Taming the Complexity of Distributed Multimedia Applications

Frank Stajano and Rob Walker

Olivetti Research Limited {fstajano, rwalker}@cam-orl.co.uk

24A Trumpington Street http://www.cam-orl.co.uk/

Cambridge CB2 1QA Phone: (+44 1223) 343.000

United Kingdom Fax: (+44 1223) 313.542
Abstract

The Medusa environment for networked multimedia uses Tcl to compose applications out of low-level proc-
essing blocks called modules. A medium-sized application such as a two way multistream videophone already
uses around one hundred interworking modules, running in parallel on several host machines. This paper
shows how we overcome the inherent complexity of such applications: to deal with parallelism we use a multi-
threaded library hidden behind a single-threaded Tcl interpreter; to build higher order components than the
modules we use the object oriented extension [incr Tcl]; and to exploit the variety of available input and out-
put devices we adopt the Model-View-Controller paradigm.

The first few applications were sessful and they
1. Introduction raised expectations for the subsequent ones. As soon
as one aspect of the system became configurable in
one program, all the other programs were required to
offer the same flexibility. While the modules re-
épained the same, the Tcl portion of the applications

streams and over a hundred software modules als%arted to growin_size and complexi_ty over the ””_“ts
used in some of our applications and several sucﬁ what could easily be managed within the applica-
applications may be active in the system. Input derONS fra_lmework we had one year gedusa-Tcl
vices in the broadest sense (from cameras and mZ—4]' Th's paper presents some problems we hac_l to
crophones to sensors and location equipment lik ace in three key areas (asynchronous programming,

Active Badges[Badges 94] can all be used as reusable compqnents,_multlple mterfaces) as a con-
sources of multimedia streams. The consumers O§equence of this growing complexity, together with

ur solutions.
such streams may be human, for example someo puir solutio .
e inherent parallelism of the system called from

watching a video, or computer-based, such as a e start for an asynchronous interface to the mod
analyser recognising a gesture made in front of Y

) les. It was not trivial, however, to schedule the
camera. It is not uncommon for the same camera ' ’

stream to be simultaneously sent to a number ofarious Medusa tasks and the Tcl interpreter in a

: . : way that would ensure consistency and efficiency.
video windows on different X servers, a storage re- y y y

pository on the network and a video analyser modultle\/k_i'ntam'm~J a simple API from Tcl was also a high

on a processor bank. Modules, the software units thﬁr('aonrt'% :rxuﬁifﬁifégq?‘ t(ta?f;éevt\i)etgg?g\)//vé:nlzl\zls
generate, process and consume the data, are op[iri]—

mised for efficiency and written in C++. Applica- of Medusa, but we presented it as single-threaded

tions, designed for flexibility and configurability, are from Tcl. We also developed a new programming

created in Tcl/Tk: they instantiate the required mod-C.C)nStrUCt’ the asy_nchrlonous context, to support_ effi-
ules on the appropriate networked hosts, they conc—Ient error qhgcklng In-an asynchronous environ-
nect them together and control them according to th(ranent from within the single-threaded Tcl layer.

user’s directives.

Medusa[Medusa-ICMCS 94Jis an applications en-
vironment for distributed multimedia designed to

After some experience with the system it soon be-
came clear that an extra level of abstraction was
highly desirable between the low-level modules and

the complete application. Some common patterns of /
modules emerged repeatedly and the obvious desire /
was to encapsulate such a medium-level structure

into something as self-contained as a module, of \
which one could create new instances as required. ~
We adopted [incr Tcl] for thifincr Tcl 93].

The first Medusa applications had traditional mouse-
based interfaces implemented in Tk. As our data
analysers became more refined, we started investi-
gating alternative input devices like pen, gesture and
voice. An application could check for input on all
these different channels, but it was preferable to find

a way to abstract the input interface from the re- - th limedia devi
quired action. The symmetrical problem was foundComputer (NS-PC): the multimedia devices are not

on the output side, where the same message could Bgripheral;_ of the r_nain computer but are first—_class
presented through a variety of media including textnetwork citizens with their own ATM connection.

video, recorded audio and synthetic voice. We use h,i$ has several advantages. One of them is sqal—
the Model-View-Controller paradigm for this ability: some NS-PCs may have one camera while
[Smalltalk 90] others have six, without the need for an overdimen-

sioned backplane; in some cases a Network Scalable
. . PC might not even include a workstation — it might
2. Medusa - a brief overview be, for example, the logical union of a video tile (a
To follow the rest of the discussion, an understandstand-alone LCD display) and an audio brick. An-
ing of the basics of the Medusa architecture is repther benefit is the avoidance of undesired interfer-
quired. An in-depth presentation of Medusa wouldence between streams: in a traditional architecture
be outside the scope of this paper, but a brief overthe digital audio data has to be routed through the
view will be given here. More details may be foundyorkstation’s bus, thus degrading the performance of
in [Medusa-ICMCS 94], [Medusa-Tcl 94] and poth the workstation and the audio link itself.
[Medusa-video 95]. From a software point of view, Medusa uses a peer-

The hardware on which Medusa runs is basedo-peer architecture in which modules, linked by
around the concept of the Network Scalable Personal

The Network Scalable Personal Computer

- — KEY
e —
% e N NS
y - PC
O
/) o Host
— /
[mdwish
| O — O Server
\ Workstation process
\ @ (| Module
/
\ Q Audio box Y, N / >
\ N y ~_ 7 data connection
“ ~
~ — .
— — command connection

NS-PCs, hosts, servers and modules across the network.

connections, exchange data and commands. Modayriginal model was the one to adopt. Procedures
ules reside in server processes distributed across tieust be uninterruptible unless they requestupn
hosts of a heterogeneous network. However connectate . This method is very simple, sufficiently pow-
tions between modules have the same behaviour argtful and, most importantly, very natural for the pro-
properties regardless of the relative location of thegrammer — so much so that in most cases the pro-
modules they connect — to Medusa, a connectiogrammer doesn’t even think about what could hap-
between modules in the same process is no differeqien in the middle of what else, and yet Tcl does the
from one between modules on different machines. Atight thing in the end. So we followed this philoso-
this low level, even the controlling Tcl application is phy in our new implementation.
seen as a module; the application process containsTe development of a threaded API to the Medusa
module with many command connections to all themodule layer prompted a major change from the
modules it creates. original implementation: we made the new Medusa-
Tcl interpreter multithreaded. One thread runs the
3. Parallelism, asynchronous execution interpreter while other worker threads running in
and threads parallel carry out the individual Medusa commands.
The commands for each module must be executed in
Strict sequence, but the interpreter need not be held

