
Taming the Complexity of Distributed Multimedia Applications

Frank Stajano and Rob Walker

Olivetti Research Limited
24A Trumpington Street
Cambridge CB2 1QA
United Kingdom

{fstajano, rwalker}@cam-orl.co.uk
http://www.cam-orl.co.uk/

Phone: (+44 1223) 343.000
Fax: (+44 1223) 313.542

Abstract

The Medusa environment for networked multimedia uses Tcl to compose applications out of low-level proc-
essing blocks called modules. A medium-sized application such as a two way multistream videophone already
uses around one hundred interworking modules, running in parallel on several host machines. This paper
shows how we overcome the inherent complexity of such applications: to deal with parallelism we use a multi-
threaded library hidden behind a single-threaded Tcl interpreter; to build higher order components than the
modules we use the object oriented extension [incr Tcl]; and to exploit the variety of available input and out-
put devices we adopt the Model-View-Controller paradigm.

1. Introduction

Medusa [Medusa-ICMCS 94] is an applications en-
vironment for distributed multimedia designed to
support many simultaneous streams. Tens of parallel
streams and over a hundred software modules are
used in some of our applications and several such
applications may be active in the system. Input de-
vices in the broadest sense (from cameras and mi-
crophones to sensors and location equipment like
Active Badges [Badges 94]) can all be used as
sources of multimedia streams. The consumers of
such streams may be human, for example someone
watching a video, or computer-based, such as an
analyser recognising a gesture made in front of a
camera. It is not uncommon for the same camera
stream to be simultaneously sent to a number of
video windows on different X servers, a storage re-
pository on the network and a video analyser module
on a processor bank. Modules, the software units that
generate, process and consume the data, are opti-
mised for efficiency and written in C++. Applica-
tions, designed for flexibility and configurability, are
created in Tcl/Tk: they instantiate the required mod-
ules on the appropriate networked hosts, they con-
nect them together and control them according to the
user’s directives.

The first few applications were successful and they
raised expectations for the subsequent ones. As soon
as one aspect of the system became configurable in
one program, all the other programs were required to
offer the same flexibility. While the modules re-
mained the same, the Tcl portion of the applications
started to grow in size and complexity over the limits
of what could easily be managed within the applica-
tions framework we had one year ago [Medusa-Tcl
94]. This paper presents some problems we had to
face in three key areas (asynchronous programming,
reusable components, multiple interfaces) as a con-
sequence of this growing complexity, together with
our solutions.
The inherent parallelism of the system called from
the start for an asynchronous interface to the mod-
ules. It was not trivial, however, to schedule the
various Medusa tasks and the Tcl interpreter in a
way that would ensure consistency and efficiency.
Maintaining a simple API from Tcl was also a high
priority, and a challenging task. We finally imple-
mented a multi-threaded interface to the lower levels
of Medusa, but we presented it as single-threaded
from Tcl. We also developed a new programming
construct, the asynchronous context, to support effi-
cient error checking in an asynchronous environ-
ment from within the single-threaded Tcl layer.

After some experience with the system it soon be-
came clear that an extra level of abstraction was
highly desirable between the low-level modules and
the complete application. Some common patterns of
modules emerged repeatedly and the obvious desire
was to encapsulate such a medium-level structure
into something as self-contained as a module, of
which one could create new instances as required.
We adopted [incr Tcl] for this [incr Tcl 93].
The first Medusa applications had traditional mouse-
based interfaces implemented in Tk. As our data
analysers became more refined, we started investi-
gating alternative input devices like pen, gesture and
voice. An application could check for input on all
these different channels, but it was preferable to find
a way to abstract the input interface from the re-
quired action. The symmetrical problem was found
on the output side, where the same message could be
presented through a variety of media including text,
video, recorded audio and synthetic voice. We used
the Model-View-Controller paradigm for this
[Smalltalk 90].

2. Medusa - a brief overview
To follow the rest of the discussion, an understand-
ing of the basics of the Medusa architecture is re-
quired. An in-depth presentation of Medusa would
be outside the scope of this paper, but a brief over-
view will be given here. More details may be found
in [Medusa-ICMCS 94], [Medusa-Tcl 94] and
[Medusa-video 95].
The hardware on which Medusa runs is based
around the concept of the Network Scalable Personal

Computer (NS-PC): the multimedia devices are not
peripherals of the main computer but are first-class
network citizens with their own ATM connection.
This has several advantages. One of them is scal-
ability: some NS-PCs may have one camera while
others have six, without the need for an overdimen-
sioned backplane; in some cases a Network Scalable
PC might not even include a workstation — it might
be, for example, the logical union of a video tile (a
stand-alone LCD display) and an audio brick. An-
other benefit is the avoidance of undesired interfer-
ence between streams: in a traditional architecture
the digital audio data has to be routed through the
workstation’s bus, thus degrading the performance of
both the workstation and the audio link itself.
From a software point of view, Medusa uses a peer-
to-peer architecture in which modules, linked by

ATM Network

The Network Scalable Personal Computer

Workstation

mdwish

Audio box

Audio box

NS-
PC

Host

Server
process

Module

KEY

data connection

command connection

NS-PCs, hosts, servers and modules across the network.

connections, exchange data and commands. Mod-
ules reside in server processes distributed across the
hosts of a heterogeneous network. However connec-
tions between modules have the same behaviour and
properties regardless of the relative location of the
modules they connect — to Medusa, a connection
between modules in the same process is no different
from one between modules on different machines. At
this low level, even the controlling Tcl application is
seen as a module; the application process contains a
module with many command connections to all the
modules it creates.

