
LocALE: a Location-Aware L ifecycle Environment for Ubiquitous Computing

Diego López de Ipiña
Laboratory for Communications Engineering,

Cambridge University Engineering Department,
Cambridge, United Kingdom

dl231@eng.cam.ac.uk

Sai-Lai Lo
AT&T Laboratories Cambridge,

24a Trumpington Street,
Cambridge, United Kingdom
S.Lo@uk.research.att.com

Abstract

 The LocALE (Location-Aware Lifecycle Environment)
framework provides a simple management interface for
controlling the lifecycle of CORBA distributed objects. It
supports mechanisms for the remote construction,
movement, removal and recovery of heterogeneous
software objects in a location domain, i.e. a group of hosts
on a network within a given physical area. Client
applications use LocALE to intelligently control their
required services’ location and relocation in the network.
LocALE offers load-balancing, automatic activation, and
fault-tolerance facilities for the services whose lifecycles it
controls. It provides the middleware necessary for the
efficient implementation of location-aware mobile
applications in richly equipped network environments.
LocALE’s infrastructure has been tested with the
development of several follow-me applications that
dynamically move with their users as they change
location. For illustration, two of these follow-me LocALE-
enabled applications are described.

1. Introduction

 Computing devices are becoming increasingly
ubiquitous; computationally capable devices are present in
almost every room of a modern office, and are rapidly
invading our homes. Moreover, those environments are
also becoming aware; sensor networks such as the Active
Badge [14] system allow applications to respond to the
location of users.
 In order to provide a location-aware environment, any
particular software service should be available to the user
wherever she may be, and follow her as she moves. The
goal is to allow users to move freely throughout a building
or greater environment without undue degradation of the
computing and communications resources available to
them. To enable this the following are necessary:

1. Rich and up-to-date information about the
environment, gathered from a range of environmental
sensors, resource monitors and static data repositories.
In particular, the locations of people and computing
resources, and the capabilities of these resources.

2. An infrastructure to make possible the transparent
migration of objects associated to a user from one
address space to another.

 The first requirement is being addressed by work on
Sentient Computing [7], a research field that uses sensor
and resource status data to maintain a model of the world
shared between users and applications. The SPIRIT project
[5] creates such a model combining the information
collected from resource activity monitors (CPU, disk,
network) on each LAN node and a network of location
sensors. These indoor location systems provide the
position of tagged entities in a building; the Active Badge
and 3D-iD [15] systems are representative examples.
 Several research efforts have already tried to provide a
solution to the second issue. However, they are either
constrained to enable migration of components written in a
specific portable programming language such as Java [2,
3] or Python, or present a partial solution, only enabling
some functionality of the components, such as the GUI
[12], to move. This paper describes LocALE, a framework
for the management of heterogeneous (multi-purpose and
multi-lingual), objects’ lifecycle that provides a more
general solution to this problem.

2. Component Mobility in CORBA

 The OMG’s CORBA (Common Object Request Broker
Architecture) standard [10] defines a framework for
developing object-oriented distributed applications. The
Object Request Broker (ORB) is the middleware that
establishes client-server relationships between objects.
Using an ORB, a client can transparently invoke remote
methods on a server object, regardless of where the object
is located, the language in which it is programmed, its
underlying operating system, or any other system aspects

that are not part of an object interface. These heterogeneity
features make CORBA ideal for the implementation of
multi-purpose platform-independent components. For this
reason the LocALE framework is CORBA-based.
 The CORBA object model relies heavily on the semantics
of object references. The standard object reference format,
called the Interoperable Object Reference (IOR) [10],
contains an identifier of the most derived type of an object
and one or several profiles that permit the location of an
object to be determined. Among other data, these profiles
may contain an IP address, a TCP port number, and an
object key that uniquely identifies the target object. Clients
can only invoke an operation on an object if they hold a
reference to the object. Unfortunately, IORs’ location-
specific information, i.e. the IP address and port number of
the server at which the object resides, means that when a
CORBA server implementation moves, the client(s) can no
longer maintain the bind to the server.
 Adding mobility support to CORBA supposes that any
client holding a reference to an object will maintain that
binding for the entire lifetime of the object. This means
that client invocations must be forwarded seamlessly when
the location of the targeted object changes. CORBA
handles this situation by defining within GIOP (General
Inter-ORB Protocol) [10] the LOCATI ON_FORWARD reply
message. This message indicates to the receiving client
ORB that it must retry a previously issued request using
the enclosed IOR.

