
The interface to Pandora's box

Stuart Wray

Olivetti Research Limited

February 25, 1994

Version 2.00

1 Introduction

Pandora's box is a video processing peripheral for a workstation or PC. This doc-

ument describes the model of Pandora's internal workings which is exposed to this

host computer. The host sends requests to Pandora, and receives a reply to each

one before sending the next request. Pandora can send asynchronous events to the

host independently of these request-reply interactions. Pandora and the host can

also asynchronously exchange data such as bit-map images and digitised audio. The

rest of this document is arranged as follows:

� A description of Pandora's hardware.

� A description of the object based software model.

� A description of the host interface, including the format of data passing across

it and between the internal objects of Pandora.

� Details of all the objects available and their operation.

2 The hardware

There is a possible confusion between the video output of the host computer, which

usually drives a display, and video in the sense of a \movie". The output of the host

computer which drives a display is technically a video signal, but \video" is now

also used colloquially to refer to moving images on a TV screen. Pandora deals in

both these types of video: it takes the output of its host computer and mixes this

with digitally encoded moving pictures (or stills) then displays the resulting image

on a monitor. The host computer does not have a direct connection to its display

| it can only place images on the screen through Pandora.

A user of Pandora will see a screen image with some areas produced by the host

computer and some areas produced by Pandora. It will sometimes not be obvious

where the join is, because Pandora can show pictures with irregular edges and the

host will usually be able to put still pictures on the screen independently of Pandora.

Pandora also has an attached phone and can handle digital audio. This is sep-

arate from the mechanism for handling moving pictures, but there are mechanisms

1



Figure 1: Pandora and host

to synchronise audio and video. Where the term \video" is used in this document

it implictly means \silent video".

The computer con�guration which users of Pandora will see on their desks is

shown in �gure 1. Pandora takes input from a camera and digitises this so that it can

be sent around the Cambridge Fast Ring local area network, stored on a winchester

disc inside Pandora, and otherwise handled conveniently in a digital environment.

The video output of Pandora is a mixture of digital images and the video signal from

the host computer. The screen image is produced at the last moment by analogue

mixing, so the video image from Pandora need not be representable in the framestore

of the host computer or vice versa. For contrast, compare this with the system at

MIT which uses Parallax frame capture hardware. In that system the transmission

and storage of video is entirely analogue, but at the last moment this is digitised and

inserted into the frame bu�er of the host computer. The Parallax video hardware

is thus completely host speci�c, unlike Pandora which can work with many hosts

without modi�cation.

The mixing of video from Pandora and the host computer is illustrated in �gure 2.

The image produced by a window system on the host is shown in the middle. It

has two text windows and the window system has left a black area where the video

2



Figure 2: Mixing images

3



Figure 3: Inside pandora

window will appear (the reason for this is discussed below). Next on the left is the

video image as it appears in the output framestore in Pandora and on the far left

is the mask plane of Pandora. Where a 0 appears in this plane, the corresponding

pixel will be taken from the host video image, where it is 1 the pixel will be taken

from Pandora. The mask has been set to show exactly the rectangular video image

placed in the frame store. It is possible to change individual bits in the mask plane,

so a frame of video could be clipped to any desired shape. It would even be possible

to show a video of your sweet-heart in a heart shaped window. The combined image

from the host and Pandora is shown at the right of �gure 2, as it would appear on

the monitor screen.

The problem with the mask plane system is that a cursor in the host image

which moves into a video window would disappear completely, since it too would be

overlaid with the video from Pandora. The solution adopted in Pandora is to display

the image from the host unless the mask plane indicates otherwise and the image

from the host is fully black. This is the reason for the rectangle underneath the

video window in �gure 2 being black. To see the video from Pandora at a particular

pixel you have to set the appropriate bit in the mask plane and make that pixel in

the host's image completely black. The e�ect this has on the cursor is that black

parts of a cursor will be transparent and show video through them, but other shades

will be opaque. The cursor will still be mostly visible.

Figure 3 shows the broad internal structure of Pandora. There are four distinct

modules, each controlled by a Transputer. These Transputers are connected together

4



by their links in a tetrahedron, but the links are used only for control; data passes

between the modules on a bus. This is what each module does:

� The server module is in many ways like a DMA engine. The other three

modules each have FIFOs for data transfer to or from the server and these

are memory mapped into the server module's address space, so to transfer

data between modules in the simplest case involves a block move from one

FIFO into another. The server module also has a CFR interface for commu-

nication with other Pandora's boxes. This is used for data only: all control

information passes via the host (of course the host may use the same CFR for

its communications, but Pandora does not know this). Pandora's permanent

storage device is attached to the server module as well. Initially this will be

a winchester disc, but in the future a removable magneto-optical disc may be

used.

� The capture module takes a video input from a camera and digitises this

frame by frame. A frame is broken up into \segments" for transmission and

the results sent out via the FIFO (the format of these segments is described in

a later section). If compression is required this is done segment by segment.

� The mixer module receives video streams through its FIFO, decompressing

them as required and placing them in its frame bu�er. The image in the

frame bu�er is then mixed with the video signal from the host, as described

above.

� The host module directs the other three modules. It has the interface to

Pandora's host computer (this is used for both control and data). The host

module also has a phone connection, and Pandora's audio processing is done

here.

3 The object model

This section presents the object model of the inside of Pandora. This model re
ects

the structure of the hardware in some ways but is rather more general, since we

intend to retain the same software model across changes to Pandora's hardware.

Only one object is present when Pandora �rst starts running: the Factory. This

object is used to create, connect, disconnect and dispose of other objects. Since the

resources of Pandora are �nite (internal bandwidth will often be the main constraint)

the Factory can refuse a request to create a new object. Within the Factory are the

prototypes of all the objects that can be created. By specifying one of these along

with a few initial attributes and a name the Factory can build the required object.

When the Factory deletes an object, the hardware resources allocated to the object

may be recommitted elsewhere.

The Factory is also used to connect objects together, allowing streams of video

and audio to pass from one object to another. The input ports and output ports

of objects have types and to connect an input port to an output port their types

5



must match. The output ports of most objects can be connected to several input

ports; some objects have input ports to which several output ports can be connected.

There is a maximum number of connections that can be made to an input or output

port of each kind of object. Note that no objects have output ports capable of

multiple connections which are type compatible with input ports capable of multiple

connections. All connnections are either one-to-many or many-to-one, never many-

to-many. For some kinds of object there is a maximum number of instances which

the factory will create. A request can be made to the Factory to determine what

these limits are.

When an object sends data to an output port its responsibility for that data

ends. If the port is not connected to another object, or if the object it is connected

to is not ready, the data is simply discarded. Because the model of data 
ow is of

blowing rather than sucking, it is never an error to give data to another object, even

if it cannot keep up. The object which is too slow will raise an event to complain

that its input is too fast for it. Every object attempts to go as fast as it can, and the

speed of a network of connected objects is set by the speed of the ulimate sources

of the data 
owing through the network. There is no direct feedback mechanism

within Pandora to throttle back fast sources when other objects cannot keep up:

instead the objects left behind must raise events and have the host send requests to

the o�ending sources to make them go more slowly.

The mechanisms which turn camera input into its digital representation and turn

this representation back into an image on a display are not single objects. Instead,

each of these is put together from three objects: an input adapter, a virtual screen

and an output adapter. The structure of Pandora's hardware makes it possible

to build such a mechanism on the camera side with more than one output adapter,

delivering several independent streams of digital video from the same original camera

image. Similarly on the display side the mechanism can have several input adapters,

placing several digital video streams on the display and acting as a rudimentary

mixer. In practice the number of streams is likely to be one initially, but this can be

checked by asking the Factory how many inputs the mixer virtual screen has, and

how many outputs the capture virtual screen has.

The idea of adapters and virtual screens is illustrated in �gure 4 which shows

a camera adapter placing video on a virtual screen from where it is taken by an

encoder adapter. It is then delivered to a decoder adapter, through a mixer virtual

screen and onto the computer display itself. The video signal notionally enters the

camera adapter in analogue form. The adapter is parameterised when it is built

by the factory, so it knows the frame rate, line rate, and so on of the camera. Of

course the hardware of Pandora restricts the range of parameters that it is sensible

to allow (for example it is unlikely to be able to decode more than one type of

analogue colour representation). The adapter can be instructed to place its output

at a particular location on the virtual screen, and it is possible that some scaling is

also available. This output is constrained to lie entirely on the virtual screen, but

the place it is put can be changed.

