine in the world running a Java-compliant web
browser. We present some preliminary experimental results together with
discussions of security and performance issues.

1 Introduction

The essence of mobile computing is having one’s personal computing environment
available wherever he or she happens to be. Traditionally this is achieved by
physically carrying a computing device (say, a laptop or PDA) which may have
some form of intermittent network connectivity, either wireless or tethered.

However, in [6] another form of mobility was introduced in which it is the
user’s applications which are mobile. The user does not carry any computing
platform but instead is able to bring up his or her applications on any nearby
machine exactly as they appeared when last brought up in this way, there
or elsewhere. This form of mobility is called teleporting and has been used
continuously and fruitfully by many members of our laboratory for the last
three years.

Clearly, the machines to which one can teleport in this way must be attached
to a network and must provide a common interface at some level. In our case
the network is our local area network (Ethernet and ATM) and the common
interface is the X Window System1 [8]. When we teleport, our personal X

1The X Window System is a trademark of The X Consortium.

1



2 TELEPORTING

session with all of its associated applications in their latest collective state is
transferred from one host’s display to another within the lab. This allows us,
for example, to walk into someone else’s office and immediately call up and
interact with our personal working environment on their machine, alongside
any other working environments currently displayed there.

In our current work we are attempting to extend this idea from our local
area network to the entire internet using Java2 as the common interface. It is
still our personal X sessions which are made mobile, but now they can appear
within any browser which can execute Java applets, anywhere on the internet.

Although in theory the original form of teleporting could be used across
the internet, it would be restricted to hosts running an X server, and, even
more problematically, would contravene the X security policy implemented by
most system administrators. Perhaps most importantly, though, our approach
to teleporting across the internet is intended to take advantage of the rapid
global proliferation of the World Wide Web. Web browsers are available in
a dramatically growing range of locations, including corporate, personal, and
even public-access sites. Thus, the ability to call up one’s personal computing
environment on any such browser will enable nomadic computing on a truly
global scale3.

2 Teleporting

The teleporting system offers a means of redirecting the user interface of applications
which run under the X window system. In X, a display is controlled by an X
server and applications are clients of the server, communicating with the server
using the X protocol. This protocol allows applications to create windows on
the screen and receive input from the keyboard and mouse.

The teleporting system introduces a level of indirection between applications
and the display. This is done using a special X server, known as a proxy server.
(See Figure 1.) Applications are made mobile by running them as clients of
the proxy server, within a teleport session, rather than within a traditional X
session under a real X server.

Unlike a real X server, the proxy server does not have a screen, keyboard
and mouse (a display) of its own. Instead, it is able to make use of the display
of some real X server. To the real X server, the proxy server appears just like
an ordinary set of clients. In this way, the output of the proxy server’s clients
will be sent to the screen of the real X server, and their input will come from
its input devices.

The proxy server makes its clients mobile because it is able, upon request,
to break down its connections with the real X server and, if desired, re-build
them with another. This occurs without the clients’ needing to be aware of this
activity. The result is that the teleport session with all the clients’ windows can
disappear from one screen and (possibly much later) re-materialise on another.

2Java is a trademark of Sun Microsystems.
3Note that the next release of X, codenamed “Broadway”, will also address some of these

issues.

2



3 TELEPORTING IN JAVA: THE CONCEPT

Proxy X
Server

X Client

X Client

X Client

X server

X server

X server

Figure 1: Proxy Server

In our lab we have made extensive use of the teleporting system in our
everyday work, and we have found that the ability to move our working sessions
on the fly from office to office, office to meeting room, office to kitchen, office to
home, etc, is extremely useful, especially for the sort of peripatetic collaboration
which tends to go on in a typical research lab. After having used the teleporting
system for our primary work environment, most of us would find it difficult to
go back to a static login session.

3 Teleporting in Java: The Concept

Given how useful we have found teleporting to be, it is only natural to want
to extend its range beyond the immediate environment of our lab and homes.
In order to do this, of course, we need a network and common interface widely
available in places over which we have no control. The World Wide Web and
Java provide just such an infrastructure.