3. LocALE Framework

 The LocALE framework proposes a simple mechanism
for managing the lifecycle of distributed CORBA objects
residing in a ubiquitous computing network. The emphasis
of LocALE’s design is placed on providing a suitable
interface for third party object-location controllers. These
controllers, aware of personnel location and computing
resources location, load and capabilities, can intelligently
direct components’ locations and lifecycles. LocALE’s
goal is to offer the object-lifecycle handling infrastructure
required. It addresses the following functional
requirements:

• Permit the remote instantiation of CORBA services
wherever wanted.
Traditionally, in a distributed environment, the factory
design pattern is used to avoid having to start servers
manually every time a client requires a service. A
factory is an object that offers one or more operations
to create other objects. Upon client invocation, the
factory creates a new object and returns a reference to
the client. Nevertheless, the problem with
conventional factories is that clients are, normally,
limited to creating new objects within the address

space of previously started factories. It is desirable for
a client to be able to control the location (host) where
a new service is instantiated, independently of
whether that location already contains a factory
capable of creating objects of the desired kind or not.

• Enable heterogeneous object migration.
Computational objects (part of an application) may
have to migrate to optimise speed and latency, or
simply to get physically closer to a user.
Communication endpoints may consequently change
location over time. An infrastructure providing
transparent object migration to clients without
affecting the references they hold is required.

3.1. LocALE Migration Suppor t Rationale

 This section presents an overview of the design choices
that LocALE has adopted to provide migration support for
CORBA components.
 Migration of software objects must occur in two phases:
(1) transfer state and, optionally, implementation of a
running object to a new location and (2) make all clients of
the object transparently use the new object. With regard to
the first aspect, a migratory system must decide whether
the system should support (a) code and state migration, or
(b) simply state migration. The use of portable interpreted
programming languages such as Java or Python with built-
in object serialisation and bytecode portability features
facilitates object state and code migration. However,
LocALE aims to control the lifecycle of heterogeneous
objects, not constrained to a single programming language
or platform. Thus, LocALE does not support object
implementation transfer upon object migration. Our view
is that objects should be able to migrate to different
implementations of the same functionality. For example,
an object implemented in C++ running on a Windows NT
host should be able to migrate to a Java version of it
running on Linux. This signifies that wherever an object
moves there must be access somehow, e.g. locally or
through a shared file system, to a valid object
implementation.
 There are two basic methods by which state transfer may
be performed. One option is to take a snapshot of a
running object and transfer that state. Java’s object
serialisation permits this to some extent. The main
problem of this approach is that it prevents objects moving
to different implementations. A second option is for
objects to transfer their own state when they are instructed
to migrate. One or several methods of a newly created
object are used to set its state, according to the state of the
source object. LocALE adopts this approach as it suits
heterogeneous object migration and allows a more general
interpretation of what can be considered to be ‘state’ .

 The second issue to be addressed when designing an
object migration system is how clients of an object can
track the object as it moves. CORBA provides support for
this by the GIOP’s LOCATI ON_FORWARD message previously
mentioned. There are two obvious ways in which this
mechanism can be used to track object locations: (1)
chaining of forwarding agents and (2) use of a home
location forwarding agent.
 With the first approach, every time an object migrates, it
leaves behind an agent, which forwards clients to the
object’s new location. The result is a trail of forwarding
agents at every location the object has ever occupied. This
brings about intolerance to faults, and difficulties with
garbage collection.
 The second approach nominates for each object a home
location that is guaranteed to know the current location of
the object. The home location either provides the object
itself, or forwards the client to it. Clients remember the
home location, and consult it whenever the object ceases
to exist in the location they were using. Whenever an
object migrates, it informs the home location of its new
location. This is the object tracking mechanism employed
with LocALE since it introduces less latency and better
resource cleanup properties than the other approach,
although it still presents a single point of failure problem.

