
The Design and Implementation of a
RAID-3 Multimedia File Server

Alan J. Chaney, Ian D. Wilson and Andrew Hopper*

Olivetti Research Laboratory
24a, Trumpington Street
Cambridge CB2 1QA

United Kingdom

Tel: +44-1223-343000
Fax: +44-1223-313542

Email: {iwilson,achaney,ahopper}@cam-orl.co.uk

Abstract

The Olivetti Research Laboratory has developed an experimental system
based on intelligent peripherals connected directly to an ATM network. As
well as multimedia modules (e.g. audio and video) the system also includes a
directly connected RAID-3 storage server called the “Disc Brick”. This
paper describes the architecture of the Disc Brick, and discusses some of the
hardware and software issues raised by its design. It also presents
measurements taken from a Disc Brick in operation, and discusses how the
observations relate to the original design objectives. Finally, the paper
attempts to evaluate the Disc Brick as part of ORL’s family of directly
connected peripherals.

Introduction

An experimental system has been constructed at the Olivetti Research Laboratory
which aims to provide a rich multimedia environment for a variety of users [1]. It
utilises ATM communications technology as the basic interconnect both for
computers and multimedia peripheral modules. Each module is made up of a
number of standard component parts: the hardware consists of an ARM CPU, up to
32 Mbytes of memory, and a 100Mbit/s ATM TAXI interface; the low-level software
consists of a microkernel called ATMos [2] which provides a mechanism for
scheduling processes and controlling low level hardware. In addition there is
provision for interoperation with other systems by using protocols such as TCP/IP
and XTP, or distributed platforms based on CORBA.

The ATMos framework is used to implement both switches (4x4 and 8x8) and
end-point modules (or direct peripherals). The modules include ATM video, ATM

* University of Cambridge and Olivetti Research Laboratory

audio, ATM LCD tile, ATM TV, ATM frame store, ATM processor farm and the
Disc Brick, as well as workstations and PCs (see Figure 1).

video

frame
store

TV

RAID-3
disc
brick

ATM Internet

LCD
tile

audio

processor
farm

Figure 1

This approach has similarities with the Desk Area Network [3] but also differs
from it in important ways. Rather than exploding the workstation, ORL’s approach
is to treat each direct peripheral module as a first class ATM object; furthermore,
most of the traffic from a module will typically flow to points elsewhere in the
system and not to a nearby PC or workstation. However, as with the DAN, the
approach uses a network as the peripheral interconnect, and hence is scalable.

The system has been deployed in the laboratory and has been in use for about 18
months. Some two hundred modules and switches are available for experimentation.
A typical office has four cameras, four speakers, four microphones, a display tile and
a workstation as its multimedia infrastructure. In addition, there are five Disc Bricks
available on the network for use as multimedia fileservers. Applications in use
include a video-mail system, which takes advantage of the Disc Brick’s performance
by recording several video and audio channels simultaneously. Other applications
include a multi-way video-phone which uses four video streams and an audio stream
between the corresponding parties.

The rest of this paper concentrates on one particular directly connected ATM
peripheral: the RAID-3 Disc Brick.

The Disc Brick Filing System

The Olivetti Research Laboratory has been working in the multimedia area for many
years. One of its earlier systems, Pandora [4], relied on a fileserver for the storage of
audio and video objects. It is the filing system which was originally designed for the

Pandora Video Repository which now runs on the Disc Brick, since the overall
requirements for both systems are virtually identical.

The main aims of the filing system design were:

• simple, hierarchical directory structure;

• efficient use of intelligent disc drives;

• efficient handling of both large and small filing system objects; and

• optimisation for sequential, as opposed to random, access.

The use of a conventional filing system for multimedia data differs from the
approach taken by other people. For example, Berkeley’s Filing System for
Continuous Media [5] makes no attempt to lay the disc out, and relies on pre-
allocating contiguous areas for data storage. Lancaster’s Continuous Media Storage
Server [6] is more sophisticated, in that it keeps a separate directory disc to hold
meta-data, but still uses fixed contiguous areas on its data discs. The approach
described in this paper has the advantage that all data types can be stored using the
same filing system, without sacrificing the performance benefits of the simpler
architectures.