- . %ﬁ) waiting for each one to finish before issuing the
containing the control module, must contain the Me-

: . next, and commands for different modules can be
dusa scheduler, which manages the processing gﬁ

t and ved h " ecuted in parallel.
messages sent ano received over the Connections, ., \equsa command spawns its own thread and
Because the application process is implemented as;

%mediately returns control to the interpreter (unless

Tcl interpreter containing, among others, the Tk anc£ynchronous execution is explicitly requested for that
Medusa extensions, the interaction between the Me:

. : command) so that the Tcl flow of control can move
dusa scheduler and the Tk event loop is parncularl%n to the next instruction
Important. To sequence the commands pertaining to a given

Our original implementation of the Tcl interpreter odule, every module has a FIFO queue of worker
for Medusa was single-threaded. While standard Tcmreads’. All threads, except the head of the queue,

CO’T‘m"?‘”‘{'S were executing, M_edusa was locked OUbire blocked, and when a thread finishes it drops off
This didn't affect the multimedia performance as the

interpreter only dealt with theontrol of modules; the gueue, allowing the one behind it to run.
. ' Although this change involved a complete rewrite of
the data could still flow through the worker modules, 9 g P

he interpreter, we maintained complete compatibil-

mh'tCh I(/?Sc'jded ![n_ otherd pro”ct()asskes. .Srt]'t“’hth's tmeanty with the previous Tcl-level API, so that existing
at a viedusa-triggered catiback mig ave to wal cripts could run unmodified. We maintained, for

for a while before being invoked. Because Medusaexample the scheme by which Medusa commands
activity was considered to be high priority, WheneverCan havé optionassuccess and-failure call-

Medusa regained control (because Tcl invoked backs associated with them for the management of

Medusa command) it allowed its Tcl callbacks to be
asyrchronous calls.

!nvoked. In retrospect th's. was a pad design becau%h”e the syntax described [Medusa-Tcl 94]was
it rendered procedures interruptible by callbacks . e .
. . retained for compatibility, some new alternative con-
whereas they aren't in plain Tcl/Tk. ;
o R structs were introduced to make the Tcl program-
Tcl does not have any synchronisation primitives to_. L
. .) ming interface to the modules even more similar to
disable interruptions by callbacks scheduled by .
: . that of Tk’s widgets.
-command options,after events orbind com-
mands. On the other hand, it doesn’t need them be- module .m\
cause its mode of operation is such that these call- -host duck -server mgbvideo \
backs can only be invoked when the interpreter is -factory CameraDevice0 \
. . - . -module video_source \
idle or when a flush is explicitly requested vip- “frame rate 1/2
date . In other words, callbacks can't interrupt -
anything else by definition. The queuing of theThe module, once created, has canfigure
pending callbacks is taken care of by the system anehethod through which its attributes can be inspected
is transparent to the application programmer. Wend changed:
considered whether to introduce “disable/enable in-

terrupts” primitives, but we soon decided that Tcl's

Any Medusa process, both the servers containing th

.m configure -frame_rate tion, the time spent issuing the commands, the
012 situation can be represented as follows, with time on

.m configure -frame_rate 1/3 the horizontal axis:

0 1/3
This syntax implicitly uses thegetattributes e s——
andsetattributes methods of the module. Z:i : E ‘ ‘
It is also possible to bind a Tcl variable to an attrib- | : ::E ‘
ute so that changes to one will be reflected in the ., ...s Lo ‘ -
other and vice versa. This implicitly uses the c,eqec | - | - -
watchattributes method of the module t0 comecco C ‘ ‘ ‘__

propagate changes from Medusa to Tcl, and the

trace mechanism on the variable to propagate

changes in the reverse direction. This is most usefurhis is clearly unacceptable and was never consid-
for controlling an attribute with a Tk widget that can ered as a viable solution.

be linked to a variable. The variable becomes thén our first implementation the command to create
contact point between the module and the widget. new modules could be invoked asynchronously but it

) did not support-success and -failure call-
module bind attrName varName backs. TheViDsynch ?module ? command (similar
.volumeSlider bind gain scalePos to update) blocked the interpreter until no more
scale .s -variable scalePos commands were pending on a given module, or on

_ _ ~all the modules known to the interpreter. In this en-
As we shall see in greater detail later on, the variablg;.onment one would create all the modules concur-
can be viewed as the Model in a Model-View- rently and then, for each pair in tutPsynch the
Controller setup; the scale is then both a View and @,qqules of the pair and then connect them before

Controller for the variable. The same goes for theproceeding to the next pair. The riisg situation
attribute.

is:
3.1 An example of asynchronous
programming issues: building a pipeline Create A |
Because Medusa is a fully distributed system in ‘
which the multimedia peripherals are first-class net- CreateB []
worked computers, most connections from an ulti- Create C :

mate source to an ultimate sink (such as from a cam- ‘
era to a video tile, possibly going through buffers, Create D]
gates, format converters and so on) involve modules ‘

that are on different hosts from each other and from ~°""¢¢' 8

the host that the Tcl program is running on. The connect B-C

connect method is used to tell a module to connect

to another module. Setting up the complete pipeline ¢°nect ¢-D

involves creating the distributed modules and con-

necting up then-1 pairs by issuing theonnect

method on one of the modules of each pair. This is a substantial improvement but still isn’t fully

optimised. Because at connect time the A-B pair is

LA] » B | » C | o[D | processed before the B-C pair, the commands

The pipeline of modules we want to create “MDsynch A; MDsynch B; Connect A-B” precede

“MDsynch C; Connect B-C” and the issuing of the

Without the programming constructs to specify Connect B-C” command has to wait wrgessarily

asynchronous execution, one would create all th or the creation of A (specifically because of the

modules sequentially (each time waiting for comple- MDsynch A" in the tratment of the A-B pair),

tion of the previous creation) and then connect an/vhbereas It CtﬁUId have IstartedTeT\rtI;]er o(tjhe][W|se. -I;.hls
the pairs in turn. Neglecting, as a first approxima—Is ecause there 1S only one Tcl thread of execution

and soMDsynch, like update , blocks the whole But this is where our new threaded implementation
interpreter. proves its worth: its sequencing of asynchronous
Note that the above example, filustration pur- commands is such that this behaviour is obtained by
poses, shows a worst-case scenario in which thdefault, with no effort required by the programmer.