3.2. LocALE Architecture

 The design of LocALE presents a 3½-tier architecture,
shown in Figure 1, composed of client applications and the
following 3 types of components:

• The Lifecycle Manager (LCManager).
This component provides generic lifecycle control
interfaces and mediates the lifecycle operations over
any CORBA object residing in a location domain. In
this context the term location domain refers to a group
of machines on a LAN that are located within a given

physical area, such as a building, a floor or a room.
Every object creation, movement or deletion request
is routed through this object. This permits the
LCManager to cache the current location of every
object in a domain and thus act as a forwarding agent
that redirects client requests after object references
held by clients are broken due to either object
movement or failure. In the latter case, the
LCManager first tries to recover the failed object, and,
in case of success, returns the new object reference.

• Lifecycle Server(s) (LCServer).
These components act as surrogates of their local
domain LCManager. Lifecycle operations invoked on
an LCManager are delegated to a suitable LCServer.
These servers contain, within their address space,
LocALE-enabled objects subject to lifecycle control.
LCServers subsume standard strongly typed factories’
functionality by not only providing a type specific
creation method with hard-coded types, but also
assisting their local objects with their migration to
other LCServers. They can be started either manually
or by the local LCManager after a creation or
migration request arrives at a location where the
required LCServer type does not exist. In either case,
they register with the manager and pass metadata
containing their physical location (host), IOR and
information specific to the type of objects they handle.

• Type-specific Proxy Factories.
These components are placed in between clients and
LCManagers. Their purpose is to prevent client
applications from dealing with the generic object
creation interface offered by an LCManager. Using
specific-purpose interfaces makes client code far
shorter and simpler to understand. With the generic
version if a mismatch in the type of a constructor
argument occurred, the client would only receive an
error at run-time, whilst with the specific purpose

Lifecycle
Manager

…

…

LocALE
Client 1

LocALE
Client N

…

Type A
Proxy Factory

Type X
Proxy Factory

…

Tier 1 Tier 2 Tier 3

strongly-typed
creation requests

migration, removal &
redirection requests

generic
creation requests

lifecycle
operations
delegation

Type A
Lifecycle Server

at Host 1

…
Type A

Lifecycle Server
at Host N

Type X
Lifecycle Server

at Host 1

…
Type X

Lifecycle Server
at Host N

Figure 1. LocALE 3½-tier architecture

version it would be at compile time. Type-specific
Proxy Factories offer type specific object-creation
methods with the same argument types and semantics
as the LCServers they represent, mapping type
specific requests to the generic format demanded by
LCManagers. They are activated either manually or
automatically by the local manager, after which they
register, passing their IOR and type details.

 LocALE’s architecture guarantees clients’ compile-time
type safety with respect to the lifecycle control of their
required services. Clients find, through the LCManager,
object references to type-specific proxy factories and issue
through them object creation requests. Object migration
and deletion requests are directly invoked on the
LCManager because they are independent of object types.
The manager then delegates incoming lifecycle operations
to the appropriate LCServers.

3.3. Location-constrained L ifecycle Control

 One of the main advantages of CORBA is that it provides
location transparency to applications, i.e. it makes method
invocation as simple on remote objects as on local objects.
LocALE leverages CORBA’s location transparency, but it
asserts that being able to control where services used by
clients are located, and also to set the constraints under
which those services can later be re-located may bring
important benefits. For example, load balanced
applications may wish to initiate new service instances in
the hosts of a LAN with lowest processing load. Follow-
me applications may want to move objects tied to a user’s
physical location to the nearest host with the required
capabilities. To provide CORBA services’ location-
awareness to clients, LocALE changes distributed object
construction semantics compared with conventional
factory objects, in two ways:

1. It enforces client code not only to specify the
arguments of the constructor of an object, but also the
location where the object should be created and some
constraints to control its l ife evolution.

2. Object creation requests are always routed through the
local domain’s LCManager that processes them and
finds or creates suitable LCServers where such
requests are delegated. Thus, the manager can cache
the object references returned by surrogate LCServers

and convey to clients specially manufactured IORs
tied to objects for their entire lifetime.