Web browsers are now available almost everywhere a networked computer
can be found, and Java is emerging as the dominant technology for enabling
programs to be downloaded and executed within a browser. Thus, we decided
that an initial attempt at global teleporting should be based on the idea that a
working session is identified with a web page containing a Java applet. Simply
by pointing any Java-capable browser at this page, we cause the corresponding
working session to appear within the browser where we interact with it in the
natural way.

This is, in fact, exactly what we have done. We call the implementation
VNC (for Virtual Network Computer4) and Figure 2 shows a typical VNC
session which has been brought up in Netscape.

Having pointed Netscape to the web page corresponding to the session
shown, we can use the mouse and keyboard to manipulate windows and graphical
applications, edit files, and so on, just as if we were logged in to the session in
the normal way. We can also browse other pages, returning to the VNC page

4We originally used the name JavaTel (for Teleporting in Java) but changed to VNC to
avoid confusion with Java Telephony applications.

3



4 TELEPORTING IN JAVA: THE MECHANICS

whenever we want to do some work there. Furthermore, we can go to another
physical location and point a different browser at the VNC page, whereupon the
session will appear in the new browser and vanish from the old one. (We also
provide the capability to disconnect a VNC session from one browser without
having it appear in another. It can then be called up from the same or another
browser at any later time.)

Figure 2: A sample VNC session

4 Teleporting in Java: The Mechanics

In order to move the concept of teleporting to the wider arena of the internet,
we make use of another sort of proxy which we call a remote frame buffer (or
RFB) service. In our case, the RFB service is provided by an RFB X server
which is just a standard X server to which we have added two simple features:

4



4 TELEPORTING IN JAVA: THE MECHANICS

1. The RFB X server provides a TCP socket interface on which it will accept
mouse and keyboard events using a simple protocol. When any such event
is received, it is processed just as if it had been generated by a mouse or
keyboard connected directly to the X server.

2. The RFB X server provides another TCP socket interface on which it will
accept requests for information about the state of the screen display. In
reply to such a request, the RFB X server sends details of those regions of
the screen which have changed since the last such request. These details
are sent as a set of bitmapped rectangles which represent the changes to
the screen.

For example, if there were a word-processor running in the X session and
a lower-case letter ’l’ had been typed into it since the last request, then in
response to the next request the RFB X server would send the following
data:

• the (x,y) pixel coordinates indicating the screen position of the top-
left corner of a rectangle containing the ’l’.

• the width and height of the rectangle containing the ’l’, in pixels.

• a block of width*height pixel values which represent the rows of
pixels which make up the rectangle containing the ’l’. For example,
if the rectangle were 5 pixels wide and 11 pixels high, and the values
255 and 0 represented white and black respectively, then the block
of pixel values might look like Figure 3.

The changes to the screen might, of course, be much more extensive than
the addition of an ’l’(for instance, they might include the appearance of
a set of complex images) and in this case the RFB X server would send
as many rectangle specifications as are required to describe the changes.

Together the protocols used on the two socket interfaces described above
comprise the RFB protocol. By connecting to these socket interfaces, an RFB
client running on a remote (non-X-aware) device can provide seamless interaction
between a user and the X server. The RFB client need only understand the
RFB protocol, i.e. how to send input events (mouse and keyboard) and how
to receive and render screen-change rectangles. The complete RFB protocol is
somewhat (though not a great deal) more complex than that illustrated here,
as it allows different synchronization modes and also provides for compression
of the screen rectangles when this is deemed necessary.

The remote device for which we originally developed the RFB service (and
on which we are still using it) is a video tile, a pen-based ATM-connected display
[5]. The RFB client running on the tile passes pen events as mouse events to
the RFB X server and puts all screen changes it receives onto the tile display,
thereby allowing interaction with X applications on the tile.