In Pandora there can currently only be one virtual screen for capture and one

for display. These virtual screens can be thought of as corresponding to the frame

6



Figure 4: Capturing an image

stores in the capture and mixer modules of Pandora (though the same model could

be used even if frame stores were not present in the hardware). The screens are

created by the Factory like all the other objects, but their size and colour encoding

properties are �xed.

An encoder adapter takes images from the virtual screen and turns them into a

representation suitable for digital transmission and storage. Its output is a stream

of digital video \segments". An encoder adapter is parameterised when it is built

by the factory: things like the type of compression to be used can be set in this

way. Naturally, what it is sensible to specify will depend to a large extent upon the

hardware. This adapter can be instructed to take its input from a particular place

on the virtual screen and as with the camera adapter this place can be changed from

time to time.

This summarises the components of the capture mechanism; the mixing mecha-

nism feeding the computer display is similar but the other way round. It takes as

input a stream of digital video segments and uses the intermediate representation on

the mixer virtual screen to produce an analogue signal which will drive a monitor.

The telephone connected to Pandora appears in the object model as separate

microphone, speaker and keypad objects. Microphone and speaker communicate

with other objects using streams of digital audio segments, similar to digital video

segments. The keypad causes events to be sent to the host whenever keys are pressed.

Pandora has three kinds of object which can be used to send data outside the box

in digital form: Host, Network and Disc. Host objects connect to the asynchronous

7



data channel described in the next section. They will most often be used for carrying

digital audio but they will have too small a bandwidth to carry video, unless the

frame size is very small. Network objects are used in a similar way to connect to

other Pandora boxes and to �leservers over the Cambridge Fast Ring. These objects

have enough bandwidth to carry video. Disc objects are connected to winchester or

removable optical discs, and can be used to record and play back streams of video

or audio. Disc objects may not be available in the very �rst Pandoras, but there

will be an external video repository with some of their functions. This can be used

via the Network objects.

4 Interfaces and Segments

This section describes the host interface and the structure of data segments. Initially

the host interface is being implemented over a Transputer link, but a SCSI bus

will be used for greater host independence. The host interface is a bidirectional

serial channel which is used as three virtual channels. The abstact syntax of the

communication through each channel is given below. The notation nametype in the

abstract syntax introduces a syntactic entity called name with type type.

Here are the di�erent types:
name A unique identi�er (eg `type.video.segment').

int A signed integer.

rat A signed rational number.

byte An 8 bit byte.

time The value of a timer, not absolute time.

any Any of the above types.

segment A self-contained part of a video or audio stream.

(The format is described later).

sequence[type] A sequence of zero or more items each of type type.

It is also possible to specify that collections of items be sent along a communi-

cation channel. A collection is a sequence of items, grouped together and delimited

from previous or subsequent items. The notation for a collection is a sequence

enclosed in curly brackets:

fitemssequence[type]g

The concrete syntax is described in an appendix of this document. Here is what

the di�erent channels are for:

4.1 Request-reply channel

Pandora waits for the host to send a request over this channel. When the host has

�nished sending a request it must wait for the reply from Pandora before sending

another request. It is not de�ned what will happen if the host attempts to send

another request before Pandora replies to the �rst one. Don't try it.

A request from the host to Pandora has this format:

8



objectname requestname fargumentssequence[any]g

The appropriate number and type of items in the collection arguments depends

on the object and the request that are speci�ed. The reply from Pandora has this

format:

replyname fresultssequence[any]g

The name reply indicates whether the request succeeded or failed (the name

will be `reply.success' if it worked, otherwise the name of an error). The collection

contains such results as are returned in the case of a successful commmand, and

may be empty. In the case of an unsuccessful request the collection either contains a

sequence of bytes giving a human-readable text message or it is empty. The names

of errors that can be returned by each object are speci�ed in the descriptions of the

individual objects in a later section.

This format will probably change in future to include a time in the reply.

4.2 Asynchronous event channel

The host must wait continually for an event on this channel. Once an event is

received Pandora is free to send another one hard on its heels. There is no limit

to the number of consecutive events Pandora can send to the host on this channel.

Each event is triggered by some condition in an object inside Pandora, for example

a bu�er over
owing.

An event sent from Pandora to the host has this format:

objectname eventname fmessagesequence[byte]g

The object given in an event is the one that caused it, event speci�es what kind

of event it is and message is a text message for human inspection (this collection of

bytes may of course be empty). The events that can be raised by objects are given

with the description of the individual objects in a later section.

The host does not have to perform any particular action after an event, other

than being ready to receive the next one. Objects have requests for selecting the

conditions which will cause them to send an event, so they can be instructed to be

quiet if necessary.

This format will probably change in future to include a time in the event.

4.3 Asynchronous data channel

The host must be ready to accept data from Pandora on this channel and Pandora

must be ready to accept data from the host. It is not de�ned whether transmission

is only one way at once, or whether data can 
ow in both directions at the same

time.

Data traveling in either direction has this format:

9



objectname datasegment

Object names in this interface have a similar rôle to port numbers in a network

interface. The segment is sent to the input of object (if the host is sending it) or

has come from the output of object (if the host is receiving it). If a segment of an

inappropriate type is sent to an object it will raise an event on the asynchronous

error channel. If the host recieves an inappropriate or unexpected segment it might

ignore it or it might investigate the situation using the request-reply channel. No

replies can be made directly on the asynchronous data channel.

4.4 Segment structure

A \frame" is part of a stream of video data which stands on its own, does not

need the previous part of the stream for it to be meaningful and gives a consistent

viewable image (though not necessarily a static image). A \segment" of video is part

of a frame. It does not need previous segments, but it may not give a meaningful

image on its own (for example a segment might be a single scan line). If enough

segments of a frame are displayed the image seen will be meaningful, but how many

this is depends on the way a frame was divided into segments. For instance in

some encodings the loss of a single segment of a frame might mean that colour

information is missing, or that the image is blurred. Segments may be lost while

they are transmitted from one Pandora to another over the network, or because of

some overcommitment of Pandora's internal capacity to transmit and process data.

The segments transmitted over the data channels and stored on discs have this

format:

identi�ername

sequenceint

timetime

typeint

fdatasequence[any]g

The �rst item in a segment is identi�er, a name which speci�es the segment

format and its concrete syntax. For now there is only this one format of segment

(speci�ed by the name `name.segment.format1'), but in the future there might be

other formats. As you can see, this format has a header and one data �eld. Only the

header of the segment is �xed, and this header contains just the information which

is necessary to handle the appended data in a �leserver or network, without knowing

its meaning. Other formats of segment will only be introduced in the unlikely event

that it is necessary to change this header or add more data �elds at this outer level.

Although at the moment there is only one kind of header there could be more than

one concrete syntax for it (for example little-endian or big-endian) and each of these

will have a unique identi�er.

The next item in a segment is sequence, the number of this segment within a

stream of segments (the �rst segment is numbered 0). Note that this is nothing

10



to do with frame number or sequence number of segment within a frame. That

information (if present) is encoded in the data �eld. The sequence �eld is there so

that the mechanisms for handling segments without regard for their meaning can

still detect when a segment has been lost in transit. Such lost segments may be

retransmitted or just dropped on the ground.

The type �eld is an integer which speci�es the format of the data �eld in the same

way as identi�er speci�es the format of the whole segment. Part of the data may be

further \type" information, for example the name of the compression scheme used,

the size of a picture, and so on.

Each segment has a time stamp in the time �eld. This is the value of the timer

in the hardware generating the segment when it is created. By replaying recorded

segments at the relative times corresponding to these timer values, a �leserver can

simulate the source which originally produced the segments. It need not know

anything about frame rates or other such time properties of the decoding machinery.

As noted above, in the concrete syntax data is encoded in such a way that

segments can be stored and transmitted without needing to interpret this �eld.

4.5 Types of segments

There are currently three types of segments: Video (`type.video.segment'), Still

(`type.still.segment') and Audio (`type.audio.segment'). It is intended that Video

will be able to describe most video encoding schemes, but a new type of segment

may be necessary for particularly unusual schemes, since the format described here is

frame oriented. Note that there are di�erent types of segments for stills and moving

video, because a still is conceptually an instantaneous picture, while a video is

conceptually made up of frames which are moving pictures of short duration. As an

illustration of this di�erence consider 18th century racing prints and the phenomenon

of motion blur.

Motion blur is an artefact of photography. A still photograph takes a certain

time to take and during this time the subject may move. A drawing takes even

longer to �nish, but motion blur is seldom used as an artistic device in drawing

(though it is used in photography since it is so easy to achieve). Drawings and

paintings are stills, pictures of something at an instant in time. Before photography

was invented, artists did not know how horses legs moved when they were galloping.