 The following two attributes are appended to the type
specific creation interface provided by proxy factories and
the generic interface offered by LCManagers:

• Location attribute: specifies “ where” a service should
be instantiated (or moved to). Its possible formats are
shown in Table 1.

• LifeCycle contraints (LCconst r ai nt s) attribute:
determines whether an object to be created should be
considered as recoverable and/or movable within a
location scope. A recoverable object is either a
stateless or a persistent object whose state can be
restored after failure. Table 2 lists all existing
LCcont r ai nt s and their usage dependencies with
Locat i on attribute specifications.

 Location independent services are instantiated using
host DN(" ANY") or r oomI D("ANY") constructions. These
specifications are of special interest when there are same
type Lifecycle Servers running on separate hosts of a
location domain. Upon object creation or movement, as a
crude form of load balancing, the LCManager randomises
the list of available Lifecycle Servers to select one to
which to delegate the request. Certain services, however,
need to be created in the same location as a user. For
instance, an object with a user interface should be created
either in the host closest to a mobile user, e.g.
host DN(" gui nness") , or otherwise in any host within the
same room, e.g. r oomI D(" Room1") . Finally, some services
should be created in any machine within a given location
that provides a special resource (e.g. sound, video capture,
etc.). The construction host Gr oup is used in this case. It is
up to the client application or other services to select a
suitable list of hosts.

Table 1. Location attribute specs
host DN(" gui nness. eng. cam. ac. uk")
host DN(" ANY")
r oomI D(" Room 1")
r oomI D(" ANY")
host Gr oup(host DN_1, …, host DN_n)

 LocALE assumes that objects are, by default, static and
non-recoverable. Once an object is created, it remains in
the same address space until it is removed or fails.
However, LocALE provides mechanisms to make objects
MOVABLE, providing they know how to transfer their own
state, and/or RECOVERABLE, providing they can restore their

RECOVERABLE | ∀ Locat i on specs

RECOVERABLE_WI THI N_ROOM | i f f (Locat i on = r oomI D(x) ∨ Locat i on = host DN(x)) ∧ ¬(x=" ANY")
RECOVERABLE_WI THI N_HOST | i f f (Locat i on = host DN(x)) ∧ ¬(x=" ANY")
MOVABLE | ∀ Locat i on specs
MOVABLE_WI THI N_ROOM | i f f (Locat i on = r oomI D(X) ∨ Locat i on = host DN(x)) ∧ ¬(x=" ANY")

Table 2. Lifecycle constraints and usage rules

state after failure. The LCManager recreates failed objects
using the same constructor argument values as when the
object was first constructed. An object can be
simultaneously movable and recoverable, as long as both
constraints apply to the same location scope, i.e. MOVABLE

& RECOVERABLE is valid but not MOVABLE_WI THI N_ROOM &

RECOVERABLE.
 The capability of receiving location constraints on object
creation converts the LCManager into a minimal Trader
[8] server. The LCManager matches client object creation
specifications against the advertised object Lifecycle
Server types and locations. On a service instantiation, its
type, initial location and life evolution constraints are
conveyed to the local LCManager. This component
searches among the registered Lifecycle Server types for a
suitable LCServer where the requested lifecycle operation
can be delegated. LCManager’s trading capabilities could
be extended by enforcing LCServers to specify the
computing resources demanded by their objects (e.g. need
for sound capability). Thus, if a client issued a lifecycle
operation over a given object type the LCManager would
match both location constraints and object type specific
resource demands. This would make the use of the
host Gr oup location format unnecessary.

3.4. LocALE L ifecycle Manager

 The LCManager keeps, in an internal registry (see Table
3), information about the objects whose lifecycle it
controls, the proxy factories used for strongly typed object
creation and the LCServers where object creation,
migration and removal actually takes place. This
information, serialised to disk to permit the LCManager
component to recover from transient failures, is used to
provide the following functionality:

1. Load-balanced object l ifecycle control.
2. Object reference forwarding to clients on method

invocation to objects whose location has changed.
3. Automatic activation of LCServers when demanded at

a location where they are not available.
4. Deactivation of automatically started LCServers.
5. Activation of type-specific proxy factories when there

is no instance running in a location domain.
6. Deactivation of automatically started proxy factories.
7. Fault tolerance of stateless or persistent LocALE

objects by recreating them upon a failed client
request.