3. Parallelism, asynchronous execution
and threads
Any Medusa process, both the servers containing the
data processing modules and the application process
containing the control module, must contain the Me-
dusa scheduler, which manages the processing of
messages sent and received over the connections.
Because the application process is implemented as a
Tcl interpreter containing, among others, the Tk and
Medusa extensions, the interaction between the Me-
dusa scheduler and the Tk event loop is particularly
important.
Our original implementation of the Tcl interpreter
for Medusa was single-threaded. While standard Tcl
commands were executing, Medusa was locked out.
This didn’t affect the multimedia performance as the
interpreter only dealt with the control of modules;
the data could still flow through the worker modules,
which resided in other processes. Still, this meant
that a Medusa-triggered callback might have to wait
for a while before being invoked. Because Medusa
activity was considered to be high priority, whenever
Medusa regained control (because Tcl invoked a
Medusa command) it allowed its Tcl callbacks to be
invoked. In retrospect this was a bad design because
it rendered procedures interruptible by callbacks,
whereas they aren’t in plain Tcl/Tk.
Tcl does not have any synchronisation primitives to
disable interruptions by callbacks scheduled by
-command options, after events or bind com-
mands. On the other hand, it doesn’t need them be-
cause its mode of operation is such that these call-
backs can only be invoked when the interpreter is
idle or when a flush is explicitly requested via up-
date . In other words, callbacks can’t interrupt
anything else by definition. The queuing of the
pending callbacks is taken care of by the system and
is transparent to the application programmer. We
considered whether to introduce “disable/enable in-
terrupts” primitives, but we soon decided that Tcl’s

original model was the one to adopt. Procedures
must be uninterruptible unless they request an up-
date . This method is very simple, sufficiently pow-
erful and, most importantly, very natural for the pro-
grammer — so much so that in most cases the pro-
grammer doesn’t even think about what could hap-
pen in the middle of what else, and yet Tcl does the
right thing in the end. So we followed this philoso-
phy in our new implementation.
The development of a threaded API to the Medusa
module layer prompted a major change from the
original implementation: we made the new Medusa-
Tcl interpreter multithreaded. One thread runs the
interpreter while other worker threads running in
parallel carry out the individual Medusa commands.
The commands for each module must be executed in
strict sequence, but the interpreter need not be held
up waiting for each one to finish before issuing the
next, and commands for different modules can be
executed in parallel.
Each Medusa command spawns its own thread and
immediately returns control to the interpreter (unless
synchronous execution is explicitly requested for that
command) so that the Tcl flow of control can move
on to the next instruction.
To sequence the commands pertaining to a given
module, every module has a FIFO queue of worker
threads. All threads, except the head of the queue,
are blocked, and when a thread finishes it drops off
the queue, allowing the one behind it to run.
Although this change involved a complete rewrite of
the interpreter, we maintained complete compatibil-
ity with the previous Tcl-level API, so that existing
scripts could run unmodified. We maintained, for
example, the scheme by which Medusa commands
can have optional -success and -failure call-
backs associated with them for the management of
asynchronous calls.
While the syntax described in [Medusa-Tcl 94] was
retained for compatibility, some new alternative con-
structs were introduced to make the Tcl program-
ming interface to the modules even more similar to
that of Tk’s widgets.

module .m \
-host duck -server mgbvideo \
-factory CameraDevice0 \

 -module video_source \
-frame_rate 1/2

The module, once created, has a configure
method through which its attributes can be inspected
and changed:

.m configure -frame_rate
⇒ 1/2

.m configure -frame_rate 1/3
⇒ 1/3

This syntax implicitly uses the getattributes
and setattributes methods of the module.
It is also possible to bind a Tcl variable to an attrib-
ute so that changes to one will be reflected in the
other and vice versa. This implicitly uses the
watchattributes method of the module to
propagate changes from Medusa to Tcl, and the
trace mechanism on the variable to propagate
changes in the reverse direction. This is most useful
for controlling an attribute with a Tk widget that can
be linked to a variable. The variable becomes the
contact point between the module and the widget.

module bind attrName varName

.volumeSlider bind gain scalePos
scale .s -variable scalePos

As we shall see in greater detail later on, the variable
can be viewed as the Model in a Model-View-
Controller setup; the scale is then both a View and a
Controller for the variable. The same goes for the
attribute.

3.1 An example of asynchronous
programming issues: building a pipeline
Because Medusa is a fully distributed system in
which the multimedia peripherals are first-class net-
worked computers, most connections from an ulti-
mate source to an ultimate sink (such as from a cam-
era to a video tile, possibly going through buffers,
gates, format converters and so on) involve modules
that are on different hosts from each other and from
the host that the Tcl program is running on. The
connect method is used to tell a module to connect
to another module. Setting up the complete pipeline
involves creating the n distributed modules and con-
necting up the n-1 pairs by issuing the connect
method on one of the modules of each pair.

Without the programming constructs to specify
asynchronous execution, one would create all the
modules sequentially (each time waiting for comple-
tion of the previous creation) and then connect all
the pairs in turn. Neglecting, as a first approxima-

tion, the time spent issuing the commands, the
situation can be represented as follows, with time on
the horizontal axis:

This is clearly unacceptable and was never consid-
ered as a viable solution.
In our first implementation the command to create
new modules could be invoked asynchronously but it
did not support -success and -failure call-
backs. The MDsynch ?module ? command (similar
to update) blocked the interpreter until no more
commands were pending on a given module, or on
all the modules known to the interpreter. In this en-
vironment one would create all the modules concur-
rently and then, for each pair in turn, MDsynch the
modules of the pair and then connect them before
proceeding to the next pair. The resulting situation
is:

This is a substantial improvement but still isn’t fully
optimised. Because at connect time the A-B pair is
processed before the B-C pair, the commands
“MDsynch A; MDsynch B; Connect A-B” precede
“MDsynch C; Connect B-C” and the issuing of the
“Connect B-C” command has to wait unnecessarily
for the creation of A (specifically because of the
“MDsynch A” in the treatment of the A-B pair),
whereas it could have started earlier otherwise. This
is because there is only one Tcl thread of execution

A B C D
The pipeline of modules we want to create

Create A

Create B

Create C

Create D

Connect A-B

Connect B-C

Connect C-D

Create A

Create B

Create C

Create D

Connect A-B

Connect B-C

Connect C-D

and so MDsynch, like update , blocks the whole
interpreter.
Note that the above example, for illustration pur-
poses, shows a worst-case scenario in which the
creation of the first module takes the longest time;
on the other hand the method we outlined cannot
optimise the order of creations in advance, because
the creation times for the various modules are un-
known before creating the modules.
It is interesting to note that even the availability of
-success and -failure callbacks is not suffi-
cient to produce the optimum version without re-
sorting to global flags. The problem is that we can’t
schedule the “Connect A-B” in the -success call-
back for either A or B, because the other module
might not be ready to accept a connection. We would
have instead to schedule something like the follow-
ing proc:

proc conditionallyConnect {A B} {
 # Invoked on successful creation
 # of A; tries to connect it to B.
 global created
 if {[info exists created($B)]} {
 $A connect $B
 } else {
 set created($A) 1
 }
}