However, they did not draw them blurred. In 18th century racing prints the horses

have crisp unblurred legs, drawn as the artists imagined they must be. In fact their

imagination was wrong, but their decision is an example of the traditional view of

the still picture as capturing a moment in time, even to the extent of inventing the

scene at that instant so as to conceal the limitations of the artist's eye.

On the other hand, motion blur is an essential part of a frame of video, it is

not an unwanted artefact. A frame of video is a representation of a scene as it

changes through time, it is not a picture of a scene at an instant. If a video did

not have motion blur it would look jumpy and arti�cial (as simple animation does).

To improve the realism of their product, animators spend considerable e�ort adding

motion blur to their crisp images.

11



Compression schemes will be di�erent for stills and video. Video might be en-

coded in indivisible \frames" several seconds long with motion encoded explicitly.

Conditional block replenishment is a bit like this. Note that it is not necessarily

possible to present the moving image part way through a frame as a still image, and

it is not the case that stopping a video at the end of a frame will leave a correspond-

ing still image on the screen. Video and stills are di�erent things and they might

be inter-convertable only with great di�culty. It might seem that it will always be

possible to make a still representation corresponding to a moment in a video, but

consider a sudden 
ash in a video. What is the appropriate representation of this

e�ect as a still picture?

The way in which stills and videos are constructed for viewing is also di�erent.

With a still picture, the time taken to construct it is not important, provided that it

is complete at the required viewing time. For example, a painting takes a very long

time to construct, but this does not matter, provided it is �nished when we want

to look at it. On the other hand, a video must be constructed before our eyes at

a speci�c rate, or else its meaning to us will be changed (for example things might

move too slowly). This has important consequences in the di�erent treatment of

stills and video as they are transmitted from one place to another, there being no

intrinsic time constraints in the presentation of stills but very stringent constraints

in the presentation of video.

Video

This type of segment gives information about the frame that it is part of, its position

in that frame, and the compression scheme used for the data. This is followed by

the compressed data itself.

frame int

segmentsint

this segmentint

frameX int

frameY int

pixel aspectrat

visualname

fcompressionname argumentssequence[any]g

fdatasequence[byte]g

Frames of video are formed from several segments. The �eld frame contains

the number of the frame which this segment is part of, segments is the number of

segments that this frame has been broken into (it need not be the same number from

frame to frame) and this segment is the number of the segment within that frame.

Frames are numbered from 0 and segments within a frame are also numbered from

0. The �elds frameX and frameY specify the size of the frame in pixels. The aspect

ratio of the pixels is given in the �eld pixel aspect.

pixel aspect =
pixel height

pixel width

12



This need not be compatible with the pixel aspect ratio of the virtual screen on

which the segment is shown, but if it isn't the picture will look stretched either

vertically or horizontally.

The format of the pixels is speci�ed by the �eld visual | for example it might

be `name.monochrome.8.bit'. This must be compatible with the pixel format of a

virtual screen that the segment is shown on. It is probable that speci�c hardware

will only be able to handle a small range of pixel formats. If the visuals were

incompatible this would cause a type error event.

Currently four compression schemes are recognised (attempts to use other schemes

will cause a type error). These are `name.lines.null', `name.lines.dpcm', `name.lines.pack',

`name.lines.pack.dpcm'. The parameters taken for all these formats are the same,

so only `name.lines.null' is illustrated here:

f`name.lines.null' lineX int startY int linesintg

This speci�es that the following data is not compressed and that it is stored pixel

by pixel in left to right scan lines of length lineX. These scan lines form the part of

the frame starting from the startY line from the top and continuing for lines lines

down the screen.

For the other named compression schemes, the following data is to be processed

appropriately and when this is done the result will come out in in left to right scan

lines of length lineX. As before, scan lines form the part of the frame starting from

the startY line from the top and continuing for lines lines down the screen.

The scheme `name.lines.pack.dpcm' uses a dpcm compressor to reduce 8 bit

pixels to 4 bits of signi�cant data, then packs two pixels per byte. It is therefore a

2:1 compression scheme. `name.lines.dpcm' does the dpcm step without packing, so

the data doesn't become any smaller. `name.lines.pack' packs the least signi�cant

4 bits of pairs of pixels into each byte, discarding the top 4 bits, and will produce

very strange looking pictures. In practice only `name.lines.pack.dpcm' is likely to

be useful.

Still Picture

This type of segment gives information about the still that it is part of, its position

in that frame, and the compression scheme used for the data. This is followed by

the compressed data itself. This format is almost identical with video, but is given

in full here for completeness.

segmentsint

this segmentint

pictureX int

pictureY int

pixel aspectrat

visualname

fcompressionname argumentssequence[any]g

fdatasequence[byte]g

13



Stills are formed from several segments. The �eld segments is the number of

segments that this still has been broken into and this segment is the number of the

segment within the still. Segments within a still are numbered from 0. The �elds

pictureX and pictureY specify the height and width of the still in pixels. The aspect

ratio of the pixels is given in the �eld pixel aspect.

pixel aspect =
pixel height

pixel width

This need not be compatible with the pixel aspect ratio of the virtual screen on

which the segment is shown, but if it isn't the picture will look stretched either

vertically or horizontally.

The format of the pixels is speci�ed by the �eld visual | for example it might

be `name.colour.24.bit'. This must be compatible with the pixel format of a virtual

screen that the segment is shown on. It is probable that speci�c hardware will only

be able to handle a small range of pixel formats. If the visuals were incompatible

this would cause a type error event.

Currently only one decompression scheme is recognised (attempts to use other

schemes will cause a type error). This is `name.lines.null':

f`name.lines.null' lineX int startY int linesintg

This speci�es that the following data is not compressed and that it is stored pixel

by pixel in left to right scan lines of length lineX. These scan lines form the part

of the still starting from the startY line from the top and continuing for lines lines

down the screen.

Audio

This type of segment speci�es the length of the audio information it contains and

the kind of encoding used, then speci�es a (possibly parameterised) compression

scheme which will decode the remaining data in the segment.

lengthint

raterat

sample formatname

fcompressionname argumentssequence[any]g

fdatasequence[byte]g

The �rst �eld, length, contains the number of samples in this segment (this

is the number of samples there will be after any decompression). The rate �eld

speci�es the number of samples per second of the decompressed data to be given to

the hardware, and sample format names the format of these samples, for example

`name.mu.law.8.bit'. It is likely that speci�c hardware will only be able to handle

a small range of the possible sample rates and formats. Segments that cannot be

handled will be rejected with a type error event.

Currently only one named compression scheme is recognised: `name.null':

14



f`name.null'g

This speci�es that the following data is not compressed and can be given directly

to the codec, at the appropriate rate.

It is likely that a compression scheme called `name.silence' will be implemented

in the future:

f`name.silence' lengthintg

This is followed by a null data �eld, which is ignored. The decompressor generates

length samples of simulated silence to take the place of the data that would otherwise

have been there, but which was quieter than some threshold.

5 The objects

5.1 Common material

There are some things common to all objects, and they are given here to avoid

repetition.

Kind

Each kind of object has a name, used when creating it. The recognised kinds are:
`kind.factory'

`kind.camera.adapter'

`kind.capture.virtual.screen'

`kind.encoder.adapter'

`kind.decoder.adapter'

`kind.mixer.virtual.screen'

`kind.display.adapter'

`kind.audio.sink'

`kind.audio.source'

`kind.keypad'

`kind.synchroniser'

`kind.joiner'

`kind.splitter'

`kind.network.sink'

`kind.network.source'

`kind.host.sink'

`kind.host.source'

`kind.�le.sink'

`kind.�le.source'

(The order of these names is the same as the order in which the object descrip-

tions are presented)

15



Input ports, output ports and types

The description of each port of an object says how many connections can be made

to it (one or many) and what its type is. The following types are de�ned:

`type.capture.project' On to the capture screen

`type.capture.view' O� the capture screen

`type.mixer.project' On to the mixer screen

`type.mixer.view' O� the mixer screen

`type.video.segment' Video

`type.still.segment' Stills

`type.audio.segment' Audio

`type.all.segment' Union of Video, Still and Audio

`type.any.segment' (Polymorphic) Any of the above four

The joiner object takes video, still and audio streams as input and produces a

united stream of type `type.all.segment' as output. The splitter object reverses this.

All streams of segments into Pandora are united streams, so splitters and joiners

need to be used before they can be connected to display mechanisms (which only

accept the simple Video, Still and Audio types).