creation of the first module takes the longest timejt is sufficient to issue all the creation commands and
on the other hand the method we outlined cannadthen all the connection commands, without having to
optimise the order of creations in advance, becausegister any callback or global flag. The create com-
the creation times for the various modules are unmands will start in parallel for the different modules,

known before creating the modules. each being the head of its queue. The command to
It is interesting to note that even the availability ofconnect two modules is effectively present in two
-success and -failure callbacks is not suffi- queues, but it doesn’t hold the second queue up for

cient to produce the optimum version without re-any length of time — it is just there for synchronisa-
sorting to global flags. The problem is that we can’ttion purposes, to ensure the module has been created.
schedule the “Connect A-B” in theuccess call- The actual connection operation starts as soon as
back for either A or B, because the other moduldoth modules exist.

might not be ready to accept a connection. We would\ key feature of this scheme is that the command
have instead to schedule something like the followthat creates a module, even if it returns before hav-

ing proc: ing completed the creation, ensures that the thread
- gueue for the module is ready before returning. This
proc conditionallyConnect {A B} { allows the system tocaept and enqueue ramands

Invoked on successful creation
of A tries to connect it to B. (such asconnect) for that module even before the

global created module actually exists.
if {[info exists created($B)]} {

}igg?””ed $8 3.2 Programming for robustness in an

set created($A) 1 asynchronous environment

} One of the main reasons why prototypes are so much
quicker to write than full-fledged applications is that
Every module except the first and last must have twén writing a prototype one can afford to omit a great
of these calls in itssuccess callback, one to at- deal of detail about error checking. While in the
tempt to connect it to the previous module and one tgrototype an action can simply be expressed by is-
attempt to connect it to the next, because it is noduing the corresponding command, in a properly
known in advance which module of any given pairwritten application the command must be wrapped

will be ready first. inside a layer of code that traps any potential errors,
The optimal solution, obtainable through theoee checks the return code and possibly recovers by at-
strategy, has the following diagram: tempting an alternative operation. It is well recog-

nised [Man-Month 75] that this error catching in
itself adds a significant layer of complexity to the
application.

Create A But the problem only becomes worse in an environ-
ment using asynchronous programming. To be able
Create B to check the return code, which is what Tcia&ch
does, the command must have completed its execu-
Create C tion, successfully or not. However the asynchronous
strategy, which is fundamental to achieve the desired
Create D levels of efficiency especially in a distributed system,
is to issue the command in the background and move
Connect A-B to the next one at once, well before completion; so
catch would not work here, because the command
Connect B-C to be caught returns control to the interpreter imme-
diately, before knowing whether it will sceed or
Connect C-D

fail. In a prototype which doesn’t check return codes
the asynchronous approach is easy to follow: as long
as all the commands &teed, everything M work

and go very fast; as soon as one command failssuccess and-failure callbacks added by the
though, the whole prototype will fall over. For an context which will notifyc of the completion of the
application that wants to be robust, checking thdaunched actions. When we have launched all the
return codes is reasonable, if only tedious, when oneequired operations, we issgis commit method,

can afford to wait until the commands complete bewhich means that no more commands are to be
fore proceeding, i.e. when one has theury of us- launched from within this context. From now on, as
ing thecatch approach; but having to support both soon as all the commands launched so far have com-
error checking and asynchronous programming pleted,c will invoke one of its two completion call-
multiplies, instead of simply adding, the complexi- backs.

ties of the two approaches. The corresponding procedure can be written as fol-
It should be noted in passing that the fact of dealindgows:

with a distributed environment makes error checking
a necessity for every application which is not a pro-
totype. You wouldn’t normally think o€atch ing
every button creation in your Tk program, because if
the program’s window comes up at all it is highly
probable that it will be able to create all the buttons

proc pipe {args} {

argument parsing omitted for

brevity. The result of it is that

the local variables success,

failure and modules are created.

set ¢ [async_context #auto \

it needs. But when the items you create are modules
running in external processes and often on external
hosts, it would not be wise to assume that because
the program has started on the local computer then
all these remote operations will succeed too.

The way Medusa controls asynchronous program-
ming is, as we've seen, by making tfseiccess

and -failure options available to every Medusa
command. This allows the programmer to register
two callbacks, one of which will be invoked when
the command completes. While this construct is ex-
pressive and complete, at the Tcl level it forces a
programming style where the code to perform a

complex action, instead of being written as a self<you may have noticed theersistent 0

-success $success \
-failure $failure \
-persistent 0]
set | [llength $modules]
for {set i [expr $I-1]} {$i>0} \
{incri-1}{
set sink [lindex $modules $i]
set source [lindex $modules \
[expr $i-1]]
$c launch $i-th_pair \
$sink connect \
up input $source down

$c commit

option

contained procedure, has to be scattered among th\¢ the command that creates the context. This in-
nodes of a binary tree of callbacks. We can say fromtructs the context object to destroy itself after it has
experience that this leads to programs of low readreached completion and invoked one of its two call-
ability that are quite hard to maintain and update. packs, relieving the programmer from having to
To overcome this problem we developed a new prokeep track of the context herself. In other cases one
gramming construct, theasynchronous context may want the object to stay around even after com-
which allows several related actions to be launchegjetion, so as to be able to query its state or to invoke
as a group, registeringuccess and-failure some of its methodspersistent 1 will then be
callbacks for the whole group without having to fol- ysed.

low the outcome of the individual actions. More features available for the context object are
Let's use the pipeline example from section 3.1 toshown below:

show how this construct works. Assume thHtthe

modules have been created and that we want to COfthe -sync option

nect up all the pairs, as fast as possible and checking |f set to 1, makes theommit method block un-

for any errors.) til completion. Also available assync method
We create an asynchronous context object, ay for persistent objects.