It soon became apparent that simply by writing an RFB client in Java we
could use exactly the same approach to provide interaction with an X server
from within a Java applet and hence from within a web browser. The RFB

5



4 TELEPORTING IN JAVA: THE MECHANICS

255 255 255 255 255

255 0 0 255 255

255 255 0 255 255

255 255 0 255 255

255 255 0 255 255

255 255 0 255 255

255 255 0 255 255

255 255 0 255 255

255 255 0 255 255

255 0 0 0 255

255 255 255 255 255

Figure 3: A bitmapped rectangle containing the letter ’l’

client applet opens sockets to the mouse/keyboard and screen-change ports of
the RFB X server. It then sends mouse and keyboard events from Java’s AWT
down the appropriate socket as they occur, and paints changed rectangles to
the screen as they arrive from the RFB X server, again using the AWT. The
result is the appearance of an X session within a web browser, as described
above and depicted in Figure 2.

Figure 4 shows the structure of the VNC system. Note that the figure
represents the state of a connected VNC session which presumes the following
background steps:

• on the application host, at some earlier time the user will have initiated
his VNC session by running a startup script. This script starts the
RFB X server with its associated X session (which is completely user-
configurable just as any other X session is) and creates an HTML file
which encapsulates the corresponding RFB client applet. (Note that the
X session is started on a virtual display, a feature of the current release
of X, so as not to tie up a physical display.)

• on the browser host, the user will have pointed the browser at the URL of
the generated HTML file, whereupon the RFB client applet will have been
downloaded and run, and the connections shown in the figure established.

Because of current applet security restrictions, the HTML file must be served
by an HTTP server running on the same machine as the RFB X server. When
the level of Java security is adjustable, as is planned, this restriction may be
removed if desired.

It is important to realize that although the effect of the VNC system is to
provide teleporting across the internet, the method by which this is achieved is
entirely separate from that employed by the original teleporting system. That
is, the VNC system is a conceptual but not a technical extension of teleporting.
The most significant technical difference between the VNC and teleporting
systems is that the VNC client is much thinner than the teleporting client.
In order to bring up a teleport session on a client machine, that client must be
running a full X server, whereas to bring up a VNC session the client needs to
run only a very small (about 20K) Java applet.

6



4 TELEPORTING IN JAVA: THE MECHANICS

emacs

xterm

xrn

User interacts with X apps

here through browser

emacs

xterm

xrn

RFB client applet

Application Site

Browser Site

RFB X Server

X applications use this server like any other

Screen-change RectanglesMouse & Keyboard

Events (TCP) (TCP)

Web Browser (any platform)

Figure 4: Structure of the VNC system

7



5 EXPERIMENTS

5 Experiments

The bulk of our experiments have been local to our lab. That is, the application
host and the browser host have both been machines on our local network.
However, we have also done a number of longer-distance experiments, many
between Cambridge and Oxford, and a few between Cambridge and places
further afield, including Munich, Princeton, and San Francisco. The application
host has always been a UNIX

5 machine, but we have brought up the VNC
session in browsers running on both UNIX and Windows6 machines.

In general, the interactive performance is quite acceptable except where
the Java AWT on the browser host machine is particularly slow. Because our
early investigations revealed the performance bottleneck to be the Java image-
drawing capabilities, we made a considerable effort to improve matters on that
front by designing a compression scheme which puts the transmitted screen
rectangles into a form particularly suited to fast rendering in Java.

For X sessions typical of work within our lab, our compression scheme
reduces network traffic by a factor between 5 and 10. As we put more distance
between the application and browser hosts, and as Java’s image-drawing speed
improves, interactive performance increasingly depends on the speed of network
communication. Hence the ability of the compression scheme to reduce network
traffic is becoming more important than its ability to reduce drawing time at
the client, and we therefore intend to investigate other compression schemes as
well.

Tables 1 to 5 give a rough indication of VNC interactive performance for
three specific tasks in various situations. In all cases, the measurements are in
seconds and represent an average of between 3 and 5 trials of the same task.
The application host was always on our local network in Cambridge. The ’text’
task comprised scrolling through 10 email messages using rmail in Emacs, the
’menu’ task comprised pulling down a window manager menu 10 times, and the
’image’ task comprised rendering a 27K JPEG image.