No segment has type `type.all.segment' or `type.any.segment', these are the types

of ports through which streams of segments 
ow. If an object has one port of type

`type.any.segment' then it is acceptable to connect a port to it which has any of the

other segment types, including `type.all.segment'. A port of type `type.any.segment'

e�ectively changes to match the type of the port it is connected to. If an object has

more than one port of type `type.any.segment', and one of these ports changes to

match a connected port then they all e�ectively change to match, so any connections

to the other ports must now match that type too. If a port of type `type.any.segment'

is connected to one of type `type.any.segment' on another object then all ports of

this type on both objects change to match whenever a port on one of them changes.

There is one more type not mentioned so far: `type.any1.segment'. This has

identical properties to `type.any.segment', but if an object has both types of port,

one of them can change type to match as described above without a�ecting the other

one. They are entirely independent. This type is used only in the synchroniser,

which has two separate polymorphic segment ports, one of type `type.any.segment',

the other `type.any1.segment'.

Creation

Most objects require some parameters to be given to the Factory when they are

created. Details of these parameters are given in the description of each kind of

object in its Creation section.

Events

All objects can send these events, and some objects can send other events. See the

descriptions of the individual objects.

16



� `event.internal.error' Something has gone very badly wrong. (Pandora may be

broken.)

� `event.host.broken' Something has gone wrong with host communications.

� `event.segment.too.large' A segment was too large for a bu�er and has been

discarded.

� `event.missing.segment' A segment is missing (as detected by sequence num-

bers).

� `event.wrong.type.of.segment' A segment of an unexpected type was received

and discarded.

� `event.closed.down' The hardware resources allocated to this object are free

again.

� `event.log' Logging message sent from internal layers of Pandora software.

Requests

Requests are described in the format

fargumentsg ) fresultsg

Where arguments is the collection of data sent with the request and results is the

collection of data returned with a successful reply.

Replies

These are all the replies that any object can deliver. For `reply.success' there will

follow the results as speci�ed in the description of each request. Otherwise there

follows a string, which may give more information about the reason for failure.

� `reply.success' The request worked.

� `reply.unknown.object' The object named in the request does not exist.

� `reply.unknown.request' The object does not implement this request.

� `reply.failed' The request failed, but no error occured.

� `reply.request.too.large' The arguments in the request are too big for Pandora's

bu�er.

� `reply.malformed.request' The number of arguments is wrong, or there is some

other syntactic error in the request.

� `reply.host.broken' Something has gone wrong with host communications.

� `reply.internal.error' Something has gone very badly wrong. (Pandora may be

broken.)

17



5.2 Factory

The Factory is the only object present when Pandora starts running, and is used to

create, connect, disconnect and remove other objects.

Kind

`kind.factory'

Input and output ports

None.

Creation

Not applicable.

Events

Only the standard ones.

Requests

� `request.factory.create' (Create an object)

fkindname parameterssequence[any]g ) fobjectnameg

The kind of the new object is speci�ed. Depending on what that kind is there

may be some initialisation parameters | details are given in the description

of each kind of object in the Creation section. Objects created by the factory

will not raise requests until they are allowed to, using the allow event request

to the factory.

Pre-condition: kind must be the name of a kind of object.

Post-condition: A new object of kind kind called object exists, and the name

object is unique to this newly created object.

� `request.factory.allow.event' (Allow events to be raised)

fobjectnameeventssequence[name]g ) fg

The named object is allowed to raise events. The argument events can contain

names which the object could never raise as events, and these are just ignored.

Pre-condition: There is an object called object.

Post-condition: The object may raise some of the named events.

18



� `request.factory.forbid.event' (Stop events being raised)

fobjectnameeventssequence[name]g ) fg

The argument events speci�es the names of events which the object is not to

raise again until it is told to. The arguments can contain names which the

object could never raise as events, and these are just ignored.

Pre-condition: There is an object called object.

Post-condition: The object will not raise any of the named events.

� `request.factory.show.allowed.events' (What events may be raised)

fobjectnameg ) feventssequence[name]g

This request returns the names of the events that object may raise.

Pre-condition: There is an object called object.

Post-condition: None.

� `request.factory.show.forbidden.events' (What events may not be raised)

fobjectnameg ) feventssequence[name]g

This request returns the names of the events that object may not raise, but

which it could raise were they allowed. It is NOT a list of all the event names

minus those that object is allowed to raise.

Pre-condition: There is an object called object.

Post-condition: None.

� `request.factory.show.requests' (What requests can be made?)

fkindnameg ) frequestssequence[name]g

This request returns the names of the requests that a kind of object will accept.

Pre-condition: There is an object called object.

Post-condition: None.

� `request.factory.show.creation.parameters' (How an object was created)

fobjectnameg ) fparameterssequence[any]g

This request returns the parameters used in the call to the factory which

created this object.

Pre-condition: There is an object called object.

Post-condition: None.

19



� `request.factory.delete' (Delete an object)

fobjectnameg ) fg

The named object is deleted and its associated resources will be reclaimed.

The request returns a result immediately, and if it is successful the object will

be deleted but the hardware resources may take some time to reclaim.

Pre-condition: object is the name of an object created by the Factory. There

must be no connections to the ports of object.

Post-condition: No object with name object exists.

� `request.factory.connect' (Connect two objects)

fobject1name port1name object2name port2nameg ) fg

The two objects are speci�ed, with the names of the ports to be joined.

Pre-condition: object1 and object2 exist and have ports called port1 and port2

respectively. One of the ports must be input and the other must be output.

Both ports must not have reached their maximum number of connections. If

either of the ports can connect to only one other port it must not be already

connected to a port. The types of the ports must be compatible.

Post-condition: The number of connections to each port is increased by one.

The objects are connected together via the ports: segments sent from one port

will be received at the other port.

� `request.factory.disconnect' (Disconnect two objects)

fobject1name port1name object2name port2nameg ) fg

Two objects are speci�ed, with the names of the ports to be disconnected.

Pre-condition: object1 and object2 must exist and have ports port1 and port2

respectively. The two objects must be connected to each other via the speci�ed

ports.

Post-condition: The number of connections to each port is decremented by

one. The objects are no longer connected to one another: segments sent to

whichever is the output port will not be received at the input port.

� `request.factory.show.instances' (Maximum allowed instances)

fkindnameg ) finstancesintg

This request returns the number of instances of an object that the factory is

able to create. Note that this is the total number, not how many more it can

create at this moment. This number might change as Pandora is used due to

resources being committed. For example if this enquiry says you can create x

20



of one kind of object and y of another this doen't mean you can do both, it

means you can do either. When you have done one of them check how many

of the other you can do then.

Pre-condition: There is a kind of object called kind.

Post-condition: None.

� `request.factory.show.objects' (What objects are there)

fg ) fnamessequence[name]g

This request returns the name and kind of every existing object. The names

returned are alternately object name, corresponding kind, object name, cor-

responding kind, and so on.

Pre-condition: None.

Post-condition: None.

� `request.factory.show.ports' (What ports does an object have?)

fkindnameg ) fportssequence[name]g

This request returns the names of the ports of the specifed kind of object.

Pre-condition: There is a kind of object called kind.

Post-condition: None.

� `request.factory.show.port' (Details of a port)

fportnameg ) fconnectionsintg

This request returns details about a particular port. connections is the maxi-

mum number of connections that can be made to the port.

Pre-condition: Some object has a port called port.

Post-condition: None.

� `request.factory.show.connected' (What is connected to a port)

fobjectname portnameg ) fnamessequence[name]g

This request returns all the objects (and the port used) connected to port

of the speci�ed object. The names returned are alternately object name,

corresponding port name, object name, corresponding port name, and so on.

Pre-condition: There is an object called object, with a port called port.

Post-condition: None.

21



� `request.factory.show.version' (What version is this Pandora?)

fg ) fversionint releaseintg

This request returns the version of the interface to Pandora's box. If the

version was 2.09, this request would return with version = 2 and release = 9.

Pre-condition: None.

Post-condition: None.

5.3 Camera adapter

A camera adapter takes the output from a camera and converts it frame by frame into

the intermediate representation suitable for placing on the capture virtual screen.

Kind

`kind.camera.adapter'

Input and output ports

� Output (only one connection): `port.camera.adapter.output'

Type: `type.capture.project'

Creation

The parameters used when the factory creates this object are:

interlacename frameraterat linerateint aspectrat visualname

The parameter interlace can take either the value `name.interlaced' or the value

`name.not.interlaced', and visual can take the value `name.monochrome.8.bit'. The

parameter framerate is the frame rate of the camera, linerate is its line rate and

its pixels have aspect ratio aspect. The values of the parameters should match the

speci�cation of the camera attached to pandora, but currently they don't govern the

behaviour of the camera at all.