and register oursuccess and -failure call-

backs with it; these callbacks will be relative to thepe -cleanuponfailure option

success or failure of the entire operation, not of the A taijure of the context means that at least one of
individual commands. From withig, we launch all the launched operations failed: but other

the required Medusa commands: this causes them to |5,,nched operations may have succeeded. If this

be spawned asynchronously, —with hidden g4ion s set to 1, in case of failure for each

launched operation which succeeded a matchingIn both cases, after some practice in writing applica-
cleanup command will be called. This requires tions, it is frequently observed that common patterns
the programmer to register a cleanup command emerge: groups of widgets or modules appear in the
for every command that is launched. In the ex- same arrangement from one program to the next.
ample above, one would register a matching And, just like Tk programmers have often felt the
disconnect for everyconnect . Incidentally, need for mega-widgets, so Medusa programmers
this is the reason why the launched operations have often wanted mega-modules.

carry an identifieri-th_pair above). A typical example is the basic video pipeline that
puts a video stream from a networked camera onto
The interrupt method an X display. A camera module pumps data through

The typical use of this is to launch a set of opera-a network buffer into a converter and an X sink. The
tions from the main program while allowing an ~ converter translates the incoming video from the
external event (typically a button press from the format produced by the source to the ooeepted by
user) to abort the sequence. Thi@rrupt the display (displays with different colour depths will
method can be invoked at any time during the ~ represent pixels in different formats). The X sink
lifetime of the context, even beforeammit . It ~ Puts the frames of video into an X window which
will have effect if it is received before comple- ~ May have been created by Tk. o

tion, in which case it will force a failure. Ifthe ~ The basic parameters for such a pipeline are the
interrupt comes in before commit, all requests to

launch commands are silently ignored (this saves

time: if you've already decided to abort the lot,

. Network Format)
any operation requested after this decision is not | Camera buffer converter X sink
even started). If the interrupt comes after the
commit but before completion, it won't affect l Lize

. magnification
pending operations although it will still force a frame rate

failure on completion. If the context has already

completed then the interrupt has no effect. The modules of a video pipeline

The composition properties frame rate, the size of the picture produced by the

The asynchronous context has good composition¢@Mera an'd tht_a magnification factor (video frames
properties. The construction of a composite objecfaN be resized in software by the converter module).

containing several modules (see 4.3) can be Unfortunately, to change these parameters you must
wrapped into a context, thus providing know which modules control them: the frame rate is

success and-failure callbacks for the set by the camera; the magnification factor, by the
converter; the picture size, by the camera again; and
all this without forgetting that, if you change the size
©Or the magnification on the modules, you must also
change the size of the Tk window containing the X
sink. What is needed is a way to create the pipeline

The asynchronous context has been a very successfif 21 Object which knows what internal operations to
addition to our programming toolkit. It allows us to PErform when requested to change those parameters.

perform the important task of error checking without 1 IS would allow Medusa programmers to dev.elop a
giving up the efficiency advantages of asynchronou&!Seful collection of parts for common tasks; new

programming, all with a clean programming inter- applications could then be written by concentrating
face to single-threaded Tcl. on their new functionality instead of the perpetual

recoding of the common portions. Ideally, for greater

completeness, the object would also include the ap-
i propriate Tk widgets through which the parameters
objects could be tuned by the user. Including the controlling

Just like the graphical side of a Tk application iswidgets in the multimedia object itself also has the

built out of widgets such as buttons and listboxes, théenefit that, whenever that object appears in an ap-
multimedia side of a Medusa application is built outplication, the user is always presented with a consis-
of modules such as cameras and speakers. tent interface that must be learnt only once.

composite object. From then on, the construction
of such a composite object becomes itself an op-
eration that can be launched from within a highe
level context.

4. Composing modules into higher order

[#] mdlook beardedtit 0

Status line

Control panel with
widgets to select size,
frame rate and magni-
fication.

Video frame area:
double-clicking on it
toggles the visibility
of the control panel.

A simple program incorporating a vwin (everything below the menu bar is part of the vwin)

One of the first requirements was for this level ofclasses do not usually have an “is-a” relationship
grouping to be implemented in Tcl. Writing the ob- with modules: a class representing a pair of modules
jects in C++ was considered but had little to offerhas both of them in it, but is neither; inheritance
other than some potential efficiency gains; on thgeven multiple) is generally inappropriate in our
other hand it complicated the development processase. There is however scope for inheritance between
considerably, especially when embedding Tk widget®bjects. A basic video sink widget might simply con-
inside objects. We first tried using pure Tcl and onesist of two Medusa modules and a frame widget,
of the successful results was what we call a “vwin"while a more complex one would inherit from this
object — the combination of a converter and X sinkand have extra widgets to control the video parame-
modules, a Tk window and some suitable controllingters.

widgets. What we have described so far is similar to the expe-
The vwin was immediately popular and was adoptedience of many other programmers in the field of Tk
by practically all the video applications written after widgets: the “atoms” are too low level to build appli-
it — a practical demonstration of how much thecations with, so we need a way of composing them
need was felt for higher level reusable componentsnto higher level “molecules” (with apologies to
The drawback of this approach was that the vwinchemists!) with their own methods.

was not really an object but rather a group of modWe do this by resorting to OOP, using mostly encap-
ules, procedures and global variables. We thereforsulation and a bit of inheritance. In the field of dis-
adopted the object oriented extension [incr Tcl]tributed multimedia, however, there are new major
which provides language constructs for developingcomplications, related to the issues of connections
such groups as first-class objects and endowing thefmetween objects and cardinality of connections.

with a syntax similar to that of hormal widgets and

modules. _ o 4.1 Connections between objects
Of 'the three pillars ODOI.D — encapsation, in- odules, unlike widgets, must not only be grouped
heritance and polymorphism — what we neede ogether — they must also lsennectedfor data to

most was encapsulation. With [incr Tcl], the wwin
can at last become an object with its own method
and private data. We did not develop a class foh
modules in order to inherit from it, because our

low. Grouping atoms into molecules is a hierarchi-
al composition. But our atoms now also have con-
ections between them. Can we allow connections to
span molecule boundaries or not?