Disc Layout Issues

There are two important factors when it comes to making efficient use of intelligent
disc drives. Firstly, there is no point in attempting to optimise accesses based on a
drive’s physical geometry. Indeed, it is often not possible to find out the real drive
geometry: track and sector sparing, automatic sector reassignment etc. all conspire to
make the drive’s physical characteristics irrelevant. Secondly, the actual disc layout
(taking into account sector interleave and track skew) is completely hidden from the
user, and optimised for large sequential accesses. Most drives nowadays have large
data buffers and perform read-ahead and write-behind. This, combined with “read on
arrival” which reduces the effect of rotational latency, means that the best way to get
optimum performance from them is to stream large amounts of sequential data in
very much the same way as handling a tape. The repercussions on the filing system
design are:

• to lay the disc out so that objects are in large, sequential chunks;

• to allocate I/O buffers so that transactions are as large as possible; and

• to minimise the amount of disc seeking.

The algorithm used is straightforward: assume all new files are going to be large,
and reserve disc space accordingly. In other words, when allocating space for a file,
reserve a large contiguous chunk at the beginning, and then use up the reservation as
necessary. As a file grows extra contiguous chunks are reserved as required, and
when the file is closed the unused space is freed. This scheme has a tendency to
fragment the space available, but this is not a problem since the spare blocks are
mopped up as a side-effect of the filing system’s housekeeping operations.

In order to minimise the amount of disc seeking, there is an attempt to store all
the blocks which comprise an object as close together on the disc as possible. For
this to work in practice, when a new object is created, it must be positioned on the
disc in an area where there is a reasonable amount of contiguous free space.
Obviously, there is a trade-off between having to seek a small amount while handling
an object, and having to seek a large amount in order to get to it in the first place.
To find an appropriate place for a new object, the filing system searches outward
from a known disc position looking for the area with the largest amount of
contiguous free space, but weighting the results of the search using the inverse
square of the seek distance. In this manner, disc fragmentation is kept low, as are
seek distances between related filing system objects. Also, head scheduling (either
“elevator” or “least seek”) is performed by the disc device driver, reducing the effects
of seeking still further.

File Structure

In order to handle large and small objects in an efficient manner, a modified version
of the UNIX inode structure is used. Each object is represented by a header block
which contains its length, protection mode, last modification date and so on. Only a
small portion of the header block is used for this information, and the remainder is
used to hold pointers to the object contents. As with the inode structure, there are
data blocks which are directly accessible, and those accessible via one, two or three
levels of indirection. To all intents and purposes, this allows objects to grow
arbitrarily, with a maximum of three levels of indirection before reaching the object
contents.

Optimisation For Sequential Access

Many studies have been made in the past about the nature of general purpose filing
systems and how they are used in practice. Two results are of particular
significance:

• the majority of accesses are read operations; and

• the majority of accesses are sequential.

It was an essential part of the filing system design that it should be optimised for
this type of use, even though this can result in a performance degradation when
random accesses are performed. To this end, the filing system performs read-ahead
and write-behind at the object level, so that disc operations can, hopefully, be
overlapped with user data manipulation. The pipelining effect obtained by this
technique means that, assuming the object is reasonably contiguous in its disc layout,
the required streaming effect can be achieved.

Cache Strategy

One of the more radical decisions taken when the filing system was being designed
was to cache header/indirection blocks and directory contents, but not to cache object
contents. The justification is that the disc performance is worst when the ratio of
seeking to data transfer is very high, and best when performing large sequential
accesses. The former mode of operation is typical of general filing system

housekeeping (for example, when picking up a set of header blocks during a
directory listing), and is something which is relatively easy to optimise using a
cache. The latter, however, is typical of accesses to object contents—the layout of
which has been arranged to be as contiguous as possible. Using buffer memory for
read-ahead and write-behind rather than as a data cache allows the discs to operate
in their most efficient manner, with the added bonus that it is not necessary to
perform a cache search or invalidation for each data transfer—not an insignificant
overhead.

The final vindication of the “everything but data” cache strategy is seen when the
filing system is used with multimedia objects. Video files, in particular, are often
tens or hundreds of megabytes in length, and are usually accessed sequentially. Such
usage is guaranteed to flush any kind of data cache, and maintaining a cache can
only add overhead to what is, essentially, a disc streaming operation. Performance
figures for the filing system running on the Disc Brick are given later in this paper.

Which RAID Version?

RAID is an acronym for Redundant Array of Inexpensive Disks and was first
presented in [7]. The methods of organising the data on a RAID array are of interest.
The aggregate capacity of several drives was desired, and the maximum transfer rate
possible would be achieved by accessing all drives concurrently. The two RAID
configurations considered applicable were:

RAID-3: Byte striping, where words are read/written in parallel to several
discs, each byte going to a separate disc; and

RAID-5: Sector striping, where each drive has one logical sector.