Events

Only the standard ones.

Requests

� `request.camera.adapter.set' (Set reference point, X-Y size.)

frefX int refY int sizeX int sizeY intg ) fg

22



This request sets the place on a virtual screen where the camera adapter places

its image. The reference point (refX, refY) is the coordinate on a capture

virtual screen of the top left hand corner of the rectangle where the image is

placed. The rectangle is sizeX pixels wide and sizeY pixels high. Note that the

top left hand pixel of the virtual screen is coordinate (0, 0) so x coordinates

increase from left to right and y coordinates increase from top to bottom of the

screen. If the rectangle is placed so that it is partially o� the virtual screen,

images might not appear even on the part that remains on the virtual screen.

Only certain rectangle sizes and positions are allowed. Currently refX and

refY must both be 0; sizeX must equal sizeY and can be either 512, 256 or

128. When it is created, a camera adapter is set to size X = 128 and sizeY

= 128.

Pre-condition: The speci�ed rectangle size and position is allowed.

Post-condition: None.

� `request.camera.adapter.show' (Show reference point, X-Y size.)

fg ) frefX int refY int sizeX int sizeY intg

This returns the reference point (refX, refY) of the top left hand corner of the

rectangle where the camera image will be placed on a virtual screen, along

with its width sizeX and height sizeY.

Pre-condition: None.

Post-condition: None.

� `request.camera.adapter.test.card.set' (Set test card parameters.)

fsizeint refX int refY int rateratg ) fg

This request controls the action of the test card generator. The test card

is a two by two chequer-board overlayed on the picture from the camera,

where the edges of each of the four sub-squares are size pixels long. When

a camera is created the initial value of the size of the test card is 0, and in

this state the test card is not visible. The parameters refX and refY specify

the position of the the top left hand corner of the test card relative to the

reference point of the camera adapter (set with `request.camera.adapter.set').

Note carefully that this is NOT relative to the top left hand corner of the

virtual screen. Although the position of the test card is speci�ed relative to

the reference point of the camera adapter, it is not constrained to lie within

the area speci�ed in `request.camera.adapter.set'. The default values of refX

and refY when the camera adapter is created are zero.

The parameter rate determines the rate at which the test card inverts its

chequer pattern, relative to the frame rate of the camera. The default value

of rate is 1.0, ie the same rate as the camera.

23



Pre-condition: None.

Post-condition: None.

� `request.camera.adapter.test.card.show' (Show test card parameters.)

fg ) fsizeint refX int refY int rateratg

This returns the size of the sub-squares of the test card, the position (refX,

refY) of the top left hand corner of the test card relative to the reference point

of the camer adapter, and the it rate at which the pattern is inverted relative

to the frame rate of the camera.

Pre-condition: None.

Post-condition: None.

5.4 Capture virtual screen

The capture virtual screen contains an intermediate representation of the moving

images from a camera, after they have been processed by a camera adapter.

Kind

`kind.capture.virtual.screen'

Input and output ports

� Input (many connections): `port.capture.virtual.screen.input'

Type: `type.capture.project'

� Output (many connections): `port.capture.virtual.screen.output'

Type: `type.capture.view'

Creation

The parameters used when the factory creates this object are:

sizeXname sizeY name visualname

The parameter sizeX speci�es the width of the capture virtual screen, sizeY its

height and visual the format of the pixels on it. The values of these parameters

must be one of the allowed con�gurations. Currently the only allowed con�guration

is sizeX = 512, sizeY = 512 and visual = `name.monochrome.8.bit'.

Events

Only the standard ones.

24



Requests

None.

5.5 Encoder adapter

An encoder adapter takes as its input the representation of a frame on the capture

virtual screen and converts this into a stream of segments (possibly using some

compression mechanism).

Kind

`kind.encoder.adapter'

Input and output ports

� Input (only one connection): `port.encoder.adapter.input'

Type: `type.capture.view'

� Output (many connections): `port.encoder.adapter.output'

Type: `type.video.segment'

Creation

The parameters used when the factory creates this object are:

compressionname parmssequence[any]

compression speci�es the method of compression which the encoder is to use,

and parms gives such further initialisation details as are necessary for setting up

the compression. The values of these parameters must specify one of the allowed

compression schemes. Currently these can be `name.lines.null', `name.lines.dpcm',

`name.lines.pack', `name.lines.pack.dpcm'. None of these require any further param-

eters.

Events

Only the standard ones.

Requests

� `request.encoder.adapter.rate' (Set relative frame rate.)

frateratg ) fg

This request sets rate at which the encoder takes frames from the virtual screen

relative to the frame rate at which the camera puts them in. The default value

of rate is 1.0, ie the same rate as the camera.

25



Pre-condition: None.

Post-condition: None.

� `request.encoder.adapter.set' (Set reference point, X-Y size.)

frefX int refY int sizeX int sizeY intg ) fg

This request sets the place on a virtual screen from where the encoder adapter

takes its image. The reference point (refX, refY) is the coordinate on a capture

virtual screen of the top left hand corner of the rectangle from where the image

is taken. The rectangle is sizeX pixels wide and sizeY pixels high. Note that

the bottom left hand pixel of the virtual screen is coordinate (0, 0), so x

coordinates increase from left to right and y coordinates increase from top to

bottom of the screen. If the coordinates are such that the image is taken from

a place partially o� the virtual screen, the encoder adapter might not produce

segments. Only certain rectangle sizes are allowed: both sizeX and sizeY must

be multiples of 16 in the range [16; : : : ; 256], but sizeX need not be equal to

sizeY. When it is created an encoder adapter is set to (refX, refY) = (0, 0)

and sizeX = sizeY = 128.

Pre-condition: sizeX and sizeY must be one of the allowed values.

Post-condition: None.

� `request.encoder.adapter.scale' (Scale image)

fscaleXrat scaleY ratg ) fg

This request scales the image taken from the virtual screen before compression

and translation into segments. The image encoded into segments is x pixels

wide by y high, where

x =j scaleX j � sizeX

y =j scaleY j � sizeY

If scaleX < 0 this means the encoded image will be re
ected side to side, and

if scaleY < 0 the image is re
ected top to bottom. When it is created an

encoder adapter has scale factors scaleX = 1:0 and scaleY = 1:0.

Pre-condition: scaleX and scaleY are acceptable scale factors for this encoder

adapter: either j scaleX j= scaleY = 1:0 or j scaleX j= scaleY = 0:5.

Post-condition: None.

� `request.encoder.adapter.show' (Show reference point, etc.)

fg ) frefX int refY int sizeX int sizeY int scaleXrat scaleY ratg

26



This returns the reference point (refX, refY) of the bottom left hand corner

of the rectangle where the encoded image is taken from a vitual screen, along

with its width sizeX and height sizeY and the scale factors scaleX and scaleY

applied to it before such an image is turned into segments.

Pre-condition: None.

Post-condition: None.

5.6 Decoder adapter

A decoder adapter takes a stream of segments and decodes this into a series of

frames which are placed on the mixer virtual screen. This may require the use of

some decompression machinery.

Kind

`kind.decoder.adapter'

Input and output ports

� Input (only one connection): `port.decoder.adapter.input'

Type: `type.video.segment'

� Output (only one connection): `port.decoder.adapter.output'

Type: `type.mixer.project'

Creation

The parameters used when the factory creates this object are:

priority int

priority is the priority of this decoder adapter in putting its images onto the

virtual screen. If images from two decoders overlap, the one with the highest priority

wins in the area of overlap and it is that image which is put on the virtual screen. The

image with the lower priority will only be visible where it is not covered by the image

with the higher priority. Streams of video segments with any compression scheme

may be given to a decoder, but if segments with an unimplemented compression

scheme are supplied this is a type error and an event may be raised.

Note that (0, 0) refers to the point in the top left hand corner of the virtual

screen, so x coordinates increase from left to right and y coordinates increate from

top to bottom of the screen.

Events

� `event.input.too.fast' The segments are arriving at `port.decoder.adaprter.input'

too quickly.

27



Requests

� `request.decoder.adapter.priority' (Set priority)

fpriority intg ) fg

This request changes the priority of the decoder. It must already have a

priority, since that is one of the creation parameters, so this request can be used

to hide or expose images without needing to disconnect and remake decoder

adapters.

Pre-condition: None.

Post-condition: None.