Swizzling Mechanism for Object Reference Management

 The LCManager swizzles object references returned by
LCServer creation methods into object references pointing
to it. The actual object reference is cached in the Obj ect

table (see Table 3). The swizzled IORs returned to clients
are tied to their corresponding objects for their entire
lifetime no matter how many times they migrate or are
recovered. As result of this procedure, every first request
invocation on an object reference is not addressed to the
intended object but to the LCManager. The manager then
forwards the client the actual object reference through a
LOCATI ON_FORWARD reply. The client ORB transparently
retries the operation on the new object reference, and will
use this reference while it remains valid. When an object
moves or fails, a client request will fail and its ORB will
fall back to the original swizzled reference. In that case,
the LCManager either returns a moved object new
reference, tries to recover a failed object and return its
reference, or, otherwise, raises an error exception.
 The cost of this mechanism is that client requests are
transparently delayed due to the additional round-trips
introduced after a lifecycle or failure event occurs. The
advantage is that the LCManager presents object fault-
tolerance and mobility support facilities without breaking
client held references.
 Internally, the LCManager’s C++ implementation makes
use of two POA1 (Portable Object Adapter) [10]
components, one containing the servant implementing the
remote interfaces offered by this server and the other one,
with a Servant Manager [13] object registered with it, that
implements the client request redirection procedure
described above. Client requests on swizzled IORs
(created using the second POA) arrive at this POA which
up-calls a method of its associated Servant Manager
implementing the swizzling mechanism. This method uses
a POA defined standard mechanism to generate
LOCATI ON_FORWARD reply messages, namely the
For war dRequest exception.

Table 3. Lifecycle Manager Internal State
LCServer (LCServID, kindID, hostDN, LCServRef,
instanceCounter, maxNumObjs, manuallyInit)

Object(objID, kindID, LCServID, objRef, locationSpec,
paramValues, LCconstraints)

ProxyFactory(proxyFactID, proxyFactRef, manuallyInit)

HostLCServers(hostDN, set<LCServID>, roomID, OS)

RoomHosts(roomID, set<hostDN>)

KindLCServers(kindID, set<LCServID>, objCreationMethod,
paramTypes, start-up-process)

K indProxyFactor ies(kindID, set<proxyFactID>, start-up-process)

3.5. LocALE L ifecycle Servers

 Every Lifecycle Server defines a method to create objects
of a specific type and, in addition, implements the

1 A POA manages CORBA objects within a process and allows
applications control the mapping of CORBA objects to servants (a
programming language entity incarnating a CORBA object).

LCSer ver interface (see Figure 2). The LCManager uses
the move_obj ect method in this interface to trigger the
migration of an object under the control of an LCServer to
a clone of that object in another LCServer. Every object
managed by a Lifecycle Server is derived, in turn, from the
LocALE_Obj ect (see Figure 2) interface. Upon a call to its
t r ansf er _st at e method, an object conveys its state to the
given clone. Object type specific method(s) are invoked to
adapt the state of the target object to the source one.

i nt er f ace LCSer ver {
 voi d move_obj ect (i n LocALE_Obj ect obj Ref ,
 i n LocALE_Obj ect c l oneObj Ref)
 r ai ses(UnKnownObj , Wr ongObj Type, I nval i dCl one) ;
 voi d dest r oy() ; / / Met hod t o dest r oy LCSer ver
} ;

i nt er f ace LocALE_Obj ect {
 voi d dest r oy() ;
 voi d t r ansf er _st at e(i n LocALE_Obj ect c l oneRef)
 r ai ses (I nval i dCl one) ;
 r eadonl y at t r i but e Host DN cur r ent Locat i on;
} ;

