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Abstract 
 
  The LocALE (Location-Aware Lifecycle Environment) 
framework provides a simple management interface for 
controlling the lifecycle of CORBA distributed objects. It 
supports mechanisms for the remote construction, 
movement, removal and recovery of heterogeneous 
software objects in a location domain, i.e. a group of hosts 
on a network within a given physical area. Client 
applications use LocALE to intelligently control their 
required services’ location and relocation in the network. 
LocALE offers load-balancing, automatic activation, and 
fault-tolerance facilities for the services whose lifecycles it 
controls. It provides the middleware necessary for the 
efficient implementation of location-aware mobile 
applications in richly equipped network environments. 
LocALE’s infrastructure has been tested with the 
development of several follow-me applications that 
dynamically move with their users as they change 
location. For illustration, two of these follow-me LocALE-
enabled applications are described. 
 
 

1. Introduction 
 
  Computing devices are becoming increasingly 
ubiquitous; computationally capable devices are present in 
almost every room of a modern office, and are rapidly 
invading our homes. Moreover, those environments are 
also becoming aware; sensor networks such as the Active 
Badge [14] system allow applications to respond to the 
location of users.  
  In order to provide a location-aware environment, any 
particular software service should be available to the user 
wherever she may be, and follow her as she moves. The 
goal is to allow users to move freely throughout a building 
or greater environment without undue degradation of the 
computing and communications resources available to 
them. To enable this the following are necessary: 
 

1. Rich and up-to-date information about the 
environment, gathered from a range of environmental 
sensors, resource monitors and static data repositories. 
In particular, the locations of people and computing 
resources, and the capabilities of these resources.  

 

2. An infrastructure to make possible the transparent 
migration of objects associated to a user from one 
address space to another. 

 

  The first requirement is being addressed by work on 
Sentient Computing [7], a research field that uses sensor 
and resource status data to maintain a model of the world 
shared between users and applications. The SPIRIT project 
[5] creates such a model combining the information 
collected from resource activity monitors (CPU, disk, 
network) on each LAN node and a network of location 
sensors. These indoor location systems provide the 
position of tagged entities in a building; the Active Badge 
and 3D-iD [15] systems are representative examples. 
  Several research efforts have already tried to provide a 
solution to the second issue. However, they are either 
constrained to enable migration of components written in a 
specific portable programming language such as Java [2, 
3] or Python, or present a partial solution, only enabling 
some functionality of the components, such as the GUI 
[12], to move. This paper describes LocALE, a framework 
for the management of heterogeneous (multi-purpose and 
multi-lingual), objects’ lifecycle that provides a more 
general solution to this problem. 
 

2. Component Mobility in CORBA 
 
  The OMG’s CORBA (Common Object Request Broker 
Architecture) standard [10] defines a framework for 
developing object-oriented distributed applications. The 
Object Request Broker (ORB) is the middleware that 
establishes client-server relationships between objects. 
Using an ORB, a client can transparently invoke remote 
methods on a server object, regardless of where the object 
is located, the language in which it is programmed, its 
underlying operating system, or any other system aspects 



 

that are not part of an object interface. These heterogeneity 
features make CORBA ideal for the implementation of 
multi-purpose platform-independent components. For this 
reason the LocALE framework is CORBA-based. 
  The CORBA object model relies heavily on the semantics 
of object references. The standard object reference format, 
called the Interoperable Object Reference (IOR) [10], 
contains an identifier of the most derived type of an object 
and one or several profiles that permit the location of an 
object to be determined. Among other data, these profiles 
may contain an IP address, a TCP port number, and an 
object key that uniquely identifies the target object. Clients 
can only invoke an operation on an object if they hold a 
reference to the object. Unfortunately, IORs’ location-
specific information, i.e. the IP address and port number of 
the server at which the object resides, means that when a 
CORBA server implementation moves, the client(s) can no 
longer maintain the bind to the server.  
  Adding mobility support to CORBA supposes that any 
client holding a reference to an object will maintain that 
binding for the entire lifetime of the object. This means 
that client invocations must be forwarded seamlessly when 
the location of the targeted object changes. CORBA 
handles this situation by defining within GIOP (General 
Inter-ORB Protocol) [10] the LOCATI ON_FORWARD reply 
message. This message indicates to the receiving client 
ORB that it must retry a previously issued request using 
the enclosed IOR.  
 