Every module except the first and last must have two
of these calls in its -success callback, one to at-
tempt to connect it to the previous module and one to
attempt to connect it to the next, because it is not
known in advance which module of any given pair
will be ready first.
The optimal solution, obtainable through the above
strategy, has the following diagram:

But this is where our new threaded implementation
proves its worth: its sequencing of asynchronous
commands is such that this behaviour is obtained by
default, with no effort required by the programmer.
It is sufficient to issue all the creation commands and
then all the connection commands, without having to
register any callback or global flag. The create com-
mands will start in parallel for the different modules,
each being the head of its queue. The command to
connect two modules is effectively present in two
queues, but it doesn’t hold the second queue up for
any length of time — it is just there for synchronisa-
tion purposes, to ensure the module has been created.
The actual connection operation starts as soon as
both modules exist.
A key feature of this scheme is that the command
that creates a module, even if it returns before hav-
ing completed the creation, ensures that the thread
queue for the module is ready before returning. This
allows the system to accept and enqueue commands
(such as connect) for that module even before the
module actually exists.

3.2 Programming for robustness in an
asynchronous environment
One of the main reasons why prototypes are so much
quicker to write than full-fledged applications is that
in writing a prototype one can afford to omit a great
deal of detail about error checking. While in the
prototype an action can simply be expressed by is-
suing the corresponding command, in a properly
written application the command must be wrapped
inside a layer of code that traps any potential errors,
checks the return code and possibly recovers by at-
tempting an alternative operation. It is well recog-
nised [Man-Month 75] that this error catching in
itself adds a significant layer of complexity to the
application.
But the problem only becomes worse in an environ-
ment using asynchronous programming. To be able
to check the return code, which is what Tcl’s catch
does, the command must have completed its execu-
tion, successfully or not. However the asynchronous
strategy, which is fundamental to achieve the desired
levels of efficiency especially in a distributed system,
is to issue the command in the background and move
to the next one at once, well before completion; so
catch would not work here, because the command
to be caught returns control to the interpreter imme-
diately, before knowing whether it will succeed or
fail. In a prototype which doesn’t check return codes
the asynchronous approach is easy to follow: as long
as all the commands succeed, everything will work

Create A

Create B

Create C

Create D

Connect A-B

Connect B-C

Connect C-D

and go very fast; as soon as one command fails,
though, the whole prototype will fall over. For an
application that wants to be robust, checking the
return codes is reasonable, if only tedious, when one
can afford to wait until the commands complete be-
fore proceeding, i.e. when one has the luxury of us-
ing the catch approach; but having to support both
error checking and asynchronous programming
multiplies, instead of simply adding, the complexi-
ties of the two approaches.
It should be noted in passing that the fact of dealing
with a distributed environment makes error checking
a necessity for every application which is not a pro-
totype. You wouldn’t normally think of catch ing
every button creation in your Tk program, because if
the program’s window comes up at all it is highly
probable that it will be able to create all the buttons
it needs. But when the items you create are modules
running in external processes and often on external
hosts, it would not be wise to assume that because
the program has started on the local computer then
all these remote operations will succeed too.
The way Medusa controls asynchronous program-
ming is, as we’ve seen, by making the -success
and -failure options available to every Medusa
command. This allows the programmer to register
two callbacks, one of which will be invoked when
the command completes. While this construct is ex-
pressive and complete, at the Tcl level it forces a
programming style where the code to perform a
complex action, instead of being written as a self-
contained procedure, has to be scattered among the
nodes of a binary tree of callbacks. We can say from
experience that this leads to programs of low read-
ability that are quite hard to maintain and update.
To overcome this problem we developed a new pro-
gramming construct, the asynchronous context,
which allows several related actions to be launched
as a group, registering -success and -failure
callbacks for the whole group without having to fol-
low the outcome of the individual actions.
Let’s use the pipeline example from section 3.1 to
show how this construct works. Assume that all the
modules have been created and that we want to con-
nect up all the pairs, as fast as possible and checking
for any errors.
We create an asynchronous context object, say c,
and register our -success and -failure call-
backs with it; these callbacks will be relative to the
success or failure of the entire operation, not of the
individual commands. From within c, we launch all
the required Medusa commands: this causes them to
be spawned asynchronously, with hidden

-success and -failure callbacks added by the
context which will notify c of the completion of the
launched actions. When we have launched all the
required operations, we issue c’s commit method,
which means that no more commands are to be
launched from within this context. From now on, as
soon as all the commands launched so far have com-
pleted, c will invoke one of its two completion call-
backs.
The corresponding procedure can be written as fol-
lows:

proc pipe {args} {
argument parsing omitted for
brevity. The result of it is that
the local variables success,
failure and modules are created.

 set c [async_context #auto \
 -success $success \
 -failure $failure \

-persistent 0]
 set l [llength $modules]
 for {set i [expr $l-1]} {$i>0} \
 {incr i -1} {
 set sink [lindex $modules $i]
 set source [lindex $modules \
 [expr $i-1]]
 $c launch $i-th_pair \
 $sink connect \
 up input $source down
 }
 $c commit
}

You may have noticed the -persistent 0 option
in the command that creates the context. This in-
structs the context object to destroy itself after it has
reached completion and invoked one of its two call-
backs, relieving the programmer from having to
keep track of the context herself. In other cases one
may want the object to stay around even after com-
pletion, so as to be able to query its state or to invoke
some of its methods: -persistent 1 will then be
used.
More features available for the context object are
shown below:

The -sync option
If set to 1, makes the commit method block un-
til completion. Also available as a sync method
for persistent objects.