� `request.decoder.adapter.set' (Set reference point)

frefX int refY intg ) fg

This request sets the place on a virtual screen where the decoder adapter

places its image. The reference point (refX, refY) is the coordinate on a

capture virtual screen of the top left hand corner of the rectangle where the

image is put (but see `request.decoder.adapter.clip'). When it is created, an

decoder adapter's reference point is set to (0, 0), so if the image will �t on the

screen at all it will do so at the start.

Pre-condition: None.

Post-condition: None.

� `request.decoder.adapter.scale' (Scale image)

fscaleXrat scaleY ratg ) fg

This request scales the decompressed image from the segment stream before

placing it on the virtual screen. If the current image from the segment stream

is sizeX pixels wide and sizeY high, the image placed on the virtual screen is

x pixels wide by y high, where

x =j scaleX j � sizeX

y =j scaleY j � sizeY

If scaleX < 0 this means the image will be re
ected side to side, and if scaleY

< 0 the image is re
ected top to bottom. When it is created a decoder adapter

has scale factors scaleX = 1:0 and scaleY = 1:0.

Pre-condition: scaleX and scaleY are acceptable scale factors for this decoder

adapter, so either j scaleX j= scaleY = 1:0 or j scaleX j= scaleY = 2:0.

Post-condition: None.

28



� `request.decoder.adapter.clip' (Clip image)

fclipRefX int clipRefY int clipSizeX int clipSizeY intg ) fg

This request speci�es the clipping area for the decoder adapter relative to the

reference point set with `request.decoder.adapter.set'. Note carefully that this

clipping is NOT relative to the top left hand corner of the virtual screen.

Pre-condition: None.

Post-condition: None.

� `request.decoder.adapter.show' (Show reference point, etc.)

fg )
fpriority int refX int refY int clipRefX int clipRefY int

clipSizeX int clipSizeY int scaleXrat scaleY ratg

This returns the parameters of the decoder. The priority of this decoder is

given �rst, then the reference point (refX, refY) of the top left hand corner

of the rectangle where the decoded image is placed on a virtual screen. The

scale factors scaleX and scaleY are applied to the image as it is placed on the

virtual screen, and it is clipped to �t in an area clipSizeX by clipSizeY whose

top left hand corner is at (refX + clipRefX, refY + clipRefY) on the virtual

screen.

Pre-condition: None.

Post-condition: None.

5.7 Mixer virtual screen

The mixer virtual screen contains an intermediate representation of the moving

images to be displayed on the screen, before they are taken by the display adapter.

Kind

`kind.mixer.virtual.screeen'

Input and output ports

� Input (many connections): `port.mixer.virtual.screen.input'

Type: `type.mixer.project'

� Output (only one connection): `port.mixer.virtual.screen.output'

Type: `type.mixer.view'

29



Creation

The parameters used when the factory creates this object are:

sizeXname sizeY name visualname

The parameter sizeX speci�es the width of the mixer virtual screen, sizeY its

height and visual the format of the pixels on it. The values of these parameters

must be one of the allowed con�gurations. Currently the only allowed con�guration

is sizeX = 512, sizeY = 512 and visual = `name.monochrome.8.bit'. When it is

created, a mixer virtual screen has a mask plane which completely obscures it.

Events

Only the standard ones.

Requests

� `request.mixer.virtual.screen.reveal' (Reveal image)

frefX int refY int sizeX int sizeY intg ) fg

This request sets the mask plane so that the image on part of the mixer

virtual screen is revealed. The display adapter can then take it and mix it

with the direct computer output. Where the images on the virtual screen are

not revealed, the user of Pandora will see the output which came directly from

the computer. The reference point (refX, refY) is the coordinate of the top

left hand corner of the rectangle to be revealed. The rectangle is sizeX pixels

wide and sizeY pixels high. The top left hand pixel of the virtual screen is

coordinate (0, 0).

Pre-condition: None.

Post-condition: Pixels in this rectangle are available to be mixed onto the

computer display device.

� `request.mixer.virtual.screen.obscure' (Obscure image)

frefX int refY int sizeX int sizeY intg ) fg

This request sets the mask plane so that the image on part of the mixer virtual

screen is obscured. The reference point (refX, refY) is the coordinate of the

top left hand corner of the rectangle to be obscured. The rectangle is sizeX

pixels wide and sizeY pixels high.

Pre-condition: None.

Post-condition: Pixels in this rectangle cannot be shown on the display device

attached to Pandora.

30



5.8 Display adapter

This takes frames from the mixer virtual screen and sends them to a display.

Kind

`kind.display.adapter'

Input and output ports

� Input (only one connection): `port.display.adapter.input'

Type: `type.mixer.view'

Creation

The parameters used when the factory creates this object are:

interlacename frameraterat linerateint aspectrat visualname

The parameter interlace can take either the value `name.interlaced' or the value

`name.not.interlaced', and visual can take the value `name.monochrome.8.bit'. The

parameter framerate is the frame rate of the display, linerate is its line rate and

its pixels have aspect ratio aspect. The values of the parameters should match the

speci�cation of the display attached to pandora, but currently these parameters do

not govern the con�guration of this display.

Events

Only the standard ones.

Requests

� `request.display.adapter.set' (Set reference point, X-Y size.)

frefX int refY int sizeX int sizeY intg ) fg

This request sets the place on a virtual screen from where the display adapter

takes its image. The reference point (refX, refY) is the coordinate relative to

the a mixer virtual screen of the left hand corner of the rectangle from where

the image is taken. The rectangle is sizeX pixels wide and sizeY pixels high.

The bottom left hand pixel of the virtual screen is coordinate (0, 0). Only

certain rectangle sizes and positions are allowed.

Pre-condition: The speci�ed rectangle size and position is allowed.

Post-condition: None.

31



� `request.display.adapter.show' (Show reference point, X-Y size.)

fg ) frefX int refY int sizeX int sizeY intg

This returns the reference point (refX, refY) of the top left hand corner of the

rectangle from where the display adapter will take its image from a virtual

screen, along with its width sizeX and height sizeY.

Pre-condition: None.

Post-condition: None.

5.9 Audio sink

This is an object which takes audio segments and plays them through the speaker

of the telephone plugged into Pandora.

Kind

`kind.audio.sink'

Input and output ports

� Input (only one connection): `port.audio.sink.input'

Type: `type.audio.segment'

Creation

The creation parameters are

formatname rateint bu�er int

where format is the name of the encoding used for the samples, rate is the

frequency at which they expected and bu�er is the prefered size of the bu�er used

by this object (in bytes). Only certain formats and rates are allowed.

Events

� `event.input.too.fast' The segments are arriving at `port.audio.sink.input' too

quickly.

Requests

None.

5.10 Audio source

This is an object which delivers audio segments captured from the microphone of

the telephone plugged into Pandora's box.

32



Kind

`kind.audio.source'

Input and output ports

� Output (many connections): `port.audio.source.output'

Type: `type.audio.segment'

Creation

The creation parameters are

formatname rateint

where format is the name of the encoding used for the samples, and rate if the

frequency at which they are taken. Only certain formats and rates are allowed.

Events

Only the standard ones.

Requests

None.

5.11 Keypad

This is the source of keypad events from the phone.

Kind

`kind.keypad'

Input and output ports

None.

Creation

No parameters.

33



Events

� `event.keypad.cradle.up' The phone is o� its cradle.

� `event.keypad.cradle.down' The phone is on its cradle.

� `event.keypad.r' The R button has been pressed.

� `event.keypad.0' The 0 button has been pressed.

� `event.keypad.1' The 1 button has been pressed.

� `event.keypad.2' The 2 button has been pressed.

� `event.keypad.3' The 3 button has been pressed.

� `event.keypad.4' The 4 button has been pressed.

� `event.keypad.5' The 5 button has been pressed.

� `event.keypad.6' The 6 button has been pressed.

� `event.keypad.7' The 7 button has been pressed.

� `event.keypad.8' The 8 button has been pressed.

� `event.keypad.9' The 9 button has been pressed.

� `event.keypad.star' The * button has been pressed.

� `event.keypad.hash' The # button has been pressed.

Requests

None.

5.12 Synchroniser

THIS WILL NOT BE AVAILABLE INITIALLY.

This object bu�ers two streams of inputs and synchronises them with each other

based on the timestamp values in their segment headers.

Kind

`kind.synchroniser'

34



Input and output ports

� Input (only one connection): `port.synchroniser.input1'

Type: `type.any.segment'

� Output (many connections): `port.synchroniser.output1'

Type: `type.any.segment'

� Input (only one connection): `port.synchroniser.input2'

Type: `type.any.segment'

� Output (many connections): `port.synchroniser.output2'

Type: `type.any.segment'

Creation

bu�er int

The parameter bu�er is the prefered size of bu�er (in bytes) which is to be used

by this object.