For tables 1 and 2, the VNC client applets were run in Netscape 3.01 on
relatively slow Unix machines. This was the only type of machine available to
us at the remote site in Oxford, and we ran the tests on a similar local machine
for comparison purposes. We ran the VNC session in Oxford by telneting to the
remote machine, and running Netscape there with the display set to our local
machine. Thus, the Oxford figures include network round-trips which would
not have occurred had we been physically located at the remote site.

From these tables, we can see that on slower browser host machines interactive
performance is not really acceptable even when the machine is local. Moving
to a remote slow machine (remembering that our figures include essentially
doubled network traffic) reduces interactive performance further, but does leave
it on the same order of magnitude.

Tables 3, 4, and 5 present figures for the three tasks on faster browser host
machines on our local network. Here we see that the interactive performance is

5
UNIX is a trademark of the Novell Corporation.

6Windows is a trademark of the Microsoft Corporation.

8



5 EXPERIMENTS

Task Time (sec)
text 68
menu 35
image 25

Table 1: VNC times, Netscape 3.01, slow Unix browser host (Sun IPX), local
(Cambridge)

Task Time (sec)
text 142
menu 55
image 51

Table 2: VNC times, Netscape 3.01, slow Unix browser host (Sun IPX), remote
(Oxford)

greatly improved, to the extent that it is almost comparable to native X server
performance. These figures suggest that the VNC system provides a suitable
method for accessing X applications from Java-based thin client machines on a
local network, and our subjective experience within the lab has confirmed this.

Our subjective experience of using the VNC system on faster browser hosts
from such remote sites as Munich, Princeton, and San Francisco suggests that
the VNC system also provides a suitable method for the global teleporting
which was the original aim of the work. In several cases, members of our lab
have used their VNC sessions to do useful work while travelling, and they report
that although interactive performance is by no means comparable to native X
server performance on a local machine, it is certainly adequate for the occasional
session of nomadic computing.

We plan to carry out more controlled experiments using fast browser hosts
from remote sites, and at the same time to experiment with different techniques
for improving VNC performance in these situations. Our experience to date
makes us confident that the VNC approach is highly effective and that its
efficiency for remote use will eventually approach its demonstrated efficiency
for local use.

Task Time (sec)
text 14
menu 13
image 11

Table 3: VNC times, Netscape 3.01, fast Unix browser host (Ultra Sparc), local

Finally, in an interesting (if somewhat confusing to imagine) experiment, we
combined our original teleporting system with the VNC system. Since a VNC
session provides remote access to a standard X server, we can teleport to a VNC
session in exactly the same way that we teleport to any other X server, thereby

9



6 SECURITY

Task Time (sec)
text 9
menu 7
image 5

Table 4: VNC times, Netscape 3.01, fast Windows browser host (Pentium 166),
local

Task Time (sec)
text 8
menu 7
image 4

Table 5: VNC times, Microsoft Internet Explorer 3.0, fast Windows browser
host (Pentium 166), local

causing a teleport session to appear within a web browser. Thus, for members
of our lab the VNC system can provide not only the capability of transporting
a specially set-up X session around the internet, but also the capability of
transporting their everyday working environment.

6 Security

There are clearly important security concerns about a system which makes full
access to one’s personal computing environment as easy as clicking on a web
hyperlink. Since web browsers are designed to limit the damage an applet can
do to the local environment, whereas no such damage limitation exists for an
X session, the VNC user is more worried about others invading her computing
environment than a browser-provider is worried about a VNC session invading
his.

The minimal security requirement is therefore password protection for access
to a VNC session, and we have implemented this level of security using a
challenge-response authentication mechanism based on strong encryption. Better
still would be ongoing verification of traffic integrity using a one-time session
key, or even full encryption of the session traffic since, for example, one might
want to read sensitive email in a VNC session. We are currently investigating
various possible approaches to these additional levels of security, none of which
presents any fundamental problem, since the appropriate technology is available
now. Even with the strongest level of security, however, one must still trust the
web browser and the host on which it runs.

A different approach would be to isolate the resources which are reachable
from a VNC session such that unauthorised access to the session could not lead
to any significant loss. This would, however, considerably limit the usefulness
of the VNC system.