The -cleanuponfailure option
A failure of the context means that at least one of
the launched operations failed; but other
launched operations may have succeeded. If this
option is set to 1, in case of failure for each

launched operation which succeeded a matching
cleanup command will be called. This requires
the programmer to register a cleanup command
for every command that is launched. In the ex-
ample above, one would register a matching
disconnect for every connect . Incidentally,
this is the reason why the launched operations
carry an identifier ($i-th_pair above).

The interrupt method
The typical use of this is to launch a set of opera-
tions from the main program while allowing an
external event (typically a button press from the
user) to abort the sequence. The interrupt
method can be invoked at any time during the
lifetime of the context, even before a commit . It
will have effect if it is received before comple-
tion, in which case it will force a failure. If the
interrupt comes in before commit, all requests to
launch commands are silently ignored (this saves
time: if you've already decided to abort the lot,
any operation requested after this decision is not
even started). If the interrupt comes after the
commit but before completion, it won't affect
pending operations although it will still force a
failure on completion. If the context has already
completed then the interrupt has no effect.

The composition properties
The asynchronous context has good composition
properties. The construction of a composite object
containing several modules (see 4.3) can be
wrapped into a context, thus providing
-success and -failure callbacks for the
composite object. From then on, the construction
of such a composite object becomes itself an op-
eration that can be launched from within a higher
level context.

The asynchronous context has been a very successful
addition to our programming toolkit. It allows us to
perform the important task of error checking without
giving up the efficiency advantages of asynchronous
programming, all with a clean programming inter-
face to single-threaded Tcl.

4. Composing modules into higher order
objects
Just like the graphical side of a Tk application is
built out of widgets such as buttons and listboxes, the
multimedia side of a Medusa application is built out
of modules such as cameras and speakers.

In both cases, after some practice in writing applica-
tions, it is frequently observed that common patterns
emerge: groups of widgets or modules appear in the
same arrangement from one program to the next.
And, just like Tk programmers have often felt the
need for mega-widgets, so Medusa programmers
have often wanted mega-modules.
A typical example is the basic video pipeline that
puts a video stream from a networked camera onto
an X display. A camera module pumps data through
a network buffer into a converter and an X sink. The
converter translates the incoming video from the
format produced by the source to the one accepted by
the display (displays with different colour depths will
represent pixels in different formats). The X sink
puts the frames of video into an X window which
may have been created by Tk.
The basic parameters for such a pipeline are the

frame rate, the size of the picture produced by the
camera and the magnification factor (video frames
can be resized in software by the converter module).
Unfortunately, to change these parameters you must
know which modules control them: the frame rate is
set by the camera; the magnification factor, by the
converter; the picture size, by the camera again; and
all this without forgetting that, if you change the size
or the magnification on the modules, you must also
change the size of the Tk window containing the X
sink. What is needed is a way to create the pipeline
as an object which knows what internal operations to
perform when requested to change those parameters.
This would allow Medusa programmers to develop a
useful collection of parts for common tasks; new
applications could then be written by concentrating
on their new functionality instead of the perpetual
recoding of the common portions. Ideally, for greater
completeness, the object would also include the ap-
propriate Tk widgets through which the parameters
could be tuned by the user. Including the controlling
widgets in the multimedia object itself also has the
benefit that, whenever that object appears in an ap-
plication, the user is always presented with a consis-
tent interface that must be learnt only once.

Camera
Network

buffer
X sink

Format
converter

s ize

f rame ra te
magn i f i ca t i on

The modules of a video pipeline

One of the first requirements was for this level of
grouping to be implemented in Tcl. Writing the ob-
jects in C++ was considered but had little to offer
other than some potential efficiency gains; on the
other hand it complicated the development process
considerably, especially when embedding Tk widgets
inside objects. We first tried using pure Tcl and one
of the successful results was what we call a “vwin”
object — the combination of a converter and X sink
modules, a Tk window and some suitable controlling
widgets.
The vwin was immediately popular and was adopted
by practically all the video applications written after
it — a practical demonstration of how much the
need was felt for higher level reusable components.
The drawback of this approach was that the vwin
was not really an object but rather a group of mod-
ules, procedures and global variables. We therefore
adopted the object oriented extension [incr Tcl],
which provides language constructs for developing
such groups as first-class objects and endowing them
with a syntax similar to that of normal widgets and
modules.
Of the three pillars of OOP — encapsulation, in-
heritance and polymorphism — what we needed
most was encapsulation. With [incr Tcl], the vwin
can at last become an object with its own methods
and private data. We did not develop a class for
modules in order to inherit from it, because our

classes do not usually have an “is-a” relationship
with modules: a class representing a pair of modules
has both of them in it, but is neither; inheritance
(even multiple) is generally inappropriate in our
case. There is however scope for inheritance between
objects. A basic video sink widget might simply con-
sist of two Medusa modules and a frame widget,
while a more complex one would inherit from this
and have extra widgets to control the video parame-
ters.
What we have described so far is similar to the expe-
rience of many other programmers in the field of Tk
widgets: the “atoms” are too low level to build appli-
cations with, so we need a way of composing them
into higher level “molecules” (with apologies to
chemists!) with their own methods.
We do this by resorting to OOP, using mostly encap-
sulation and a bit of inheritance. In the field of dis-
tributed multimedia, however, there are new major
complications, related to the issues of connections
between objects and cardinality of connections.

4.1 Connections between objects
Modules, unlike widgets, must not only be grouped
together — they must also be connected for data to
flow. Grouping atoms into molecules is a hierarchi-
cal composition. But our atoms now also have con-
nections between them. Can we allow connections to
span molecule boundaries or not?

A simple program incorporating a vwin (everything below the menu bar is part of the vwin)

Video frame area:
double-clicking on it
toggles the visibility
of the control panel.

Control panel with
widgets to select size,
frame rate and magni-
fication.