Previous work [8] has indicated that the optimum performance should be given
by a RAID-5 system. However, this is only applicable:

• for wide arrays (say 9 or more drives); and

• for small transfers (one or two sectors).

In our case it was felt that the comparative simplicity of RAID-3, coupled with
our need to transfer very large files, made the RAID-3 architecture the most suitable.

Design Criteria for the Disc Brick Hardware

The main design criterion was to balance the available disc drive transfer
performance with that provided by the network interface. At the time work started, a
typical high performance disc drive was capable of sustaining transfers of
2.7Mbyte/s. Four such drives in parallel would give an overall transfer rate of around
10.8 Mbyte/s (approximately 90Mbit/s). The ATM network interface had a raw
transfer rate of 100Mbit/s. There was a good match between these two figures,
although it was realised that other factors (such as the overhead of managing the

discs and the network protocol) would make it impossible to achieve this maximum.
It was also a design criterion that there should be no performance loss when
operating with one failed drive.

Hardware Architecture

The Disc Brick has the following major sub-systems:

• ARM 610 RISC processor with a 32MHz clock and 32 MB of memory;

• 5 x SCSI interface controllers, each with an 8 bit SCSI-2 interface;

• 5 x SCSI disc drives;

• parity generation/decoding logic;

• a DMA controller;

• a 2k x 32 bit bi-directional FIFO;

• an ATM network interface.

A physically compact design was produced utilising a number of components
already developed for other ORL direct peripherals. Five 3.5" SCSI disc drives are
used for the storage of data in the Disc Brick—typically these are Seagate ST12550N
Barracuda drives, each of 2GB capacity.

Figure 2

The array is 32 bits wide and requires five separate SCSI ports. Four of the drives
hold user data (with the fifth holding parity information) giving an effective capacity
of 8GB with 2GB discs. The four data drives are shown as A,B,C and D in Figure 2.
Hardware was designed to generate parity information and reconstruct drive data in
the event of failure.

Parity is generated during write operations with simple exclusive OR logic. If the
data from one of the drives A to D is to be regenerated, then the data from the
remaining three available drives is passed through the regeneration logic together

with the data from the parity drive. This “reconstructs” the data for the unavailable
drive.

A FIFO is used to buffer data to and from the SCSI ports. There are two possible
data transfer methods: polled I/O transfers using the block transfer mode of the
ARM; and DMA. In order to reduce the interference between the ATM network and
disc I/O, a fine grain bus sharing scheme is used where block operations are split
into a number of small transfers by the logic of the DMA controller.

This technique relies on the utilisation of the memory bus by the ARM CPU
being much less than 100% (due to the presence of its on-chip cache). Observations
indicated that typically only 30% to 50% of the available memory bandwidth was
being used. The DMA controller was designed to perform a 32 bit word transfer in
125ns. In the Disc Brick design, the ARM has a memory transfer clock (MCLK) of
16MHz. The DMA controller is allowed access to the bus for 1µs (16 MCLK ticks)
and then the transfer is suspended for a further 1µs. Allowing for arbitration delays,
this gives an effective sustained DMA transfer rate of about 20 Mbyte/sa good
match for the maximum SCSI bus transfer rate. In the Disc Brick each SCSI port has
a maximum transfer rate of 4 Mbyte/s, which gives a theoretical aggregate of 16
Mbyte/s for 32 bit data words. The data for the parity drive is never transferred to or
from the ARM memory, and thus has no effect on overall performance.

Disc Brick Performance

To evaluate the performance of the Disc Brick, it is necessary to do more than just
measure disc and network throughput. Each subsystem is controlled directly by the
ARM, and hence carries a CPU and memory bandwidth overhead. Similarly,
because of the nature of the devices, there are possible interference effects (interrupt
latency, for example) which determine the behaviour of the system as a whole. To be
able to understand these interference effects, it is first necessary to understand how
each of the subsystems performs in isolation.

Each ATMos system has an idle process which is executed whenever there is
nothing else which can be scheduled. The idle process is written in such a way that,
by noting the value of a single memory location at the beginning and end of a
performance measurement, it is possible to infer the average “idleness” of the
processor and memory during that time. All the measured timings that follow are
also accompanied by an indication of the system idleness, shown as a percentage.