Events

� `event.input1.too.fast' The segments on `synchroniser.input1' are arriving too

quickly.

� `event.input2.too.fast' The segments on `synchroniser.input2' are arriving too

quickly.

Requests

None.

5.13 Joiner

THIS WILL NOT BE AVAILABLE INITIALLY.

This object combines up to one stream each of Video, Audio and Stills in to a

stream of type `type.all.segment'.

Kind

`kind.joiner'

35



Input and output ports

� Input (only one connection): `port.joiner.video.input'

Type: `type.video.segment'

� Input (only one connection): `port.joiner.audio.input'

Type: `type.audio.segment'

� Input (only one connection): `port.joiner.still.input'

Type: `type.still.segment'

� Output (many connections): `port.joiner.output'

Type: `type.all.segment'

Creation

bu�er int

The parameter size is the prefered size of bu�er (in bytes) which is to be used

by this object.

Events

� `event.video.input.too.fast' The segments on `joiner.video.input' are arriving

too quickly.

� `event.audio.input.too.fast' The segments on `joiner.audio.input' are arriving

too quickly.

� `event.still.input.too.fast' The segments on `joiner.still.input' are arriving too

quickly.

Requests

None.

5.14 Splitter

THIS WILL NOT BE AVAILABLE INITIALLY.

This object takes a stream of segments of type`type.all.segment' and splits it up

into three streams: one each of Video, Audio and Stills.

Kind

`kind.splitter'

36



Input and output ports

� Input (only one connection): `port.splitter.input'

Type: `type.all.segment'

� Output (many connection): `port.splitter.video.output'

Type: `type.video.segment'

� Output (many connections): `port.splitter.audio.output'

Type: `type.audio.segment'

� Output (many connections): `port.splitter.still.output'

Type: `type.still.segment'

Creation

bu�er int

The parameter bu�er is the prefered size of bu�er (in bytes) which is to be used

by this object.

Events

� `event.input.too.fast' The segments on `splitter.input' are arriving too quickly.

Requests

None.

5.15 Network sink

This object sends a stream of segments to a particular network address and network

port.

Kind

`kind.network.sink'

Input and output ports

� Input (only one connection): `port.network.sink.input'

Type: `type.any.segment'

Creation

bu�er int

The parameter bu�er is the prefered size of bu�er (in bytes) which is to be used

by this object.

37



Events

� `event.input.too.fast' The segments on `network.sink.input' are arriving too

quickly.

Requests

� `request.network.sink.set' (Set network destination)

faddresssequence[int]g ) fg

This request sets the destination to which segments will be sent on the net-

work. The parameter address speci�es the address on the network of the

receiving machine (probably another Pandora's box). Currently this sequence

must contain exactly two integers, which are respectively the CFR address of

the receiving machine and the port number of the receiving process in that

machine. If the receiving machine was another Pandora's box, the second

number identi�es a network source object in that machine.

Pre-condition: None.

Post-condition: The segments sent to this sink may be received by a machine

at the speci�ed address over the network.

5.16 Network source

This object receives a stream of segements on a particular network port.

Kind

`kind.network.source'

Input and output ports

� Output (many connections): `port.network.source.output'

Type: `type.any.segment'

This is a change from the intended speci�cation, to make networks usable without

splitters and joiners. The type was originally `type.all.segment'.

Creation

No parameters.

Events

Only the standard ones.

38



Requests

� `request.network.source.show' (Show own network address)

fg ) faddresssequence[int]g

This request returns address, which is currently exactly two elements long.

The �rst integer is the address of this Pandora's box on the network, and the

second is the network port corresponding to this object. These can be used

by the host to set up a connection to another Pandora's box.

Pre-condition: None.

Post-condition: None.

5.17 Host sink

THIS WILL NOT BE AVAILABLE INITIALLY.

A host sink object sends its input stream of segments to the host, labeled as

coming from this object.

Kind

`kind.host.sink'

Input and output ports

� Input (only one connection): `port.host.sink.input'

Type: `type.any.segment'

Creation

bu�er int

The parameter bu�er is the prefered size of bu�er (in bytes) which is to be used

by this object.

Events

� `event.input.too.fast' The segments on `host.sink.input' are arriving too quickly.

Requests

None

39



5.18 Host source

THIS WILL NOT BE AVAILABLE INITIALLY.

A host source receives a stream of segments (labeled for this object) from the

host and delivers them to its output port.

Kind

`kind.host.source'

Input and output ports

� Output (many connections): `port.host.source.output'

Type: `type.all.segment'

Creation

No parameters.

Events

Only the standard ones.

Requests

None

5.19 File sink

THIS WILL NOT BE AVAILABLE INITIALLY.

A video repository on the CFR with similar facilities can be used instead.

This object will sink a stream of segments in a similar way to a network, but

instead of going to a remote destination they will be available for subsequent play-

back.

Kind

`kind.�le.sink'

Input and output ports

� Input (only one connection): `port.�le.sink.input'

Type: `type.any.segment'

40



Creation

bu�er int

The parameter bu�er is the prefered size of bu�er (in bytes) which is to be used

by this object.

Events

� `event.input.too.fast' The segments on `network.sink.input' are arriving too

quickly.

Requests

� `request.�le.sink.set' (Set �lename)

f�lesequence[int]g ) fg

This request sets the �le in which recorded segments will be stored.

Pre-condition: This object is in its stopped state, not already going.

Post-condition: None.

� `request.�le.sink.start' (Start recording)

fg ) fg

This request causes the input stream of segments to be recorded in the previ-

ously speci�ed �le. Any existing contents of the �le will be overwritten.

Pre-condition: The object has had a �le name set up already.

Post-condition: The object is in the going state.

� `request.�le.sink.stop' (Stop recording)

fg ) fg

This request causes the input stream of segments to be discarded until the

next start request. The �le is closed.

Pre-condition: The object has had a �le name set up already.

Post-condition: The object is in the stopped state.

� `request.�le.sink.show' (Show �lename etc)

fg ) fstatusname �lesequence[int]g

This request returns the status of the object, either `name.going' or `name.stopped'

and the name of the �le it is currently associated with. If no �le has been set

up this is the null string.

Pre-condition: None.

Post-condition: None.

41



5.20 File source

THIS WILL NOT BE AVAILABLE INITIALLY.

A video repository on the CFR with similar facilities can be used instead.

This object behaves somewhat like a remote Pandora supplying a stream of

segments over the network. It may provide facilities such as playback at a di�erent

speed to the original recording.

Kind

`kind.�le.source'

Input and output ports

� Output (many connections): `port.�le.source.output'

Type: `type.all.segment'

Creation

No parameters.

Events

Only the standard ones.

Requests

� `request.�le.source.queue.set' (Queue �le selection)

f�lesequence[int]g ) fg

This request queues the action \change to �le" for execution by the �le source

when it �nishes all the actions it currently has queued.

Pre-condition: None.

Post-condition: �le is selected as the current �le.

� `request.�le.source.queue.seek' (Queue a seek)

ftimetimeg ) fg

This request queues the action \seek to time in the current �le" for execution

by the �le source when it �nishes all the actions it currently has queued.

Pre-condition: A change �le action must have been queued previously.

Post-condition: None.

42



� `request.�le.source.queue.wait' (Queue a wait)

ftimetimeg ) fg

This request queues the action \wait for time" for execution by the �le source

when it �nishes all the actions it currently has queued.

Pre-condition: None

Post-condition: None.

� `request.�le.source.queue.play' (Queue a play)

ftimetimeg ) fg

This request queues the action \play the current �le for time" for execution by

the �le source when it �nishes all the actions it currently has queued. The �le

is played from the place that the last \seek" or \play" left it. If no seek or play

has been executed since a \change �le" the �le is played from the beginning.

Pre-condition: A change �le action must have been queued previously.

Post-condition: None.

� `request.�le.source.abandon' (Abandon queued actions)

fg ) fg

This request 
ushes the queue of actions pending execution and stops the

currenly executing action as well.

Pre-condition: None.

Post-condition: If a �le was selected, it remains selected. Selections which

were queued but not executed have no e�ect.

� `request.�le.source.show' (Show the state)

fg ) ftimetime �lesequence[int]g

The result time is the total time that queued actions will take to execute, and

�le is the name of the currently selected �le, or null if there is no currently

selected �le.

Pre-condition: None.

Post-condition: None.