Status line

If we go back to our video pipeline example it is easy
to see that we would like to “cut horizontally” so as
to have the camera, the converter and the Tk frame
in the same molecule; this encapsulation would al-
low us to ask the molecule to change its magnifica-
tion without us having to know which individual
module to address. But on the other hand it is not
unreasonable to want to cut vertically to obtain a
source / sink arrangement, especially in the case of
multiple parallel streams. It can be quite useful to be
able to connect the multiple sources from NS-PC A
to sinks on either B or C. But if we want to be able to
cut both ways simultaneously, a hierarchical compo-
sition is no longer satisfactory. So we ask ourselves:
should we look for a grouping strategy that is more
flexible than the hierarchy?
The problem of wanting to group atoms that have
connections is found in other fields too, like digital
circuit design, and we may draw some inspiration
from there. The established practice in digital design
is to allow connections to span molecule boundaries.
An atom (a logic gate) has connections to the out-
side, and so has a molecule (a component like a
counter). From the outside, atom and molecule are
structurally alike: both have input and output ports
accepting data and control information. The digital
design point of view, compared to the multimedia
point of view, does not give the same emphasis to
sources and sinks of data, but nonetheless allows
them to be represented in the model. In simple cases,
like building a counter out of gates, it is the pattern
of interconnections between the I/O ports of the at-
oms that defines the behaviour of the molecule. In
more complex cases, where programmable logic is
involved, the behaviour of the molecule may be de-
fined by a set of instructions stored in a ROM.
This model, although purely hierarchical, has proved
its worth in the hardware field. Does it work well
with our multimedia modules? The answer is yes, as
long as we are prepared to give up some flexibility.

Because a hierarchy is involved, we cannot cut both
horizontally and vertically: we must decide on one or
the other beforehand, when we design the collection
of reusable parts that we are going to build.
An important lesson to learn from the digital design
field is that it is a good idea to make molecules that
behave like atoms when seen from the outside. This
means above all that they must be capable of being
connected to atoms as well as to other molecules.
Other features that would be desirable for uniformity
but which are not essential to make the system work
are the ability to export the internal modules’ attrib-
utes as if they were the molecule’s own, the ability to
respond to the standard module methods (including
for example watchattributes on the exported
attributes) and the ability of being inspected with
standard tools like MDpanel (a Tcl library proce-
dure that pops up a window exposing the attributes
of the module). The issue of making molecules look
and behave like atoms is shared in the field of mega-
widgets [incr Tk 94]. We are still in the experimen-
tal stages at the time of writing, but it may well be
the case that the solutions adopted by the Tk com-
munity to compose widgets may be fruitfully applied
to composing modules.
An alternative solution is to provide the module look
and feel not by emulation but through Medusa itself.
We could build a special Medusa module that would
do nothing except being a wrapper. This idea con-
sists of recreating the module equivalent of what the
frame is in the world of Tk widgets: a component
that does nothing of its own but whose function is to
group other components. Medusa already has facili-
ties for module proxying and for handing off data
connections to lower level implementation modules
(see [Medusa-ICMCS 94]), so this strategy would
save us from having to emulate a substantial amount
of functionality.
The major piece of work would not go into creating

“Cutting vertically” in our language means drawing
molecule boundaries that intersect the pipelines and

consequently force the molecule to expose some I/O ports.

“Cutting horizontally” is our shorthand expression for
“drawing molecule boundaries which are parallel to the

data pipelines”.

the wrapper module but rather into the equivalent of
the pack command, say mdpack : the command
that puts an existing module into the wrapper, con-
necting it with others in a user-specified pattern and
exporting some of its attributes. This command
should be exported to the Tcl level to allow mole-
cules to be defined in Tcl.
Building a molecule amounts to creating a wrapper,
creating the appropriate modules and plugging the
modules together inside the wrapper with mdpack .
[incr Tcl] steps in at this point, to allow the pro-
grammer to define molecule “types” instead of just
instances. In the tradition of [incr Tcl], some re-
naming and aliasing acrobatics will become neces-
sary to make the object respond to its module name
as well as its object name, but this is an issue that
has been dealt with before when building mega-
widgets.
In building hierarchies of molecules we believe that
it will be advantageous to have a lower level where
the molecules only contain modules and no Tk wid-
gets. This allows the functionality to be separated
from the user interface — a topic that will be treated
in greater detail in section 5.

4.2 Cardinality of connections
As explained in section 2, the configuration of an
NS-PC is completely flexible and the number of
available devices varies from unit to unit.
We have talked of standard high level molecules and
how to build them in the style of the digital circuit
components, but there we implicitly assumed that a
molecule had a definite structure and, for example, a
given number of ports. If we want to design a mole-
cule for a multi-headed video source, it must instead
have as many output ports as there are available
cameras on that given NS-PC; so, while the general
structure will be the same, different instances will
have different cardinalities. The constructor takes a
list of the available cameras as a creation parameter.
On the sink side we have yet another situation. A
multi-headed video sink is made of screen windows,
but the NS-PC imposes no definite limit on the num-
ber of windows that can be created; it either does not
have a screen, in which case it can’t make any, or it
has one, in which case it can make as many video
windows as required. But if a multi-source is to be
plugged into a multi-sink, the multi-sink must be
ready to accept whatever the multi-source is ready to
produce. Always over-dimensioning (and conse-
quently under-using) is not a good solution. Over-
dimensioning first and then killing off the dangling

unused sources or sinks after the connection has
been established is only slightly better.
This is our second major complication in grouping,
which comes from the fact of dealing with a hetero-
geneous distributed system instead of a uniform con-
figuration where every networked workstation has
the same array of multimedia devices. In the digital
design case, once a molecule containing five atoms
of a kind has been defined, it is always possible to
instantiate it; in the networked multimedia case,
instead, the available resources are not known before
runtime and so we need a more versatile molecule
that, instead of five, has “as many atoms of that kind
as it is possible to have on this host”.
One solution is to give up completely on the multi-
source and multi-sink arrangement and tend to cut
horizontally, grouping one pipeline at a time. Later,
all the parallel pipelines can be combined into a big-
ger molecule. This means giving up the advantages
of having a multi-source or multi-sink as an object.
We have also been designing an alternative solution,
based on delayed creation of the endpoints, which
has the advantages of both the vertical and the hori-
zontal styles of grouping: it sees the multiple end-
points as separate entities, but it can also address the
multiple pipeline and the individual pipelines inside
it. The key idea is that the multi-sink and multi-
source must not be created in advance, but only
when a specific multiconnection request is received.
This way it becomes possible to work out the com-
mon subset beforehand and create two endpoints that
match. This arrangement amounts to grouping verti-
cally before the endpoints have been created and
grouping horizontally once they exist. The main
drawback is an increased setup time compared to the
case where the endpoints are created in advance. The
structure to implement this idea is rather elaborate
and it is still part of our research to evaluate whether
the benefits of this approach are worth the extra
complication.