Raw RAID Array Performance

Figure 3 shows the performance of the “raw” RAID array. Measurements were
taken of the time to read/write 50, 100 and 1000 Mbytes of contiguous disc, and the
results averaged. Each set of timings were made for polled access mode (where the
ARM is responsible for the FIFO data transfer) and DMA mode (where transfers are
handled by an external DMA controller). In order to illustrate that there is no
performance penalty in data reconstruction, the timings were repeated for a system in
which drive A had been disconnected.

RAID Array Performance

0

2

4

6

8

10

12

14

16

RE AD: DMA RE AD: DMA,
(recons tructing)

WR ITE : DMA WR ITE : DMA
(recons tructing)

RE AD: Polled WR ITE : Polled

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MB/s

%idle

Figure 3

• The read transfers are entirely SCSI bus limited, since the theoretical maximum
data rate from each drive is only 4Mbyte/s.

• The fact that write operations are slower than read operations is an artefact of
the disc drives themselves—not of the RAID system.

• The effective transfer rates from both polled and DMA modes are very similar,
but the variation in CPU loading is dramatic.

Raw Network Performance

Figure 4 shows the effect on overall system performance of various amounts of
ATM traffic, in the absence of disc activity. Measurements were taken for
approximately 10, 20, 30 and 40 Mbit/s of continuous network activity, user process
to user process.

AT M Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

AT M (10Mbit/s) AT M (20Mbit/s) AT M (30Mbit/s) AT M (40Mbit/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

MB/s

% idle

Figure 4

Actual bandwidth requirements at the ATM physical layer are some 10% larger
than these figures, primarily because of the 5 byte header overhead for every 48 bytes
of ATM cell payload. As can be seen, CPU saturation would be reached significantly
before the theoretical 100Mbit/s limit. This is due to the fact that the prototype ATM
interface in the Disc Brick generates an interrupt for every cell received or
transmitted, and that the adaptation layer processing is performed exclusively in
software.

Filing System Performance

To evaluate the performance of the filing system, measurements were taken of the
time to read/write files of 5, 10, 50 and 100 Mbytes, and the results averaged.
Because creating a file carries with it a significant block allocation overhead,
measurements were also taken of the time to re-write (i.e. write in place) the same
files. Timings were also taken of the filing system performance when an extra data
copy is involved, for example by using the ANSI C functions fread and fwrite
through a “buffered” interface. The results are shown in Figure 5.

F iling S ystem Performance

0

2

4

6

8

10

12

14

RE AD RE AD
(copy)

WR ITE WR ITE
(copy)

RE WRIT E RE WRIT E
(copy)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MB/s

%idle

Figure 5

• The CPU overhead of using the filing system rather than the raw disc is not
large—especially for read operations.

• Comparison of the write and re-write timings gives some idea of the overhead
involved in block allocation. The filing system always performs block allocation
synchronously to preserve disc integrity, and this has an obvious knock-on
effect.

• The overhead of the extra data copy in each of the operations is highly
significant. Not only is the CPU less idle, but the overall filing system
performance is much lower.

Combined Network And Filing System Performance

The measurements in Figure 6 are identical to the read timings described above,
but with the added overhead of 10, 20, 30 and 40 Mbits of network traffic occurring
in parallel. These values reflect the conditions which would be found in a real
multimedia file server, and indicate the extent to which disc and network operations
interfere with each other.

As can be seen, the filing system performance degrades gradually as the network
load is increased. This is not unexpected, but it is worth observing the difference
between the raw measurements and those which involve an extra data copy: here the
performance has become significantly worse, indicating that both the network traffic
and the data copy are interfering with disc activity.

ATM/Filing System Interference

0

2

4

6

8

10

12

14

10Mbit/s 10Mbit/s
(copy)

20Mbit/s 20Mbit/s
(copy)

30Mbit/s 30Mbit/s
(copy)

40Mbit/s 40Mbit/s
(copy)

T
ra

ns
fe

r
R

at
e

(M
by

te
/s

)

0%

10%

20%

30%

40%

50%

60%

70%

C
P

U
 Id

le
ne

ss
 (

%
)

MByte/s

%idle

Figure 6

Other Applications

The Disc Brick is currently being exploited commercially in a collaborative
agreement between Conner Peripherals Inc. and ATM Ltd. A range of RAID based
ATM direct peripherals is envisaged. It is also part of a “Video on Demand” field
trial in the Cambridge area [9]. Connectivity is being provided by Cambridge Cable,
TV set-top decoder boxes are being provided by Online Media, programme material
is being provided by Anglia Television, and networking infrastructure is being
provided by ATM Ltd. Disc Bricks are also being used in a collaborative project with
the University of Lancaster [10] which is investigating the issues of storage server
scalability.