3. LocALE Framework 
 
  The LocALE framework proposes a simple mechanism 
for managing the lifecycle of distributed CORBA objects 
residing in a ubiquitous computing network. The emphasis 
of LocALE’s design is placed on providing a suitable 
interface for third party object-location controllers. These 
controllers, aware of personnel location and computing 
resources location, load and capabilities, can intelligently 
direct components’ locations and lifecycles. LocALE’s 
goal is to offer the object-lifecycle handling infrastructure 
required. It addresses the following functional 
requirements: 
 

• Permit the remote instantiation of CORBA services 
wherever wanted. 
Traditionally, in a distributed environment, the factory 
design pattern is used to avoid having to start servers 
manually every time a client requires a service. A 
factory is an object that offers one or more operations 
to create other objects. Upon client invocation, the 
factory creates a new object and returns a reference to 
the client. Nevertheless, the problem with 
conventional factories is that clients are, normally,  
limited to creating new objects within the address 

space of previously started factories. It is desirable for 
a client to be able to control the location (host) where 
a new service is instantiated, independently of 
whether that location already contains a factory 
capable of creating objects of the desired kind or not.      
 

• Enable heterogeneous object migration. 
Computational objects (part of an application) may 
have to migrate to optimise speed and latency, or 
simply to get physically closer to a user. 
Communication endpoints may consequently change 
location over time. An infrastructure providing 
transparent object migration to clients without 
affecting the references they hold is required. 
 

3.1. LocALE Migration Suppor t Rationale 
 
  This section presents an overview of the design choices 
that LocALE has adopted to provide migration support for 
CORBA components.  
  Migration of software objects must occur in two phases: 
(1) transfer state and, optionally, implementation of a 
running object to a new location and (2) make all clients of 
the object transparently use the new object. With regard to 
the first aspect, a migratory system must decide whether 
the system should support (a) code and state migration, or 
(b) simply state migration. The use of portable interpreted 
programming languages such as Java or Python with built-
in object serialisation and bytecode portability features 
facilitates object state and code migration. However, 
LocALE aims to control the lifecycle of heterogeneous 
objects, not constrained to a single programming language 
or platform. Thus, LocALE does not support object 
implementation transfer upon object migration. Our view 
is that objects should be able to migrate to different 
implementations of the same functionality. For example, 
an object implemented in C++ running on a Windows NT 
host should be able to migrate to a Java version of it 
running on Linux. This signifies that wherever an object 
moves there must be access somehow, e.g. locally or 
through a shared file system, to a valid object 
implementation.  
  There are two basic methods by which state transfer may 
be performed. One option is to take a snapshot of a 
running object and transfer that state. Java’s object 
serialisation permits this to some extent. The main 
problem of this approach is that it prevents objects moving 
to different implementations. A second option is for 
objects to transfer their own state when they are instructed 
to migrate. One or several methods of a newly created 
object are used to set its state, according to the state of the 
source object. LocALE adopts this approach as it suits 
heterogeneous object migration and allows a more general 
interpretation of what can be considered to be ‘state’ . 



 

  The second issue to be addressed when designing an 
object migration system is how clients of an object can 
track the object as it moves. CORBA provides support for 
this by the GIOP’s LOCATI ON_FORWARD message previously 
mentioned. There are two obvious ways in which this 
mechanism can be used to track object locations: (1) 
chaining of forwarding agents and (2) use of a home 
location forwarding agent. 
  With the first approach, every time an object migrates, it 
leaves behind an agent, which forwards clients to the 
object’s new location. The result is a trail of forwarding 
agents at every location the object has ever occupied. This 
brings about intolerance to faults, and difficulties with 
garbage collection. 
  The second approach nominates for each object a home 
location that is guaranteed to know the current location of 
the object. The home location either provides the object 
itself, or forwards the client to it. Clients remember the 
home location, and consult it whenever the object ceases 
to exist in the location they were using. Whenever an 
object migrates, it informs the home location of its new 
location. This is the object tracking mechanism employed 
with LocALE since it introduces less latency and better 
resource cleanup properties than the other approach, 
although it still presents a single point of failure problem. 