4.3 The current implementation
For most of the compositional approaches presented
above we have built prototypes to evaluate their rela-
tive advantages and trade-offs. But we haven’t yet
developed any of them into a complete solution upon
which to build an extensive library of components.
In the meantime, though, with or without a library,
we had to produce some reliable applications to put
our deployed hardware to good use, and for this task
we built a few components as we went along, without
a grand design behind them but with the practical
goals of robustness and reusability.

These components are currently used in the sup-
ported multimedia applications that are in daily use
at the lab: video mail, video phone, video peek and
radio/tv/CD player. They are listed below.

The vwin
A video sink object with user controls for the
stream parameters: picture size, magnification
and frame rate.

The ringer
A complete audio pipeline from a file source to a
speaker that can play a given sound sample and
optionally repeat it at regular intervals until
stopped.

The multicamera
A multi-headed video source combining many
cameras in parallel and automatically adapting to
the number of cameras available on the NS-PC
where it is instantiated.

The multiwindow
A multi-headed video sink consisting of a dy-
namically variable number of parallel vwins; as
the multiwindow is connected to a multicamera,
it automatically creates or hides some of its vwins
so as to match the number of channels of the
multicamera.

The video transceiver
The combination of a multicamera and a multi-
window. Can be connected to another transceiver
for a bi-directional link, or it can be looped back
on itself for a local view.

These components are built as [incr Tcl] objects
containing Medusa modules and, where appropriate,
Tk widgets. As can be seen we have performed the
grouping both ways, depending on the circum-
stances. The ringer is built by “cutting horizontally”,
i.e. by creating an object which contains an entire
pipeline and has no data connections to the external

world. The other objects are instead built by “cutting
vertically”, i.e. by running the object boundary
around an endpoint of the pipeline and thus inter-
secting the data flow.
These components have been built by cutting either
horizontally or vertically but not both, without re-
sorting to the more complex “delayed creation” ap-
proach outlined earlier. The case of the vwin shows
some of the problems of this limitation. This compo-
nent is obviously an endpoint, i.e. an object that has
been obtained by cutting vertically. However it has
an element of “horizontal cutting” (which means
“keeping the whole pipeline together”) in that it
contains user controls, like the picture size selector,
that refer to parameters belonging to modules outside
of itself, in this case the camera module. It is thus
necessary to give the vwin a reference to the external
module (the module name of the camera it is con-
nected to) so that it can ask the camera to produce

fi le source

time gate

volume control

speaker

ringer

Internal structure of the ringer component

camera

camera

camera

mult icamera

mult iwindow

video transceiver

vwin

X sink converter netbuffer

vwin

X sink converter netbuffer

Internal structure of the video transceiver, showing a
hierarchy of building blocks

the appropriate size whenever the user acts on the
vwin’s controls.

This pointer going across the object boundary is the
dirty part of this scheme. As new features are added
to the vwin (this happened recently), the need arises
for the vwin to talk to more modules in its pipeline
that are outside of itself, and the proliferation of ref-
erences to modules outside the vwin object is a bad
thing.
The fact that these components can themselves be
used as building blocks for other components, as
exemplified by the multiwindow and the video trans-
ceiver, is a fundamental property. We would reject
any composition method that only allowed one layer
of grouping. The ability to make molecules out of
other molecules, and not only out of atoms, allows us
to build the library of components in a bottom-up
style.
It must however be noted that the molecules we have
built do not behave in all respects like atoms. The
programming interface is similar for some aspects,
like the availability of -success and -failure
callbacks on most methods including creation, but
the attributes, ports and capabilities mechanisms that
all modules have are not supported nor emulated.
The molecules also have a richer set of methods than
the atoms, with each component exposing new
methods appropriate to the facilities it provides. This
makes their programming interface more expressive,
but it also means that they couldn’t be easily treated
by automatic tools like Sticks and Boxes (see
[Medusa-Tcl 94]). It is debatable whether this is an
asset or a liability; for the atoms, the ability to deal
with them only through a limited set of standard
commands is mostly an advantage, but for the mole-
cules, given that they can encapsulate much higher
level behaviour, it may not be appropriate to restrict
the programming interface in a way that may not
map naturally to the facilities they offer.

An important issue that comes out of this experience
is the relevance of a strategy for connecting mole-
cules that have connection ports with a composite
structure. For the components presented above the
problem was bypassed by designing the multiple
endpoints in pairs and then giving one of them a
connect method that knew how to talk to the other
one. This works well as long as each type of compo-
nent can only be connected to another given type; but
as soon as a component can be connected to several
other types of components, a clearly defined multi-
connection interface becomes a necessity. Among the
issues to be addressed (for which we do not have a
complete solution yet) are the following.

Gender
Inputs and outputs must of course be distinguish-
able, and a port may only be plugged into a port
of the opposite gender. But the case of a multiple
port is less trivial than it sounds, as the subports
composing the multiple port could be of different
genders (as in the case of the transceiver). It all
depends on whether one allows the connection
between two transceivers to be seen as one fat bi-
directional pipe, or whether one imposes the con-
straint that pipes can carry multiple streams but
only in one direction.

Type
While there are good reasons for keeping the
connections between modules as untyped, it is
important to type the higher-level fat pipes that
result from aggregation of many simple connec-
tions. Presumably this typing will have to be hi-
erarchical, to respect the fact that the molecule
out of which the fat pipe comes may be composed
of several subpipes each coming from a submole-
cule and so on.

Cardinality
Suitable policies must be defined for the case
when the two components to be connected match
in gender and type but not in cardinality, e.g. one
has five video inputs and another has three video
outputs. In our multicamera / multiwindow im-
plementation we arranged for the sink side to re-
configure itself to match the cardinality of the
source side, but this will not be possible in every
case. In such cases it must be decided whether to
connect the common subset or to reject the con-
nection request.