Because a hierarchy is involved, we cannot cut both
horizontally and vertically: we must decide on one or
the other beforehand, when we design the collection
of reusable parts that we are going to build.
An important lesson to learn from the digital design
field is that it is a good idea to make molecules that
behave like atoms when seen from the outside. This
means abovall that they must be capable of being
connected to atoms as well as to other molecules.
“Cutting horizontally” is our shorthand expression for Other features that would be desirable for uniformity
“drawing molecule boundaries which are parallel to the but which are not essential to make the system work
data pipelines”. are the ability to export the internal modules’ attrib-
utes as if they were the molecule’s own, the ability to
If we go back to our video pipeline example it is easyespond to the standard module methods (including
to see that we would like to “cut horizontally” so asfor examplewatchattributes on the exported
to have the camera, the converter and the Tk framattributes) and the ability of being inspected with
in the same molecule; this encapsulation would alstandard tools likeMDpanel (a Tcl library proce-
low us to ask the molecule to change its magnificadure that pops up a window exposing the attributes
tion without us having to know which individual of the module). The issue of making molecules look
module to address. But on the other hand it is noand behave like atoms is shared in the field of mega-
unreasonable to want to cut vertically to obtain awidgets[incr Tk 94]. We are still in the experimen-
source / sink arrangement, especially in the case d¢&l stages at the time of writing, but it may well be
multiple parallel streams. It can be quite useful to béhe case that the solutions adopted by the Tk com-
able to connect the multiple sources from NSAC munity to compose widgets may be fruitfully applied
to sinks on eitheB or C. But if we want to be able to to composing modules.
cut both ways simultaneously, a hierarchical compoAn alternative solution is to provide the module look
sition is no longer satisfactory. So we ask ourselvesand feel not by emulation but through Medusa itself.
should we look for a grouping strategy that is moreWe could build a special Medusa module that would
flexible than the hierarchy? do nothing except being a wrapper. This idea con-
The problem of wanting to group atoms that havesists of recreating the module equivalent of what the
connections is found in other fields too, like digital frame is in the world of Tk widgets: a component
circuit design, and we may draw some inspirationthat does nothing of its own but whose function is to
from there. The established practice in digital desigrgroup other components. Medusa already has facili-
is to allow connections to span molecule boundariedies for module proxying and for handing off data
An atom (a logic gate) has connections to the outeonnections to lower level implementation modules
side, and so has a molecule (a component like ésee[Medusa-ICMCS 94)] so this strategy would
counter). From the outside, atom and molecule arsave us from having to emulate a substantial amount
structurally alike: both have input and output portsof functionality.
accepting dta and control information. The digital The major piece of work would not go into atiag
design point of view, compared to the multimedia
point of view, does not give the same emphasis to
sources and sinks of data, but nonetheless allow | |
them to be represented in the model. In simple case ‘ ‘
like building a counter out of gates, it is the pattern | |
of interconnections between the I/O ports of the at ‘ ‘
oms that defines the behaviour of the molecule. In
more complex cases, where programmable logic i | |
involved, the behaviour of the molecule may be de- ‘ ‘
fined by a set of instructions stored in a ROM. \ \
This model, although purely hierarchical, has proved
its worth in the hardware field. Does it work well \ \
with our multimedia modules? The answer is yes, as “Cutting vertically” in our language means drawing

long as we are prepared to give up some flexibility. molecule boundaries that intersect the pipelines and
consequently force the molecule to expose some 1/O ports.

the wrapper module but rather into the equivalent ofinused sources or sinks after the connection has
the pack command, sayndpack: the command been established is only slightly better.

that puts an existing module into the wrapper, conThis is our second major complication in grouping,
necting it with others in a user-specified pattern andvhich comes from the fact of dealing with a hetero-
exporting some of its attributes. This commandgeneous distributed system instead of a uniform con-
should be exported to the Tcl level to allow mole-figuration where every networked workstation has
cules to be defined in Tcl. the same array of multimedia devices. In the digital
Building a molecule amounts to creating a wrapperdesign case, once a molecule containing five atoms
creating the appropriate modules and plugging thef a kind has been defined, it is always possible to
modules together inside the wrapper witipack. instantiate it; in the networked multimedia case,
[incr Tcl] steps in at this point, to allow the pro- instead, the available resources are not known before
grammer to define molecule “types” instead of justruntime and so we need a more versatile molecule
instances. In the tradition of [incr Tcl], some re-that, instead of five, has “as many atoms of that kind
naming and aliasing acrobatics will becomeces- as it is possible to have on this host”.

sary to make the object respond to its module nam@ne solution is to give up completely on the multi-
as well as its object name, but this is an issue thagource and multi-sink arrangement and tend to cut
has been dealt with before when building megahorizontally, grouping one pipeline at a time. Later,
widgets. all the parallel pipelines can be combined into a big-
In building hierarchies of molecules we believe thatger molecule. This means giving up the advantages
it will be advantageous to have a lower level whereof having a multi-source or multi-sink as an object.
the molecules only contain modules and no Tk wid-We have also been designing an alternative solution,
gets. This allows the functionality to be separateddbased on delayed creation of the endpoints, which
from the user interface — a topic that will be treatedhas the advantages of both the vertical and the hori-

in greater detail in section 5. zontal styles of grouping: it sees the multiple end-
points as separate entities, but it can also address the
4.2 Cardinality of connections multiple pipeline and the individual pipelines inside

it. The key idea is that the multi-sink and multi-
source must not be created in advance, but only
when a specific multiconnection request éseaived.
We have talked of standard high level molecules ana—hIS way it becomes possible to work out thg com-
. . L -~~~ mon subset beforehand and create two endpoints that
how to build them in the style of the digital circuit ; : .
RN match. This arrangement amounts to grouping verti-
components, but there we implicitly assumed that a .
. cally before the endpoints have been created and
molecule had a definite structure and, for example, a

given number of ports. If we want to design a mole_grouping horizontally once they exist. The main

. . . : rawback is an increased setup time compared to the
cule for a multi-headed video source, it must instea . :
) ase where the endpoints are created in advance. The
have as many output ports as there are availab

) i : ructure to implement this idea is rather elaborate
cameras on that given NS-PC; so, while the general .~ =~ .
. ; : . and it is still part of our research to evaluate whether
structure will be the same, different instances will

have different cardinalities. The constructor takes %Z?ngﬁ:ai:g?\ of this approach are worth the extra
list of the available cameras as a creation parameter. '
On the sink side we have yet another situation. A . .
multi-headed video sink is made of screen windows,4'3 The current implementation
but the NS-PC imposes no definite limit on the num-For most of the compositional approaches presented
ber of windows that can be created; it either does ndbove we have i1 prototypes to evaluate their rela-
have a screen, in which case it can’'t make any, or tive advantages and trade-offs. But we haven't yet
has one, in which case it can make as many videdeveloped any of them into a complete solution upon
windows as required. But if a multi-source is to bewhich to build an extensive library of components.
plugged into a multi-sink, the multi-sink must be In the meantime, though, with or without a library,
ready to accept whatever the ltivgource is ready to we had to produce some reliable applications to put
produce. Always over-dimensioning (and conse-our deployed hardware to good use, and for this task
guently under-using) is not a good solution. Over-we built a few components as we went along, without
dimensioning first and then killing off the dangling a grand design behind them but with the practical
goals of robustness and reusability.