 

3.2. LocALE Architecture  
 
  The design of LocALE presents a 3½-tier architecture, 
shown in Figure 1, composed of client applications and the 
following 3 types of components: 
 

• The Lifecycle Manager (LCManager).  
This component provides generic lifecycle control 
interfaces and mediates the lifecycle operations over 
any CORBA object residing in a location domain. In 
this context the term location domain refers to a group 
of machines on a LAN that are located within a given 

physical area, such as a building, a floor or a room. 
Every object creation, movement or deletion request 
is routed through this object. This permits the 
LCManager to cache the current location of every 
object in a domain and thus act as a forwarding agent 
that redirects client requests after object references 
held by clients are broken due to either object 
movement or failure. In the latter case, the 
LCManager first tries to recover the failed object, and, 
in case of success, returns the new object reference. 
 

• Lifecycle Server(s) (LCServer). 
These components act as surrogates of their local 
domain LCManager. Lifecycle operations invoked on 
an LCManager are delegated to a suitable LCServer. 
These servers contain, within their address space, 
LocALE-enabled objects subject to lifecycle control. 
LCServers subsume standard strongly typed factories’ 
functionality by not only providing a type specific 
creation method with hard-coded types, but also 
assisting their local objects with their migration to 
other LCServers. They can be started either manually 
or by the local LCManager after a creation or 
migration request arrives at a location where the 
required LCServer type does not exist. In either case, 
they register with the manager and pass metadata 
containing their physical location (host), IOR and 
information specific to the type of objects they handle. 
 

• Type-specific Proxy Factories. 
These components are placed in between clients and 
LCManagers. Their purpose is to prevent client 
applications from dealing with the generic object 
creation interface offered by an LCManager. Using 
specific-purpose interfaces makes client code far 
shorter and simpler to understand. With the generic 
version if a mismatch in the type of a constructor 
argument occurred, the client would only receive an 
error at run-time, whilst with the specific purpose 
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Figure 1. LocALE 3½-tier architecture 



 

version it would be at compile time. Type-specific 
Proxy Factories offer type specific object-creation 
methods with the same argument types and semantics 
as the LCServers they represent, mapping type 
specific requests to the generic format demanded by 
LCManagers. They are activated either manually or 
automatically by the local manager, after which they 
register, passing their IOR and type details. 
 

  LocALE’s architecture guarantees clients’ compile-time 
type safety with respect to the lifecycle control of their 
required services. Clients find, through the LCManager, 
object references to type-specific proxy factories and issue 
through them object creation requests. Object migration 
and deletion requests are directly invoked on the 
LCManager because they are independent of object types. 
The manager then delegates incoming lifecycle operations 
to the appropriate LCServers. 
 

3.3. Location-constrained L ifecycle Control 
 
  One of the main advantages of CORBA is that it provides 
location transparency to applications, i.e. it makes method 
invocation as simple on remote objects as on local objects. 
LocALE leverages CORBA’s location transparency, but it 
asserts that being able to control where services used by 
clients are located, and also to set the constraints under 
which those services can later be re-located may bring 
important benefits. For example, load balanced 
applications may wish to initiate new service instances in 
the hosts of a LAN with lowest processing load. Follow-
me applications may want to move objects tied to a user’s 
physical location to the nearest host with the required 
capabilities. To provide CORBA services’ location-
awareness to clients, LocALE changes distributed object 
construction semantics compared with conventional 
factory objects, in two ways: 
 

1. It enforces client code not only to specify the 
arguments of the constructor of an object, but also the 
location where the object should be created and some 
constraints to control its l ife evolution.  

 

2. Object creation requests are always routed through the 
local domain’s LCManager that processes them and 
finds or creates suitable LCServers where such 
requests are delegated. Thus, the manager can cache 
the object references returned by surrogate LCServers 

and convey to clients specially manufactured IORs 
tied to objects for their entire lifetime.  

 

  The following two attributes are appended to the type 
specific creation interface provided by proxy factories and 
the generic interface offered by LCManagers: 
 

• Location attribute: specifies “ where”  a service should 
be instantiated (or moved to). Its possible formats are 
shown in Table 1.  

 

• LifeCycle contraints (LCconst r ai nt s) attribute: 
determines whether an object to be created should be 
considered as recoverable and/or movable within a 
location scope. A recoverable object is either a 
stateless or a persistent object whose state can be 
restored after failure. Table 2 lists all existing 
LCcont r ai nt s and their usage dependencies with 
Locat i on attribute specifications. 