Further Developments

Since the conception of the Disc Brick, the media transfer rate from 3.5” disc drives
has increased due to new coding techniques and greater rotational speed. Newer,
faster, higher capacity drives are regularly becoming available, and it is essential that
the design of the Disc Brick hardware and software should keep pace with these
developments. Similarly, network technology is changing sufficiently rapidly that it
may soon be necessary to re-evaluate the current 4+1 RAID configuration.

 It will be possible both to reduce the cost and improve performance of future
systems. Cost reduction can be achieved by integration: the ARM CPU has a very
small core which can be integrated together with other components on a single chip.
Thus ATM modules, including the Disc Brick, can be much reduced in cost. At the
same time a StrongARM is under development which is based on the DEC Alpha
CMOS process. This will make available a component with a clock speed of about
200MHz and will provide a performance upgrade path. Similarly, chipsets are
becoming available to reduce the overhead of handling the ATM networkthe
interface to which is the main bottleneck in the current system.

Conclusion

This paper set out to show that a combined network and storage object could be
produced which provided a good balance between the performance of the storage and
the network. The prototype system was built to demonstrate this—the results show
that the disc sub-system works well, and the ARM processor makes an excellent
RAID storage controller. However, there is a performance bottleneck in the ATM
network interface. New technology will shortly be available to improve the ATM
performance.

The Disc Brick fits well into the ORL family of distributed ATM peripherals.
With 8GB of capacity, it provides storage for a reasonable amount of multimedia
data (e.g. approximately 12 hours of MPEG-1 encoded video). The network interface
can support about 40-50Mbit/s of continuous traffic concurrently with high
performance disc accesses.

The redundancy provided by the RAID-3 approach has proved important. The
usage of multimedia data in the office environment is such that most objects are
large, but have a short life. It is expensive and very time consuming to implement a
comprehensive backup strategy for such data—the added reliability and availability
of the RAID system is helpful.

In conclusion, the ORL Disc Brick provides an efficient and cost effective storage
solution in an ATM networked multimedia environment.

Acknowledgments

The work described is the end result of the efforts of a large number of people. In
particular, Philip Elwell provided invaluable assistance with the design of both the
hardware and software of the Disc Brick. Caroline Bardelay wrote a test suite for the
Disc Brick; Ian Crowe, Ernie Wisner and Sharon Grant helped to produce the
prototype systems.

References

1. Wray, S.C., Glauert, T. H. and Hopper, A., Networked Multimedia: The Medusa
Environment, IEEE Multimedia, Winter 1994.

2. French, L. J., Wilson, I. D. and Girling, C. G., The ATMos Reference Manual,
Olivetti Research Laboratory, 1993-1995.

3. MacAuley, D. R., Operating System Support for the Desk Area Network,
Proceedings of the 4th International Workshop on Networking and Operating
Systems Support for Digital Audio and Video, 1993.

4. Hopper, A., Pandora - An Experimental System for Multimedia Applications,
ACM Operating Systems Review, Vol. 24 No. 2, April 1990.

5. Anderson, D. P., Osawa, Y. and Gorindan, R., A File System for Continuous
Media, ACM Transactions on Computer Systems 10(4), November 1992.

6. Lougher, P., and Shepherd, D., The Design of a Storage Server for Continuous
Media, The Computer Journal (special issue on multimedia), February 1993.

7. Patterson, D. A., Gibson, G., Katz, R. H., A Case for Redundant Arrays of
Inexpensive Discs (RAID), Proceedings of ACM SIGMOD, June 1988.

8. Lee, E. K. and Katz, R. H., Performance Consequences of Parity Placement in
Disc Arrays, Proceeedings of ASPLOS, April 1991.

9. Online Media Ltd., The Cambridge Interactive Television Trial, Press Release,
September 1994; Daily Telegraph, 11th October 1994.

10. Lougher, P., Pegler, D., and Shepherd, D. , Scalable Storage Servers for Digital
Audio and Video, Proceedings of IEE International Conference on Storage
and Recording Systems, April 1994.