As explained in section 2, the configuration of an
NS-PC is completely flexible and the number of
available devices varies from unit to unit.

These components are currently used in the sup- — — — — — — — — — — — — —
ported multimedia applications that are in daily us |
at the lab: video mail, video phone, video peek anc
radio/tv/CD player. They are listed below.

The vwin
A video sink object with user controls for the
stream parameters: picture size, magnification
and frame rate.

\

\

\

\

\

\

The ringer |

A complete audio pipeline from a file source to a |
speaker that can play a given sound sample and

optionally repeat it at regular intervals until |

stopped. |

\

\

|

\

\

\

\

\

\

multicamera

\
\
IR R I

The multicamera
A multi-headed video source combining many
cameras in parallel and automatically adapting to
the number of cameras available on the NS-PC
where it is instantiated.

T

The multiwindow
A multi-headed video sink consisting of a dy-

T

so as to match the number of channels of the | multiwindow
multicamera.

namically variable number of parallel vwins; as ;xinki :onﬁvertﬁerl netbuffer | |
the multiwindow is connected to a multicamera, vwin \ |
it automatically creates or hides some of its vwing . I
|

777777777777 |

video transceiver
The video transceiver
The combination of a multicamera and a multi-
window. Can be connected to another transceiver
for a bi-directional link, or it can be looped back
on itself for a local view.

Internal structure of the video transceiver, showing a
hierarchy of building blocks

world. The other objects are instead built by “cutting
vertically’, i.e. by running the object boundary

These components are built as [incr Tcl] Objectsaround an endpoint of the pipeline and thus inter-
ecting the data flow.

containing Medusa modules and, where appropriat

Tk widgets. As can be seen we have performed thhhe_Se colrrponents_han/e bbeen buti)It Ey Cl_Jt:‘ing either
grouping both ways, depending on the circum- orizontally or vertically but not both, without re-

stances. The ringer is built by “cutting horizontally”, sorting to the more _complex delayed creat_lon ap-
roach outlined earlier. The case of the vwin shows

i.e. by creating an object which contains an entir e .

pipeline and has no data connections to the externgP™Me of the_ problems of th|_5 "m'ta“"”- T.hls compo-
nent is obviously an endpoint, i.e. an object that has
been obtained by cutting vertically. However it has

ffffffffffffff . an element of “horizontal cutting” (which means

“keeping the whole pipeline together”) in that it

contains user controls, like the picture size selector,

time gate speaker ‘

I I | that refer to parameters belonging to modules outside
|
|

of itself, in this case the camera module. It is thus
file source volume control necessary to give the vwin a reference to the external
77777777777777 . module (the module name of the camera it is con-

ringer nected to) so that it can ask the camera to produce

Internal structure of the ringer component

the appropriate size whenever the user acts on th&n important issue that comes out of this experience
vwin’s controls. is the relevance of a strategy for connecting mole-
cules that have connection ports with a composite
structure. For the components presented above the
problem was bypassed by designing the multiple
endpoints in pairs and then giving one of them a
connect method that knew how to talk to the other
one. This works well as long as each type of compo-
nent can only be connected to another given type; but
as soon as a component can be connected to several
Control panel other types of components, a clearly defined multi-
L vwin | connection interface becomes a necessity. Among the

****** issues to be addressed (for which we do not have a
The vwin’s control panel has to act on modules outside complete solution yet) are the follow.
the vwin’s boundaries

Network Format
buffer converter

|

Camera |
1 | =

|

|

|

|

‘ size
frame rate

Tk frame
(with video)

|

|

{ |
magnification ‘
|

|

Gender
This pointer going across the object boundary is the |nputs and outputs must of course be distinguish-
dirty part of this scheme. As new features are added able, and a port may only be plugged into a port
to the vwin (this happened recently), the need arises of the opposite gender. But the case of a multiple
for the vwin to talk to more modules in its pipeline port is less trivial than it sounds, as the subports
that are outside of itself, and the proliferation of ref- composing the multiple port could be of different
erences to modules outside the vwin object is a bad genders (as in the case of the transceiver). It all

thing. depends on whether one allows the connection
The fact that these components can themselves be petween two transceivers to be seen as one fat bi-
used as building blocks for other components, as directional pipe, or whether one imposes the con-

exemplified by the multiwindow and the video trans- straint that pipes can carry multiple streams but
ceiver, is a fundamental property. We would reject only in one direction.

any composition method that only allowed one layer

of grouping. The ability to make molecules out of Type

other molecules, and not only out of atoms, allows us While there are good reasons for keeping the

to build the library of components in a bottom-up connections between modules as untyped, it is
style. important to type the higher-level fat pipes that

It must however be noted that the molecules we have result from aggregation of many simple connec-
built do not behave in all respects like atoms. The tjons. Presumably this typing will have to be hi-
programming interface is similar for some aspects, erarchical, to respect the fact that the molecule
like the availability of-success and -failure out of which the fat pipe comes may be composed

callbacks on most methods including creation, but of several subpipes each coming from a submole-
the attributes, ports and capabilities mechanisms that cule and so on.

all modules have are not supported nor emulated.

The molecules also have a richer set of methods thaDardinality

the atoms, with each component exposing new Suitable policies must be defined for the case
methods appropriate to the facilities it provides. This when the two components to be connected match
makes their programming interface more expressive, in gender and type but not in cardinality, e.g. one
but it also means that they couldn’t be easily treated has five video inputs and another has three video
by automatic tools likeSticks and Boxegsee outputs. In our multicamera / multiwindow im-
[Medusa-Tcl 94). It is debatable whether this is an plementation we arranged for the sink side to re-
asset or a liability; for the atoms, the ability to deal configure itself to match the cardinality of the
with them only through a limited set of standard source side, but this will not be possible in every
commands is mostly an advantage, but for the mole- case. In such cases it must be decided whether to
cules, given that they can encapsulate much higher connect the common subset or to reject the con-
level behaviour, it may not be appropriate to restrict nection request.

the programming interface in a way that may not

map naturally to the facilities they offer.