 

  Location independent services are instantiated using 
host DN( " ANY" )  or r oomI D( "ANY" )  constructions. These 
specifications are of special interest when there are same 
type Lifecycle Servers running on separate hosts of a 
location domain. Upon object creation or movement, as a 
crude form of load balancing, the LCManager randomises 
the list of available Lifecycle Servers to select one to 
which to delegate the request. Certain services, however, 
need to be created in the same location as a user. For 
instance, an object with a user interface should be created 
either in the host closest to a mobile user, e.g. 
host DN( " gui nness" ) , or otherwise in any host within the 
same room, e.g. r oomI D( " Room1" ) . Finally, some services 
should be created in any machine within a given location 
that provides a special resource (e.g. sound, video capture, 
etc.). The construction host Gr oup is used in this case. It is 
up to the client application or other services to select a 
suitable list of hosts. 
 

Table 1. Location attribute specs 
host DN( " gui nness. eng. cam. ac. uk" )  
host DN( " ANY" )  
r oomI D( " Room 1" )  
r oomI D( " ANY" )  
host Gr oup( host DN_1,  …,  host DN_n)  

 

  LocALE assumes that objects are, by default, static and 
non-recoverable. Once an object is created, it remains in 
the same address space until it is removed or fails. 
However, LocALE provides mechanisms to make objects 
MOVABLE, providing they know how to transfer their own 
state, and/or RECOVERABLE, providing they can restore their 

RECOVERABLE |  ∀ Locat i on specs 

RECOVERABLE_WI THI N_ROOM |  i f f  ( Locat i on = r oomI D( x)  ∨ Locat i on = host DN( x) )  ∧ ¬( x=" ANY" )  
RECOVERABLE_WI THI N_HOST |  i f f  ( Locat i on = host DN( x) )  ∧ ¬( x=" ANY" )  
MOVABLE |  ∀ Locat i on specs 
MOVABLE_WI THI N_ROOM |  i f f  ( Locat i on = r oomI D( X)  ∨ Locat i on = host DN( x) )  ∧ ¬( x=" ANY" )  

Table 2. Lifecycle constraints and usage rules  



 

state after failure. The LCManager recreates failed objects 
using the same constructor argument values as when the 
object was first constructed. An object can be 
simultaneously movable and recoverable, as long as both 
constraints apply to the same location scope, i.e. MOVABLE 

& RECOVERABLE is valid but not MOVABLE_WI THI N_ROOM  & 

RECOVERABLE.   
  The capability of receiving location constraints on object 
creation converts the LCManager into a minimal Trader 
[8] server. The LCManager matches client object creation 
specifications against the advertised object Lifecycle 
Server types and locations. On a service instantiation, its 
type, initial location and life evolution constraints are 
conveyed to the local LCManager. This component 
searches among the registered Lifecycle Server types for a 
suitable LCServer where the requested lifecycle operation 
can be delegated. LCManager’s trading capabilities could 
be extended by enforcing LCServers to specify the 
computing resources demanded by their objects (e.g. need 
for sound capability). Thus, if a client issued a lifecycle 
operation over a given object type the LCManager would 
match both location constraints and object type specific 
resource demands. This would make the use of the 
host Gr oup location format unnecessary. 
 

3.4. LocALE L ifecycle Manager  
 

  The LCManager keeps, in an internal registry (see Table 
3), information about the objects whose lifecycle it 
controls, the proxy factories used for strongly typed object 
creation and the LCServers where object creation, 
migration and removal actually takes place. This 
information, serialised to disk to permit the LCManager 
component to recover from transient failures, is used to 
provide the following functionality: 
 

1. Load-balanced object l ifecycle control. 
2. Object reference forwarding to clients on method 

invocation to objects whose location has changed.  
3. Automatic activation of LCServers when demanded at 

a location where they are not available. 
4. Deactivation of automatically started LCServers.  
5. Activation of type-specific proxy factories when there 

is no instance running in a location domain. 
6. Deactivation of automatically started proxy factories. 
7. Fault tolerance of stateless or persistent LocALE 

objects by recreating them upon a failed client 
request. 