Figure 2. LocALE LCServer and object interfaces

 In order to support mobility, objects created within an
LCServer must be activated simultaneously with two
POAs (see Figure 3). The Root POA (or any other POA)
through which requests from external clients arrive to the
LCServer’s servant and servants of the objects whose
lifecycle it controls and a second POA
(Tr ansf er St at ePOA) through which st at e_t r ansf er
operations on the controlled objects are issued by the
LCServer. The reason being that on object migration,
while the LCServer triggers the state transfer between the
source and target object and waits for its completion, it
must guarantee that requests on the migrating object are
queued for later processing. Every POA contains an

associated POA Manager [13] object that controls the flow
of requests into it. Thus, client requests on the migrating
object are blocked by calling the hol d_r equest s operation
on the Root POAManager . The LCServer uses a second IOR
for the object, obtained from its Tr ansf er St at ePOA, to
invoke the st at e_t r ansf er operation. Once the object
migration is finished, the Root POAManager is reactivated.
Queued invocations on that POA Manager then result in
OBJECT_NOT_EXI ST exceptions. Client ORBs react to these
exceptions by re-routing the requests, assisted by
LCManager’s redirection capabilities, to the new object
location.

4. LocALE Object L ifecycle Management

 This section provides some C++ code illustrating how
clients can issue lifecycle control operations (i.e. remote
construction, movement and removal) on an object using
LocALE’s API. Figure 4 shows the interactions involved
within LocALE’s architecture upon object migration.

/ / Cr eat e a new r ecover abl e and movabl e echo
/ / obj ect i n host dogbol t er and i nvoke echo()
LocALE_Pr oxyFact or y_var pFact = LCMan- >
 f i nd_pr oxy_f act or y(" I DL: Echo/ EchoObj ect : 1. 0") ;
Echo: : EchoPr oxyFact or y_var echoPFact =
 Echo: : EchoPr oxyFact or y: : _nar r ow(pFact) ;
Echo: : EchoObj ect _var echo1Ref = echoPFact - >
 cr eat e_echo_obj ect (" Echo_1" ,
 LOCATI ON(HOST(" dogbol t er ")) ,
 LC_CONSTRAI NT(RECREATABLE¦ MOVABLE)) ;
echo1Ref - >echo(" Hi ") ;

/ / Move pr evi ousl y cr eat ed obj ect t o host
/ / t heakst ons and i nvoke echo() on i t
LCMan- >move_obj ect (echo1Ref ,
 LOCATI ON(HOST(" t heakst ons"))) ;
echo1Ref - >echo(" Hi agai n") ;

/ / Remove t he echo obj ect moved t o t heakst ons
LCMan- >r emove_obj ect (echo1Ref) ;

5. Applications

 This section describes two LocALE-enabled applications
built to demonstrate LocALE’s potential as an enabling
infrastructure for follow-me applications. These
applications are composed of multiple distributed objects.
When a user moves, only those objects tied to the user’s
physical location follow him. All inter-object
communication is undertaken through CORBA RPCs.

5.1. Follow-me Music

 The largest application constructed with this system
supplies mobile users with music from the nearest set of
speakers, wherever they move in our lab. The source of Figure 3. Request dispatching in an LCServer

ORB

TransferState
POAManager

Root
POAManager

Servant for
Echo_0

Servant for
Echo_1

TransferState
POA

Servant * ObjectID

Echo_0

… …

Echo_1
… …

Active Object Map

RootPOA
Servant * ObjectID

EchoLCServ

Echo_1
… …

Active Object Map

Echo_0

Echo LCServer at theakstons:1923

I ncoming Request:
echo_1_IOR

�
echo(“ Hi”)

1

Determine POAM anager 2

Determine POA

4
Dispatch request

3

Echo
LCServant

5
Request reply

music is a static MP3 jukebox server that is controlled
using the buttons of an Active Badge. A personal software
agent, associated with each lab person, listens for that
person’s movement events coming from an Active Badge
Location server [14]. This agent, acting as a component
migration controller, moves (using LocALE migration
capabilities) the audio player and MP3 decoder
components of the application to the host nearest to the
user supplying the appropriate facilities. As the user moves
around the location-aware environment, the music is
played back continuously from the nearest set of speakers.
The state of the system and time index into the current
song persists as the components migrate.