Self-description capacity
The multiport must encapsulate in itself a de-
scription of its gender, type etc. so that the con-
nection operation can be made independent of th
objects to be connected.

5. Designing multi-device interfaces

In what we call first-generation networked multime-
dia systems[Pandora 90} the data streams are
switched from one place to another in a “hands off
fashion. In second-generation systems like Meduse
however, the application can analyse and manipulat
the data as it flows. This gives us the opportunity tc
use the multimedia streams as additional input an
output user interfaces to control the application
Sound detection, speech reciiigm, motion detec-
tion, gesture recognition, spch synthesis are a few
of the new input and output channels that an archi
tecture like Medusa can support. Many “transducer’
modules have been written which turn raw data into The original Gripple puzzle, marketed by m-squared inc.
higher level events or vice versa. in 1989

From the point of view of the applications program-

mer, however, any one of these transducers is still #he Model contains a representation of the board
fairly low level component; it is inconvenient, for describing the current disc positions. This is imple-
example, to have to accept input on several streanf§ented simply as a list of sixteen elements.

by redoing a similar programming job for each of the

available input transducers. The model accepts three commands:
We adopted the Model-View-Controller paradigm o
(MVC, see [Smalltalk 90) as a higher level ab- rotate platform direction

straction that shielded us from this problem. In this Whereplatform is one of the five platforms
paradigm the unit of processing is the Model, which ~ anddirection s either clockwise or anti-
can perform several actions; the input devices are clockwise.

called Controllers: they may have very different ways

of interfacing to the user, but they share a common restart 2difficulty?

interface to the Model; a similar arrangement exists Wheredifficully s a non-negative integer.
for the output devices, called Views: they can show If difficulty is omitted, the discs are posi-
the state of the model in a variety of ways. tioned at random; otherwise, starting from the

As a proof of concept, a demo application was writ- ordered configuration, that many random scram-
ten: Gripple, an electronic version of a commercial bling moves are performed (so lower difficulty
puzzle of the same name. settings correspond to easier configurations).
Gripple is rather similar to the classical “15 sliding , .

tiles” puzzle; it consists of a set of sixteen numbered reload configuration _

discs mounted on five interlocked rotating platforms. ~ Whereconfiguration is a list of sixteen

Each circular platform carries four discs. There is discs. This is used for studying moves.

one platform for each of the corner quartets of discs)

and one platform in the centre of the board. By roAS far as the model is concerned, all these com-
tating the platforms, the discs move from one plat/mands ultimately have the effect of performing a
form to another. The aim of the game is to bring thesPecific permutation on the sixteen disks.

discs in the initial configuration after having scram- The simplest controller only has a textual interface
bled the board. through which the above gonands can be sent to

the model. The simplest view only shows the list of
discs as text.

drawing of the five platforms is superimposed on the
scene; the player moves the hand to one of the plat-
forms and rotates it in the required direction to trig-
ger the corresponding action on the model. The
tracking algorithm is based on active shape models.
The Voice controllefMedusa-speech 95§akes ver-
bal instructions such as “rotate top left platform
clockwise”. The speech recogniser is based on Hid-
den Markov Models. The use of a constrained
grammar gives a high recognition rate — a funda-
mental requirement for usability.
From our Gripple experience we can abstract some
general guidelines for designing applications that
support multiple user interfaces.
The concerns are similar to those encountered when
dealing with internationalisation of software appli-
cations. While in a single-language application it
may be appropriate to embed messages to the user in
strings within print statements, when the application
has to be translated into many other languages it
becomes necessary to add a level of indirection.
Similarly, if direct programming of the 1/O device
may be sufficient for a basic keyboard-and-mouse
A screen shot showing the video vigw, the graphical VieWappIication, a layer of indirection must be added if

(note that the underlying model is the same, sothe po same application is to support multiple user in-
positions of the discs are coherent in the two views) and terfaces

the mouse controller. L .
The application must be represented by a model with

a well-defined set of methods. Controllers may be
. > .. ‘plugged into the model: they are the means through
canvas and shows the rotation as an animatio hich the user can invoke the model’'s methods. It is
Wwriting this com“pon_ent ”taught us that the mOd.elnot required that every controller offer all the meth-
should send out actions to the.wews mstgad .Of Sods of the model: for example most of the controllers
new state. For the view, performing the animation is

o . . described above, except the text controller, do not
much easier if the model says “rotate this platform

. s . . . offer thereload method and do not allow to spec-
that way” than if it says “the new configuration of . e
L7 R ify a difficulty parameter to theestart
my discs is the following”, method. Views show the state of the application
The mouse controller shows the five platformS'Havin .views and controllers that are notpgased oﬁ
Clicking on a platform with the left button rotates it 9

“to the left” (anticlockwise), and clicking with the ;l;tfii(l)lngnuds tgornut?o‘?nitasg'cfgg;rl] ?\;I]e?jljzgnoéi\xvgeﬂs(-
right button rotates to the right. ’

S%hich is useful for example in the case of a wall-

A more elaborate view draws coloured discs on

To add to the challenge of the game, instead of usin ounted audio box in the corridor where there

numbered discs another view uses video comin ould be no workstation for traditional mouse-based
from a live television feed. The video is split into .