 

Swizzling Mechanism for Object Reference Management 
 
  The LCManager swizzles object references returned by 
LCServer creation methods into object references pointing 
to it. The actual object reference is cached in the Obj ect  

table (see Table 3). The swizzled IORs returned to clients 
are tied to their corresponding objects for their entire 
lifetime no matter how many times they migrate or are 
recovered. As result of this procedure, every first request 
invocation on an object reference is not addressed to the 
intended object but to the LCManager. The manager then 
forwards the client the actual object reference through a 
LOCATI ON_FORWARD reply. The client ORB transparently 
retries the operation on the new object reference, and will 
use this reference while it remains valid. When an object 
moves or fails, a client request will fail and its ORB will 
fall back to the original swizzled reference. In that case, 
the LCManager either returns a moved object new 
reference, tries to recover a failed object and return its 
reference, or, otherwise, raises an error exception.  
  The cost of this mechanism is that client requests are 
transparently delayed due to the additional round-trips 
introduced after a lifecycle or failure event occurs. The 
advantage is that the LCManager presents object fault-
tolerance and mobility support facilities without breaking 
client held references. 
  Internally, the LCManager’s C++ implementation makes 
use of two POA1 (Portable Object Adapter) [10] 
components, one containing the servant implementing the 
remote interfaces offered by this server and the other one, 
with a Servant Manager [13] object registered with it, that 
implements the client request redirection procedure 
described above. Client requests on swizzled IORs 
(created using the second POA) arrive at this POA which 
up-calls a method of its associated Servant Manager 
implementing the swizzling mechanism. This method uses 
a POA defined standard mechanism to generate 
LOCATI ON_FORWARD reply messages, namely the 
For war dRequest  exception. 
 

Table 3. Lifecycle Manager Internal State 
LCServer (LCServID, kindID, hostDN, LCServRef, 
instanceCounter, maxNumObjs, manuallyInit) 

Object(objID, kindID, LCServID, objRef, locationSpec, 
paramValues, LCconstraints) 

ProxyFactory(proxyFactID, proxyFactRef, manuallyInit) 

HostLCServers(hostDN, set<LCServID>, roomID, OS) 

RoomHosts(roomID, set<hostDN>) 

KindLCServers(kindID, set<LCServID>, objCreationMethod, 
paramTypes, start-up-process) 

K indProxyFactor ies(kindID, set<proxyFactID>, start-up-process) 
 

3.5. LocALE L ifecycle Servers 
 
  Every Lifecycle Server defines a method to create objects 
of a specific type and, in addition, implements the 
                                                           
1 A POA manages CORBA objects within a process and allows 
applications control the mapping of CORBA objects to servants (a 
programming language entity incarnating a CORBA object). 



 

LCSer ver  interface (see Figure 2). The LCManager uses 
the move_obj ect  method in this interface to trigger the 
migration of an object under the control of an LCServer to 
a clone of that object in another LCServer. Every object 
managed by a Lifecycle Server is derived, in turn, from the 
LocALE_Obj ect  (see Figure 2) interface. Upon a call to its 
t r ansf er _st at e method, an object conveys its state to the 
given clone. Object type specific method(s) are invoked to 
adapt the state of the target object to the source one. 
 

i nt er f ace LCSer ver  {  
 voi d move_obj ect ( i n LocALE_Obj ect  obj Ref ,   
                  i n LocALE_Obj ect  c l oneObj Ref )      
  r ai ses( UnKnownObj ,  Wr ongObj Type,  I nval i dCl one) ;  
 voi d dest r oy( ) ;  / /  Met hod t o dest r oy LCSer ver  
} ;   
 
i nt er f ace LocALE_Obj ect  {  
 voi d dest r oy( ) ;  
 voi d t r ansf er _st at e( i n LocALE_Obj ect  c l oneRef )   
             r ai ses ( I nval i dCl one) ;   
 r eadonl y at t r i but e Host DN cur r ent Locat i on;  
} ;  