5.2. Follow-me Email Notification

 Another personal agent has been built that acts as an
IMAP mail client and an event sink for location events
coming from an Active Badge Location server. This agent
caches the last location where a user was seen, and when
an email for that person is received the agent remotely
instantiates, through LocALE, a text-to-speech object at
the host (with sound capabilities) closest to the user. A
verbal notification with the sender and subject details of
the message is then produced from the nearest speaker.
The body of the email message may also be read on the
user’s request, by clicking one of the Active Badge
buttons. After a timeout expires, the agent removes,
assisted by LocALE, the text-to-speech object.

6. Related Work

 The CORBA Object Life Cycle
Service [9] defines conventions
that allow clients to perform
lifecycle operations on objects in
different locations. It provides
IDL interfaces that permit clients
to control the lifecycle of objects
without knowing about their types
or semantics. This makes it
suitable only for applications that
require a weak type model.
LocALE subsumes most of this
service functionality, still
guaranteeing client code compile-
time type safety through its
proposed 3½-tier architecture.
 Jumping Beans [1] is a toolkit
that lets CORBA server objects
move transparently to the clients.
The approach is based on a
centralised Jumping Beans server.

When a CORBA server object moves, it first moves to the
Jumping Beans server and then to its final destination.
This project resembles LocALE in the use of a central
entity that controls object migration. In contrast to
LocALE, it does not address heterogeneous component
migration. It only provides mobility support for Java
implemented objects but can hence support
implementation code transfer. LocALE differs from
Jumping Beans in its capability to perform location
constrained object l ifecycle control.
 DAWS [4] proposes a decentralised heterogeneous
component migration framework where, when an object
migrates from the location where it was created (home
location) to another location, it leaves behind a forwarding
agent, which emits LOCATI ON_FORWARD messages pointing
to the new location. This design presents good scalability
properties but makes object resource cleanup more
difficult than with LocALE’s centralised model. DAWS is
ORB-dependent, in contrast to LocALE, because its
implementation modified a CORBA 2.0 ORB lacking
POA support. DAWS does not support the load-balanced
remote service instantiation, Lifecycle Server automatic
activation and deactivation, and object recoverability
features owed to LocALE’s centralised design.
 A LocALE LCManager is per se a CORBA
Implementation Repository (IMR) [6], because it provides
facilities to (1) track CORBA objects’ current location, (2)
forward a client request for an object to the correct
process, and (3) automatically activate servers on demand.
But in addition, LCManagers also control object l ifecycle
operations. Existing IMRs only cache location and
activation information of server object adapters (POAs)

reply for 1

transfer_state(clone_echo_1_IOR)

Figure 4. Object Migration in LocALE

Echo
Service
Client

L ifecycle
Manager

Echo
LCServer

dogbolter host

Echo_1

Echo
LCServer

theakstons host

clone
Echo_1

1

move_object(echo_1_IOR, “ theakstons”)

2

create_echo_object(“ Echo_1”)
(using DI I)

reply 2 (clone_echo_1_IOR) 3

move_object(echo_1_IOR,
clone_echo_1_IOR) 4

6 Echo Object STATE TRANSFER

5

deactivate_object
(echo_1_ID)

7

8 reply for 4
9

10
1st RPC:
echo_1->(“ Hi again”)

11

location_forward(new echo_1_IOR)

12

client reissues RPC: echo_1->echo(“ Hi again”)

where objects are activated. This offers good scalability
because the same adapter information is used to provide
indirect binding support to all objects contained within it.
Nevertheless, it only enables migration, at once, of all
objects registered with a particular object adapter. IMRs
are ORB-specific because they can only manufacture
forwarding IORs for objects created with their same ORB.
 Mobile Agent Systems, such as Voyager [3] or Mole [2],
are focused on enabling the transparent migration of
agents, including their code, data and threads, from place
to place. Mobile agents are autonomous and detached from
clients, whereas LocALE clients direct objects’ lifecycle.
LocALE is designed to be used within a LAN; mobile
agents are typically used on the Internet where security
and reliability are much more important.