10



7 RELIANCE ON X

7 Reliance on X

One can interact with a VNC session on any platform running a Java-capable
web browser including, for example, Windows-based PCs, Macs, and UNIX

workstations. However, the applications within the session must use X as their
display technology. It is possible, though, within an X session running on
one machine to interact with a Microsoft Windows session running natively
on a PC. This requires a multi-user version of Windows NT such as NTrigue,
WinCenter, or WinDD, and we have successfully used WinCenter in this way to
provide access to Windows applications within a VNC session, as can be seen
in Figure 5.

Figure 5: A sample WinCenter VNC session

11



8 CONCLUSIONS AND RELATED WORK

An alternative solution, which we are looking into now, would be to create
an RFB Windows server comparable to the RFB X server which we have
described above. The RFB Windows server would provide the same RFB
protocol interface as the RFB X server, but would deliver mouse and keyboard
events to, and retrieve screen changes from, a Windows session rather than an
X session. This would immediately enable direct VNC-style interaction with
Windows applications since the RFB client depends only on the RFB protocol
and is therefore completely independent of the application host’s windowing
system. The recent emergence of ICA7-based systems for exporting Windows
interfaces to web pages provides a model for this approach.

8 Conclusions and Related Work

The different facets of mobile computing and the related field of ubiquitous
computing are explored in, for example, [1, 3, 4, 7]. The concept of ubiquitous
personalisation extends these ideas to encompass the notion that wherever
the user might be and using whatever device, the computing and/or control
interface is in some way tailored to the user’s specifications. The VNC system
is a step in that direction insofar as it makes available on virtually any internet-
connected machine a computing environment completely determined by the
user.

Another X-based architecture for mobile applications on the web is presented
in [2] together with a good overview and analysis of the central issues in
designing such an architecture. The approach taken is similar to ours, although
it relies on X on the browser side as well as the application side.

The next phase of our research aims to provide a means for the user’s
environment to adapt to radically different types of devices while still retaining
some element of personalised behaviour. The devices we are considering here
range from the most basic (say, mobile phones) through to desktop PCs and
workstations. Perhaps this can be achieved by designing browsers which interpret
web documents and applets in ways suitable to these different devices, as is
apparently the thrust of Netscape’s Navio Communications venture and, to
some extent, Microsoft’s Windows CE. However, on its own this will not be
enough. There is a wide spectrum of possible distributions of both state and
intelligence between the application and browser hosts, and the current VNC
system represents just one extreme point on this spectrum. The success of
this next research phase will depend on careful investigation and exploitation
of other points along this spectrum, and this is where we intend to direct our
research efforts in the first instance.

References

[1] Rajive Bagrodia, Wesley Chu, Leonard Kleinrock, and Gerald Popek.
Vision, issues, and architecture for nomadic computing. IEEE Personal
Communications, 2(6):14–27, December 1995.

7ICA is a trademark of Citrix Systems Inc.

12



REFERENCES

[2] Daniel Dardailler. Mobile GUI on the web. The X Advisor, 1(2):19–28,
July 1995. The X Advisor is at http://www.unx.com/DD/advisor/.

[3] Tomasz Imielinski and B.R. Badrinath. Wireless computing.
Communications of the ACM, 37(10):19–28, October 1994.

[4] Arup Mukherjee and Daniel Siewiorek. Mobility: A medium for
computation, communication, and control. In Luis-Felipe Cabrera and
Mahadev Satyanarayanan, editors, Workshop on Mobile Computing
Systems and Applications, pages 8–11. IEEE Computer Society Press,
1994.

[5] ORL web site. Tile module. http://www.orl.co.uk/tile.html.

[6] Tristan Richardson, Frazer Bennett, Glenford Mapp, and Andy Hopper.
Teleporting in an X window system environment. IEEE Personal
Communications, 1(3):6–12, Third Quarter 1994. Also available as ORL
Technical Report 94.4, ORL Ltd, Trumpington Street, Cambridge CB2
1QA, England.

[7] Mark Weiser. Some computer science issues in ubiquitous computing.
CACM, 36(7):137–143, 1993. See http://www.ubiq.com/ for further
information on this and related work.

[8] X Consortium web site. X consortium welcome document.
http://www.x.org/.

13