Figure 2. LocALE LCServer and object interfaces 
 

  In order to support mobility, objects created within an 
LCServer must be activated simultaneously with two 
POAs (see Figure 3). The Root POA  (or any other POA) 
through which requests from external clients arrive to the 
LCServer’s servant and servants of the objects whose 
lifecycle it controls and a second POA 
(Tr ansf er St at ePOA)  through which st at e_t r ansf er  
operations on the controlled objects are issued by the 
LCServer. The reason being that on object migration, 
while the LCServer triggers the state transfer between the 
source and target object and waits for its completion, it 
must guarantee that requests on the migrating object are 
queued for later processing. Every POA contains an 

associated POA Manager [13] object that controls the flow 
of requests into it. Thus, client requests on the migrating 
object are blocked by calling the hol d_r equest s operation 
on the Root POAManager . The LCServer uses a second IOR 
for the object, obtained from its Tr ansf er St at ePOA, to 
invoke the st at e_t r ansf er  operation. Once the object 
migration is finished, the Root POAManager  is reactivated. 
Queued invocations on that POA Manager then result in 
OBJECT_NOT_EXI ST exceptions. Client ORBs react to these 
exceptions by re-routing the requests, assisted by 
LCManager’s redirection capabilities, to the new object 
location. 
 

4. LocALE Object L ifecycle Management 
   
  This section provides some C++ code illustrating how 
clients can issue lifecycle control operations (i.e. remote 
construction, movement and removal) on an object using 
LocALE’s API. Figure 4 shows the interactions involved 
within LocALE’s architecture upon object migration. 
 
/ /  Cr eat e a new r ecover abl e and movabl e echo 
/ /  obj ect  i n host  dogbol t er  and i nvoke echo( )  
LocALE_Pr oxyFact or y_var  pFact  = LCMan- >  
  f i nd_pr oxy_f act or y( " I DL: Echo/ EchoObj ect : 1. 0" ) ;  
Echo: : EchoPr oxyFact or y_var  echoPFact  =  
  Echo: : EchoPr oxyFact or y: : _nar r ow( pFact ) ;   
Echo: : EchoObj ect _var  echo1Ref  = echoPFact - >  
  cr eat e_echo_obj ect ( " Echo_1" ,   
            LOCATI ON( HOST( " dogbol t er " ) ) ,   
            LC_CONSTRAI NT( RECREATABLE¦ MOVABLE) ) ;  
echo1Ref - >echo( " Hi " ) ;   
 

/ /  Move pr evi ousl y cr eat ed obj ect  t o host   
/ /  t heakst ons and i nvoke echo( )  on i t  
LCMan- >move_obj ect ( echo1Ref ,   
                   LOCATI ON( HOST( " t heakst ons" ) ) ) ;  
echo1Ref - >echo( " Hi  agai n" ) ;  
 

/ /  Remove t he echo obj ect  moved t o t heakst ons 
LCMan- >r emove_obj ect ( echo1Ref ) ;  
 

5. Applications 
 
  This section describes two LocALE-enabled applications 
built to demonstrate LocALE’s potential as an enabling 
infrastructure for follow-me applications. These 
applications are composed of multiple distributed objects. 
When a user moves, only those objects tied to the user’s 
physical location follow him. All inter-object 
communication is undertaken through CORBA RPCs. 

5.1. Follow-me Music 
 
  The largest application constructed with this system 
supplies mobile users with music from the nearest set of 
speakers, wherever they move in our lab. The source of Figure 3. Request dispatching in an LCServer 
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music is a static MP3 jukebox server that is controlled 
using the buttons of an Active Badge. A personal software 
agent, associated with each lab person, listens for that 
person’s movement events coming from an Active Badge 
Location server [14]. This agent, acting as a component 
migration controller, moves (using LocALE migration 
capabilities) the audio player and MP3 decoder 
components of the application to the host nearest to the 
user supplying the appropriate facilities. As the user moves 
around the location-aware environment, the music is 
played back continuously from the nearest set of speakers. 
The state of the system and time index into the current 
song persists as the components migrate. 

5.2. Follow-me Email Notification 
 
  Another personal agent has been built that acts as an 
IMAP mail client and an event sink for location events 
coming from an Active Badge Location server. This agent 
caches the last location where a user was seen, and when 
an email for that person is received the agent remotely 
instantiates, through LocALE, a text-to-speech object at 
the host (with sound capabilities) closest to the user. A 
verbal notification with the sender and subject details of 
the message is then produced from the nearest speaker. 
The body of the email message may also be read on the 
user’s request, by clicking one of the Active Badge 
buttons. After a timeout expires, the agent removes, 
assisted by LocALE, the text-to-speech object. 
 