7. Conclusion and Future Work

 This paper has described the design of LocALE, a
framework for the control of CORBA objects’ lifecycle in
a fixed ubiquitous network. LocALE permits client
applications to constrain the physical location of newly
created objects, and to define the location restrictions
under which these may later be migrated or recovered.
Object lifecycle requests issued by clients are routed
through a central Lifecycle Manager that, after matching
objects location and lifecycle constraints, delegates
requests to suitable LCServers. Likewise, the LCManager
redirects client requests after an object’s location changes.
LocALE has shown its capability as an enabling
infrastructure for location-aware mobile computing by the
successful implementation of two follow-me applications.
Future work will address its applicability in the
development of load-balanced distributed systems.
 In due course work on LocALE will tackle the two main
limitations of its design: (1) the Lifecycle Manager
constitutes a single point of failure and bottleneck within a
location domain and (2) an undesirable overhead is
incurred on the first RPC over a LocALE object.
 The first problem may be addressed by replicating the
LCManager and using, for instance, group communication
mechanisms to synchronise their internal state. Multi-
profile IORs embedding all object references of the
federated LCManagers could then be manufactured upon
object creation. Thus, clients would transparently reissue a
request on the object reference of another replicated server
when one member of the federation failed [11]. Likewise,
the load balancing features of the system could also be
improved by selecting, in a random fashion, one of the
multiple LCManager IORs available.
 The overhead incurred on the first RPC over an object
(due to LocALE’s IOR swizzling mechanism) may be
solved by including the actual object reference as the
primary profile within a multi-profile IOR [11].

Acknowledgements

 The authors are grateful to Tim Edmonds, Rob Headon,
David Riddoch and Jamie Walch for their advice and
suggestions on this work. Thanks are also due to the
Basque Government Department of Education and AT&T
Laboratories Cambridge for their sponsorship of the
authors.

References

[1] Ad Astra Engineering. “Jumping Beans White Paper” .
October 1999, http://www.JumpingBeans.com

[2] Baumann J., Hohl F., Rothermel K., Schwehm M., and
Straßer M. “Mole 3.0: A Middleware for Java-Based Mobile
Software Agents” , Proceedings of Middleware’98, September
1998, pp. 355-370

[3] Glass G. “ObjectSpace Voyager Core Package Technical
Overview”, ObjectSpace, White Paper, 1999

[4] Grisby D. P. “A Distributed Adaptive Window System”, PhD
thesis, Computer Laboratory, University of Cambridge, 1999

[5] Harter A., Hopper A, Steggles P., Ward A. and Webster P.
“The Anatomy of Context-Aware Application” , Proceedings of
MOBICOM’99, Seattle, August 1999

[6] Henning M. “Binding, migration and scalability in CORBA”,
Communications of the ACM, vol.41, no.10, October 1998, pp.
62-71

[7] Hopper. A. “Sentient Computing” , The Royal Society
Clifford Paterson Lecture, ” , AT&T Laboratories Cambridge,
Technical Report 1999.12, 1999

[8] Object Management Group, “Trading Object Service
Specification” , May 2000

[9] Object Management Group, “Life Cycle Service
Specification” , June 2000

[10] Object Management Group, “The Common Object Request
Broker Architecture: Architecture and Specification” , October
1999

[11] Object Management Group, “Fault Tolerant CORBA”,
Revised Joint Fault Tolerance Submission, December 1999

[12] Richardson T, Stafford-Fraser Q., Wood K.R. and Hopper
A. “Virtual Network Computing” , IEEE Internet Computing,
Jan/Feb 1998, vol.2, no.1, pp 33-38

[13] Schmidt D. and Vinoski S. “C++ Servant Managers for the
Portable Object Adapter” , SIGS C++ Report, September 1998

[14] Want R., Hopper A., Falcão A. and Gibbons J. “The Active
Badge Location System”, ACM Transactions on Information
Systems, January 1992, vol.10, no.1, pp. 91-102

[15] Werb J. and Lanzl C. “Designing a positioning system for
finding things and people indoors” , IEEE Spectrum, September
1998, pp.71-78