Camera
Network

buffer X sink
Format

converter

D

s ize

f rame ra te

D

magn i f i ca t ion

Tk f rame
(wi th v ideo)

Cont ro l pane l

vwin

The vwin’s control panel has to act on modules outside
the vwin’s boundaries

Self-description capacity
The multiport must encapsulate in itself a de-
scription of its gender, type etc. so that the con-
nection operation can be made independent of the
objects to be connected.

5. Designing multi-device interfaces
In what we call first-generation networked multime-
dia systems [Pandora 90], the data streams are
switched from one place to another in a “hands off”
fashion. In second-generation systems like Medusa,
however, the application can analyse and manipulate
the data as it flows. This gives us the opportunity to
use the multimedia streams as additional input and
output user interfaces to control the application.
Sound detection, speech recognition, motion detec-
tion, gesture recognition, speech synthesis are a few
of the new input and output channels that an archi-
tecture like Medusa can support. Many “transducer”
modules have been written which turn raw data into
higher level events or vice versa.
From the point of view of the applications program-
mer, however, any one of these transducers is still a
fairly low level component; it is inconvenient, for
example, to have to accept input on several streams
by redoing a similar programming job for each of the
available input transducers.
We adopted the Model-View-Controller paradigm
(MVC, see [Smalltalk 90]) as a higher level ab-
straction that shielded us from this problem. In this
paradigm the unit of processing is the Model, which
can perform several actions; the input devices are
called Controllers: they may have very different ways
of interfacing to the user, but they share a common
interface to the Model; a similar arrangement exists
for the output devices, called Views: they can show
the state of the model in a variety of ways.
As a proof of concept, a demo application was writ-
ten: Gripple, an electronic version of a commercial
puzzle of the same name.
Gripple is rather similar to the classical “15 sliding
tiles” puzzle; it consists of a set of sixteen numbered
discs mounted on five interlocked rotating platforms.
Each circular platform carries four discs. There is
one platform for each of the corner quartets of discs
and one platform in the centre of the board. By ro-
tating the platforms, the discs move from one plat-
form to another. The aim of the game is to bring the
discs in the initial configuration after having scram-
bled the board.

The Model contains a representation of the board
describing the current disc positions. This is imple-
mented simply as a list of sixteen elements.

The model accepts three commands:

rotate platform direction
where platform is one of the five platforms
and direction is either clockwise or anti-
clockwise.

restart ?difficulty?
where difficulty is a non-negative integer.
If difficulty is omitted, the discs are posi-
tioned at random; otherwise, starting from the
ordered configuration, that many random scram-
bling moves are performed (so lower difficulty
settings correspond to easier configurations).

reload configuration
where configuration is a list of sixteen
discs. This is used for studying moves.

As far as the model is concerned, all these com-
mands ultimately have the effect of performing a
specific permutation on the sixteen disks.
The simplest controller only has a textual interface
through which the above commands can be sent to
the model. The simplest view only shows the list of
discs as text.

The original Gripple puzzle, marketed by m-squared inc.
in 1989

A more elaborate view draws coloured discs on a
canvas and shows the rotation as an animation.
Writing this component taught us that the model
should send out “actions” to the views instead of its
new state. For the view, performing the animation is
much easier if the model says “rotate this platform
that way” than if it says “the new configuration of
my discs is the following”.
The mouse controller shows the five platforms.
Clicking on a platform with the left button rotates it
“to the left” (anticlockwise), and clicking with the
right button rotates to the right.
To add to the challenge of the game, instead of using
numbered discs another view uses video coming
from a live television feed. The video is split into
sixteen squares covering the same positions as the
corresponding discs. Only when the puzzle is solved
can one see the unscrambled picture. Because the
target position of the squares is not immediately ap-
parent, the puzzle is much harder if only this view is
used. But, because many views can be attached to a
model at the same time, one can always get help by
temporarily looking at a “numbered discs” view.
The Hand Tracker controller uses an image proc-
essing algorithm [Medusa-snakes 95] which spots
and tracks a hand in a scene from a camera. A

drawing of the five platforms is superimposed on the
scene; the player moves the hand to one of the plat-
forms and rotates it in the required direction to trig-
ger the corresponding action on the model. The
tracking algorithm is based on active shape models.
The Voice controller [Medusa-speech 95] takes ver-
bal instructions such as “rotate top left platform
clockwise”. The speech recogniser is based on Hid-
den Markov Models. The use of a constrained
grammar gives a high recognition rate — a funda-
mental requirement for usability.
From our Gripple experience we can abstract some
general guidelines for designing applications that
support multiple user interfaces.
The concerns are similar to those encountered when
dealing with internationalisation of software appli-
cations. While in a single-language application it
may be appropriate to embed messages to the user in
strings within print statements, when the application
has to be translated into many other languages it
becomes necessary to add a level of indirection.
Similarly, if direct programming of the I/O device
may be sufficient for a basic keyboard-and-mouse
application, a layer of indirection must be added if
the same application is to support multiple user in-
terfaces.
The application must be represented by a model with
a well-defined set of methods. Controllers may be
plugged into the model: they are the means through
which the user can invoke the model’s methods. It is
not required that every controller offer all the meth-
ods of the model: for example most of the controllers
described above, except the text controller, do not
offer the reload method and do not allow to spec-
ify a difficulty parameter to the restart
method. Views show the state of the application.
Having views and controllers that are not based on
Tk allows us to run an application on a remote work-
station and control it via local Medusa devices,
which is useful for example in the case of a wall-
mounted audio box in the corridor where there
would be no workstation for traditional mouse-based
interaction.
Using [incr Tcl] we have written Model, View and
Controller classes that handle the communication
between these elements and various management
issues. For any given application, the programmer
now designs specialised model, view and controller
classes which inherit from the generic ones. If, some
months later, a new I/O device is brought along, a
new view or controller can be derived to make it
interact with the application. Note that “device”
should be taken in its widest sense: even a primitive

A screen shot showing the video view, the graphical view
(note that the underlying model is the same, so the

positions of the discs are coherent in the two views) and
the mouse controller.

image analysis module capable of discriminating
between “no motion”, “some motion” and “a lot of
motion” can be considered as such a device; it is just
a matter of mapping this three-way output onto some
useful subset of the methods offered by the model.
An important development is the concept of using
the MVC paradigm on a finer granularity than the
whole application. It is quite useful, for example, to
represent a communication link between two places
with its own model and to be able to “view” this link
in many ways: with audio and video for a worksta-
tion to workstation link, with audio only when one of
the endpoints does not have a screen and so on. The
application will always have to establish and shut
down the communication link regardless of whether
it includes video or not, so this abstraction helps us
in isolating the internals of the application from the
implementation details of how to address the various
multimedia devices. The core of a conferencing ap-
plication is independent of the nature of the links
between the participants: ringing, accepting or re-
jecting calls, adding new participants and so on are
actions that will always be present whatever the me-
dium. According to the resources available at the
different endpoints and to the users’ preferences,
each link will be “viewed” in the most appropriate
way.
This novel way of applying the MVC paradigm ap-
pears to be quite promising and may well be even
more useful to us than the ability to control an appli-
cation with different user interfaces.