43



Appendix: Concrete syntax

This appendix gives the concrete syntax of segments and the protocol for commu-

nicating over the link with the host. Note that the matter of big or little-endian

formats for integers and other larger than byte sized �leds has still to be resolved.

Link protocol

There are two streams to be multiplexed onto the link from the host to Pandora.

These are assigned stream numbers as follows:

Requests = 1

Asynchronous data from the host = 2

There are three streams to be multiplexed onto the link from Pandora to the

host. These are assigned stream numbers as follows:

Replies to requests = 3

Asynchronous events = 4

Asynchronous data to the host = 5

The tra�c in both directions is packets as follows:

BYTE stream number

BYTE concrete syntax version number (currently 0)

BYTE reserved

BYTE reserved

INT32(little-endian) bytes to follow

(Only positive numbers and zero allowed).

[bytes to follow] BYTE the contents of the packet
The packets of the concrete syntax correspond exactly to requests, replies, events

and so on. For example, requests cannot be sent in several packets. Replies will not

be sent in more than one packet. The streams should be regarded not as streams of

bytes but as streams of packets.

44



Segments and other types

The implementation of the various types is as follows:

name INT32. 32 bit twos complement signed integer.

(see the list of names below).

int INT32. 32 bit twos complement signed integer.

rat INT32. 32 bit integer, i, viewed as two 16 bit

twos complement signed integers, m and l,

where i = (m� 216) + l

This represents the rational number r = m

l

byte BYTE. An 8 bit byte.

time INT32. 32 bit twos complement signed integer.

Time in milli-seconds. 31 bits (ie only positive times)

gives about 3 weeks before over
ow.

any Whatever type is actually chosen.

segment The format is just the abstract syntax mapped into

concrete syntax using the de�nitions in this section

sequence[type] All the items in the sequence are placed end to end,

with no word alignment.

The concrete syntax of the collection

fitemssequence[type]g

is a count followed by that number of bytes:

INT32 byte count

[byte count] BYTE all the items in the sequence placed end to end

So the concretization of

fitemssequence[type]g

is identical with the concretization of

lengthint itemssequence[type]

where length= the number of bytes in the concretization of the sequence items.

Names

This section contains the integers corresponding to all valid names.

User de�ned objects

The range #0000 to #0FFF is reserved for user de�ned object names.

45



Prede�ned object names

Prede�ned object names are in the range #1000 to #1FFF.

`object.factory' #1000

Kinds of objects

Object kinds are in the range #2000 to #2FFF.

`kind.factory' #2000

`kind.camera.adapter' #2001

`kind.capture.virtual.screen' #2002

`kind.encoder.adapter' #2003

`kind.decoder.adapter' #2004

`kind.mixer.virtual.screen' #2005

`kind.display.adapter' #2006

`kind.audio.sink' #2007

`kind.audio.source' #2008

`kind.keypad' #2009

`kind.synchroniser' #200A

`kind.joiner' #200B

`kind.splitter' #200C

`kind.network.sink' #200D

`kind.network.source' #200E

`kind.host.sink' #200F

`kind.host.source' #2010

`kind.�le.sink' #2011

`kind.�le.source' #2012

46



Port names

Port names are in the range #3000 to #3FFF.

`port.camera.adapter.output' #3000

`port.capture.virtual.screen.input' #3001

`port.capture.virtual.screen.output' #3002

`port.encoder.adapter.input' #3003

`port.encoder.adapter.output' #3004

`port.decoder.adapter.input' #3005

`port.decoder.adapter.output' #3006

`port.mixer.virtual.screen.input' #3007

`port.mixer.virtual.screen.output' #3008

`port.display.adapter.input' #3009

`port.audio.sink.input' #300A

`port.audio.source.output' #300B

`port.synchroniser.input1' #300C

`port.synchroniser.input2' #300D

`port.synchroniser.output1' #300E

`port.synchroniser.output2' #300F

`port.joiner.video.input' #3010

`port.joiner.audio.input' #3011

`port.joiner.still.input' #3012

`port.joiner.output' #3013

`port.splitter.input' #3014

`port.splitter.video.output' #3015

`port.splitter.audio.output' #3016

`port.splitter.still.output' #3017

`port.network.sink.input' #3018

`port.network.source.output' #3019

`port.host.sink.input' #301A

`port.host.source.output' #301B

`port.�le.sink.input' #301C

`port.�le.source.output' #301D

47



Type names

Type names are in the range #4000 to #4FFF.

`type.capture.project' #4000

`type.capture.view' #4001

`type.mixer.project' #4002

`type.mixer.view' #4003

`type.video.segment' #4004

`type.still.segment' #4005

`type.audio.segment' #4006

`type.all.segment' #4007

`type.any.segment' #4008

`type.any1.segment' #4009

Event names

Event names are in the range #5000 to #5FFF.

`event.internal.error' #5000

`event.segment.too.large' #5001

`event.missing.segment' #5002

`event.wrong.type.of.segment' #5003

`event.closed.down' #5004

`event.input.too.fast' #5005

`event.input1.too.fast' #5006

`event.input2.too.fast' #5007

`event.video.input.too.fast' #5008

`event.audio.input.too.fast' #5009

`event.still.input.too.fast' #500A

`event.keypad.cradle.up' #500B

`event.keypad.cradle.down' #500C

`event.keypad.r' #500D

`event.keypad.0' #500E

`event.keypad.1' #500F

`event.keypad.2' #5010

`event.keypad.3' #5011

`event.keypad.4' #5012

`event.keypad.5' #5013

`event.keypad.6' #5014

`event.keypad.7' #5015

`event.keypad.8' #5016

`event.keypad.9' #5017

`event.keypad.star' #5018

`event.keypad.hash' #5019

`event.host.broken' #501A

`event.log' #501B

48



Request names

Request names are in the range #6000 to #6FFF.

`request.factory.create' #6000

`request.factory.allow.event' #6001

`request.factory.forbid.event' #6002

`request.factory.show.creation.parameters' #6003

`request.factory.delete' #6004

`request.factory.connect' #6005

`request.factory.disconnect' #6006

`request.factory.show.instances' #6007

`request.factory.show.objects' #6008

`request.factory.show.port' #6009

`request.factory.show.connected' #600A

`request.factory.show.version' #600B

`request.factory.verbatim' #600D

`request.camera.adapter.set' #600E

`request.camera.adapter.show' #600F

`request.encoder.adapter.set' #6010

`request.encoder.adapter.scale' #6011

`request.encoder.adapter.show' #6012

`request.decoder.adapter.set' #6013

`request.decoder.adapter.scale' #6014

`request.decoder.adapter.show' #6015

`request.mixer.virtual.screen.reveal' #6016

`request.mixer.virtual.screen.obscure' #6017

`request.display.adapter.set' #6018

`request.display.adapter.show' #6019

`request.network.sink.set' #601A

`request.network.sink.show' #601B

`request.network.source.set' #601C

`request.network.source.show' #601D

`request.�le.sink.set' #601E

`request.�le.sink.start' #601F

`request.�le.sink.stop' #6020

`request.�le.sink.show' #6021

`request.�le.source.queue.set' #6022

`request.�le.source.queue.seek' #6023

`request.�le.source.queue.wait' #6024

`request.�le.source.queue.play' #6025

`request.�le.source.abandon' #6026

`request.�le.source.show' #6027

49



`request.factory.show.allowed.events' #6028

`request.factory.show.forbidden.events' #6029

`request.factory.show.requests' #602A

`request.factory.debug.init' #602B

`request.decoder.adapter.priority' #602C

`request.decoder.adapter.clip' #602D

`request.encoder.adapter.rate' #602E

`request.factory.show.ports' #602F

`request.camera.adapter.test.card.set' #6030

`request.camera.adapter.test.card.show' #6031

Reply names

Reply names are in the range #7000 to #7FFF.

`reply.success' #7000

`reply.unknown.object' #7001

`reply.unknown.request' #7002

`reply.failed' #7003

`reply.request.too.large' #7004

`reply.malformed.request' #7006

`reply.host.broken' #7007

`reply.internal.error' #7008

Other names

These are miscellaneous names used as values for object properties and so on (for

example the name of a compression scheme, etc). Miscellaneous names are in the

range #8000 to #8FFF.

`name.lines.null' #8000

`name.null' #8002

`name.silence' #8003

`name.not.interlaced' #8004

`name.interlaced' #8005

`name.monochrome.8.bit' #8006

`name.going' #8007

`name.stopped' #8008

`name.segment.format1' #8009

`name.lines.dpcm' #800A

`name.lines.pack' #800B

`name.lines.pack.dpcm' #800C

50