6. Related Work 
 
  The CORBA Object Life Cycle 
Service [9] defines conventions 
that allow clients to perform 
lifecycle operations on objects in 
different locations. It provides 
IDL interfaces that permit clients 
to control the lifecycle of objects 
without knowing about their types 
or semantics. This makes it 
suitable only for applications that 
require a weak type model. 
LocALE subsumes most of this 
service functionality, still 
guaranteeing client code compile-
time type safety through its 
proposed 3½-tier architecture. 
  Jumping Beans [1] is a toolkit 
that lets CORBA server objects 
move transparently to the clients. 
The approach is based on a 
centralised Jumping Beans server. 

When a CORBA server object moves, it first moves to the 
Jumping Beans server and then to its final destination. 
This project resembles LocALE in the use of a central 
entity that controls object migration. In contrast to 
LocALE, it does not address heterogeneous component 
migration. It only provides mobility support for Java 
implemented objects but can hence support 
implementation code transfer. LocALE differs from 
Jumping Beans in its capability to perform location 
constrained object l ifecycle control. 
  DAWS [4] proposes a decentralised heterogeneous 
component migration framework where, when an object 
migrates from the location where it was created (home 
location) to another location, it leaves behind a forwarding 
agent, which emits LOCATI ON_FORWARD messages pointing 
to the new location. This design presents good scalability 
properties but makes object resource cleanup more 
difficult than with LocALE’s centralised model. DAWS is 
ORB-dependent, in contrast to LocALE, because its 
implementation modified a CORBA 2.0 ORB lacking 
POA support. DAWS does not support the load-balanced 
remote service instantiation, Lifecycle Server automatic 
activation and deactivation, and object recoverability 
features owed to LocALE’s centralised design. 
  A LocALE LCManager is per se a CORBA 
Implementation Repository (IMR) [6], because it provides 
facilities to (1) track CORBA objects’ current location, (2) 
forward a client request for an object to the correct 
process, and (3) automatically activate servers on demand. 
But in addition, LCManagers also control object l ifecycle 
operations. Existing IMRs only cache location and 
activation information of server object adapters (POAs) 
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where objects are activated. This offers good scalability 
because the same adapter information is used to provide 
indirect binding support to all objects contained within it. 
Nevertheless, it only enables migration, at once, of all 
objects registered with a particular object adapter. IMRs 
are ORB-specific because they can only manufacture 
forwarding IORs for objects created with their same ORB. 
  Mobile Agent Systems, such as Voyager [3] or Mole [2], 
are focused on enabling the transparent migration of 
agents, including their code, data and threads, from place 
to place. Mobile agents are autonomous and detached from 
clients, whereas LocALE clients direct objects’ lifecycle. 
LocALE is designed to be used within a LAN; mobile 
agents are typically used on the Internet where security 
and reliability are much more important.  
 

7. Conclusion and Future Work 
 
  This paper has described the design of LocALE, a 
framework for the control of CORBA objects’ lifecycle in 
a fixed ubiquitous network. LocALE permits client 
applications to constrain the physical location of newly 
created objects, and to define the location restrictions 
under which these may later be migrated or recovered. 
Object lifecycle requests issued by clients are routed 
through a central Lifecycle Manager that, after matching 
objects location and lifecycle constraints, delegates 
requests to suitable LCServers. Likewise, the LCManager 
redirects client requests after an object’s location changes. 
LocALE has shown its capability as an enabling 
infrastructure for location-aware mobile computing by the 
successful implementation of two follow-me applications. 
Future work will address its applicability in the 
development of load-balanced distributed systems.   
  In due course work on LocALE will tackle the two main 
limitations of its design: (1) the Lifecycle Manager 
constitutes a single point of failure and bottleneck within a 
location domain and (2) an undesirable overhead is 
incurred on the first RPC over a LocALE object.  
  The first problem may be addressed by replicating the 
LCManager and using, for instance, group communication 
mechanisms to synchronise their internal state. Multi-
profile IORs embedding all object references of the 
federated LCManagers could then be manufactured upon 
object creation. Thus, clients would transparently reissue a 
request on the object reference of another replicated server 
when one member of the federation failed [11]. Likewise, 
the load balancing features of the system could also be 
improved by selecting, in a random fashion, one of the 
multiple LCManager IORs available.  
  The overhead incurred on the first RPC over an object 
(due to LocALE’s IOR swizzling mechanism) may be 
solved by including the actual object reference as the 
primary profile within a multi-profile IOR [11]. 
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