6. Conclusions
Most if not all of the multimedia environments based
on Tcl/Tk, including Medusa, accept the wisdom
that Tcl/Tk must only have the roles of glue, control
and user interface, while the multimedia processing
must be done elsewhere. This is a fundamental prin-
ciple.
But we believe that delegating the media processing
layer to a more efficient implementation language,
while necessary, is not sufficient: distributed multi-
media applications based on plain Tcl without any
added structure will easily become too complex to
manage and maintain.
We have shown three main areas in which we have
experienced growing complexity and we have shown
our adopted or planned solutions to these problems.
(1) It is not trivial to efficiently control parallel exe-

cution through a single-threaded process, but it
helps to keep the Tcl side single-threaded for
simplicity. The introduction of an appropriate

programming construct solves some important
control problems.

(2) Modules are a good first layer, but they are too
low level for building large applications. There
is a need for a library of reusable building blocks
that are semantically high level and syntactically
simple. The problems of building these are
harder than those of composing Tk widgets.
This is due to the data connections and the car-
dinality issues associated with a distributed het-
erogeneous system. [incr Tcl], while not in itself
a complete solution, is a valuable tool which
helps a lot in grouping atoms to create reusable
components.

(3) The many media under which an application
can present the same semantic contents to the
user should not be handled on an ad-hoc basis
without a unifying abstraction: the Model-View-
Controller provides this.

By supporting our applications environment with the
structure introduced by these abstractions we can
tame the inherent complexity of distributed multi-
media programs while reaping the benefits of recon-
figurability and ease of prototyping that Tcl/Tk is
rightly acclaimed for.

7. Acknowledgements
Many people at ORL have been working on Medusa
bringing their essential contribution at many levels,
from the design of the hardware and of the ATMos
operating system to the networking, modules and
applications layers. Everybody in the Medusa soft-
ware team (Martin Brown, Paul Fidler, Tim Glauert,
Alan Jones, Ferdi Samaria, Harold Syfrig and the
authors) has been involved at some stage with the
Tcl layer of Medusa.
Of specific relevance to this paper Tim Glauert, co-
designer of the Medusa software architecture, wrote
the threaded C++ API and Frazer Bennet, as well as
tracking down some subtle threads bugs, patiently
rebuilt our gigantic interpreter every time we needed
to pull in a new release of our many extensions.
Many thanks are also due to the authors of the soft-
ware that our interpreter is built out of: John Ouster-
hout for Tcl/Tk, Michael McLennan for [incr Tcl],
Brian Smith and his team at Berkeley for Tcl-DP.

8. References

[Badges 94]
ANDY HARTER, ANDY HOPPER, A Distributed Lo-
cation System for the Active Office, IEEE Net-
work, Vol. 8, No. 1

[incr Tcl 93]
MICHAEL J. MCLENNAN, [incr Tcl] - Object-
Oriented Programming in Tcl, Proceedings of
the Tcl/Tk Workshop, University of California at
Berkeley, June 10-11, 1993.

[incr Tk 94]
MICHAEL J. MCLENNAN, [incr Tk] - Building
Extensible Widgets with [incr Tcl], Proceedings
of Tcl/Tk Workshop, New Orleans, June 1994.

[Man-Month 75]
FREDERICK P. BROOKS, The Mythical Man-
Month, Addison-Wesley, 1975, 1982

[Medusa-ICMCS 94]
STUART WRAY, TIM GLAUERT, ANDY HOPPER,
The Medusa Applications Environment, Pro-
ceedings of the International Conference on
Multimedia Computing and Systems, Boston MA,
May 1994. An extended version appeared in
IEEE Multimedia, Vol. 1 No. 4, Winter 1994.
Also available as ORL Technical Report 94.3.

[Medusa-snakes 95]
TONY HEAP, FERDINANDO SAMARIA , Real-Time
Hand Tracking and Gesture Recognition using
Smart Snakes, ORL Technical Report 95.1

[Medusa-speech 95]
ROBERT WALKER, An Application Framework
For Speech Recognition in ‘Medusa’, Third Year
Project Report for the Computer Science Tripos,
University of Cambridge, 1995

[Medusa-Tcl 94]
FRANK STAJANO, Writing Tcl Programs in the
Medusa Applications Environment, Proceedings
of Tcl/Tk Workshop, New Orleans, June 1994.
Also available as ORL Technical Report 94.7.

[Medusa-video 95]
ANDY HOPPER, The Medusa Applications Envi-
ronment, ORL Technical Report 94.12 (video).
Also available as an MPEG-encoded movie that
can be viewed online from our web server.

[Pandora 90]
ANDY HOPPER, Pandora — An Experimental
System for Multimedia Applications, ACM Op-
erating Systems Review, Vol 24, No.2 April
1990. Also available as ORL Technical Report
90.1.

 [Smalltalk 90]
PHILIP D. GRAY, RAMZAN MOHAMED, Smalltalk-
80: A Practical Introduction, Pitman, 1990.

The ORL Technical Reports are available for down-
load on the Internet through Olivetti Research Lim-
ited’s web server at

http://www.cam-orl.co.uk/
or via anonymous ftp at

ftp://ftp.cam-orl.co.uk/pub/docs/ORL

This paper was first published in Proceedings of the
1995 Usenix Tcl/Tk Workshop, Toronto, July 1995.