) X . teraction.
sixteen squares covering the same positions as the . . .)
corresponding discs. Only when the puzzle is solve sing [incr Tcl] we have written Model, View and

. ontroller classes that handle the communication
can one see the unscrambled picture. Because the

target position of the squares is not immediately appetween these elements and various management

parent, the puzzle is much harder if only this view g SSUES. For any given application, the programmer

used. But, because many views can be attached oW des'gns s_pe0|ql|sed model, View and controller
asses which inherit from the generic ones. If, some

model at the same time, one can always get help b S 9=
s 9 P onths later, a new I/O device is brought along, a

temporarily Jooking at a “numbered discs” view. new view or controller can be derived to make it
The Hand Tracker controller uses an image proc:

essng agorthriechsa-snakes Sshnich spots 1112l he applation, Note et uevce
and tracks a hand in a scene from a camera. /ﬁ) P

image analysis module capable of discriminating programming construct solves some important
between “no motion”, “some motion” and “a lot of control problems.

motion” can be considered as such a device; it is jugR) Modules are a good first layer, but they are too
a matter of mapping this three-way output onto some low level for building large applications. There
useful subset of the methods offered by the model. is a need for a library of reusable building blocks
An important development is the concept of using that are semantically high level and syntactically
the MVC paradigm on a finer granularity than the simple. The problems of building these are
whole application. It is quite useful, for example, to harder than those of composing Tk widgets.
represent a communication link between two places This is due to the data connections and the car-
with its own model and to be able to “view” this link dinality issues associated with a distributed het-
in many ways: with audio and video for a worksta- erogeneous system. [incr Tcl], while not in itself
tion to workstation link, with audio only when one of a complete solution, is a valuable tool which

the endpoints does not have a screen and so on. The helps a lot in grouping atoms to create reusable
application will always have to establish and shut components.

down the communication link regardless of whether(3) The many media under which an application

it includes video or not, so this abstraction helps us can present the same semantic contents to the
in isolating the internals of the application from the user should not be handled on an ad-hoc basis
implementation details of how to address the various without a unifying abstraction: the Model-View-
multimedia devices. The core of a conferencing ap- Controller provides this.

plication is independent of the nature of the linksBy supporting our applications environment with the
between the participants: ringing, accepting or restructure introduced by these abstractions we can
jecting calls, adding new participants and so on arégame the inherent complexity of distributed multi-
actions that will always be present whatever the memedia programs while reaping the benefits of recon-
dium. According to the resources available at thdigurability and ease of prototyping that Tcl/Tk is
different endpoints and to the users’ preferencesightly acclaimed for.

each link will be “viewed” in the most appropriate

way. 7. Acknowledgements

Many people at ORL have been working on Medusa
more useful to us than the ability to control an app“_rﬂ)ringing their essential contribution at many levels,

. o . from the design of the hardware and of the ATMos
cation with different user interfaces. operating system to the networking, modules and
) applications layers. Everybody in the Medusa soft-
6. Conclusions ware team (Martin Brown, Paul Fidler, Tim Glauert,
Most if not all of the multimedia environments basedAlan Jones, Ferdi Samaria, Harold Syfrig and the
on Tcl/Tk, including Medusa, caept the wisdom authors) has been involved at some stage with the
that Tcl/Tk must only have the roles of glue, controlTcl layer of Medusa.
and user interface, while the multimedia processingf specific relevance to this paper Tim Glauert, co-
must be done elsewhere. This is a fundamental prirdesigner of the Medusa software architecture, wrote
ciple. the threaded C++ API and Frazer Bennet, as well as
But we believe that delegating the media processingracking down some subtle threads bugs, patiently
layer to a more efficient implementation language,rebuilt our gigantic interpreter every time we needed
while necessary, is not sufficient: distributed multi-to pull in a new release of our many extensions.
media applications based on plain Tcl without anyMany thanks are also due to the authors of the soft-
added structure will easily become too complex towvare that our interpreter is built out of: John Ouster-
manage and maintain. hout for Tcl/Tk, Michael McLennan for [incr Tcl],
We have shown three main areas in which we havBrian Smith and his team at Berkeley for Tcl-DP.
experienced growing complexity and we have shown
our adopted or planned solutions to these problems.8, References
(1) Itis not trivial to efficiently control parallel exe-

cution through a single-threaded process, but it [Badges 94]

hglps_ tp keep the Tcl S"?'e smgle—threadeq for ANDY HARTER, ANDY HoPPER A Distributed Lo-
simplicity. The introduction of an appropriate cation System for the Active OffictEEE Net-
work, Vol. 8, No. 1

[incr Tcl 93]
MICHAEL J. MCLENNAN, [incr Tcl] - Object-
Oriented Programming in TdProceedings of
the Tcl/Tk WorkshgpJniversity of California at
Berkeley, June 10-11, 1993.

[incr Tk 94]
MICHAEL J. MCLENNAN, [incr TK] - Building
Extensible Widgets with [incr TclProceedings
of Tcl/Tk WorkshopNew Orleans, June 1994.

[Man-Month 75]
FREDERICKP. BROOKS The Mythical Man-
Month, Addison-Wesley, 1975, 1982

[Medusa-ICMCS 94]
STUART WRAY, TiM GLAUERT, ANDY HOPPER
The Medusa Applications EnvironmeRtro-
ceedings of the International Conference on
Multimedia Computing and SystenBoston MA,
May 1994. An extended version appeared in
IEEE Multimedia Vol. 1 No. 4, Winter 1994.
Also available as ORL Technical Report 94.3.

[Medusa-snakes 95]
ToNY HEAP, FERDINANDO SAMARIA,, Real-Time
Hand Tracking and Gesture Recognition using
Smart Snakes, ORL Technical Report 95.1

[Medusa-speech 95]
ROBERTWALKER, An Application Framework
For Speech Recognition in ‘Medusahird Year
Project Report for the Computer Science Tripos,
University of Cambridge, 1995

[Medusa-Tcl 94]
FRANK STAJANO, Writing Tcl Programs in the
Medusa Applications EnvironmerRroceedings
of Tcl/Tk WorkshopNew Orleans, June 1994.
Also available as ORL Technical Report 94.7.

[Medusa-video 95]
ANDY HopPER The Medusa Applications Envi-
ronment, ORL Technical Report 94.12 (video).
Also available as an MPEG-encoded movie that
can be viewed online from our web server.

[Pandora 90]
ANDY HopPER Pandora — An Experimental
System for Multimedia Application®\CM Op-
erating Systems RevieWol 24, No.2 April
1990. Also available as ORL Technical Report
90.1.

[Smalltalk 90]
PHiLIP D. GrRAY, RamzaN MoHAMED, Smalltalk-
80: A Practical IntroductionPitman, 1990.

The ORL Technical Reports are available for down-
load on the Internet through Olivetti Research Lim-
ited’s web server at
http://www.cam-orl.co.uk/
or via anonymous ftp at
ftp://ftp.cam-orl.co.uk/pub/docs/ORL

This paper was first published Rroceedings of th
1995 Usenix Tcl/Tk Workshpporonto, July 1995.

7]

