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Implementing 
a Sentient 
Computing System

A
s computer users become increasingly
mobile, and the diversity of devices with
which they interact increases, so the over-
head of configuring and personalizing these
systems increases. A natural solution to this

problem would be to create devices and applications
that appear to cooperate with users, reacting as
though they are aware of the context and manner in
which they are being used, and reconfiguring them-
selves appropriately.

At AT&T Laboratories Cambridge, we have built
a system that uses sensors to update a model of the
real world. We designed the model’s terms—object
positions, descriptions and state, and so forth—to be
immediately familiar to users. Thus, the model
describes the world much as users themselves would.
We can use this model to write programs that react to
changes in the environment according to the user’s
preferences. We call this sentient computing because
the applications appear to share the user’s perception
of the environment.1

Treating the current state of the environment as com-
mon ground between computers and users provides
new ways of interacting with information systems.
Metaphysical concerns aside, a sentient computing sys-
tem doesn’t need to be intelligent or capable of form-
ing new concepts about the world—it only needs to act
as though its perceptions duplicate the user’s. For
example, suppose a user picks up a wireless device that
a sentient computing system manages. The system
seems to be aware that this event has occurred, and it
automatically configures the device to that user.

In earlier work, we described a prototype of this sys-
tem and stated our intention to deploy it on a large
scale.2 We have now installed an enhanced version

throughout an office building. Over the past year,
approximately 50 staff members have used the system
daily with a set of trial applications.

IMPLEMENTING A SENTIENT SYSTEM
Our project implemented the sentient computing

system’s model of the world as a set of software
objects that correspond to real-world objects. Objects
in the model contain up-to-date information about
the locations and state of the corresponding real-
world objects. Ascertaining object positions with near-
human levels of accuracy requires a specially designed
sensor system.

Location sensing
The location sensor, shown in Figure 1, determines

the 3D positions of objects within our building in real
time. Personnel carry wireless devices known as Bats,
which can also be attached to equipment. The sensor
system measures the time it takes for the ultrasonic
pulses that the Bats emit to reach receivers installed in
known, fixed positions. It uses these times of flight to
calculate the position of each Bat and hence the posi-
tion of the object it tags by triangulation.

To allow accurate time-of-flight measurements, a
wireless, cellular network synchronizes Bats with the
ceiling receivers. Base stations simultaneously address
a Bat over the wireless link and reset the receivers over
a wired network. A wireless back channel supports the
Bat’s transmission of registration, telemetry, and con-
trol-button information.

Current embodiment
We have installed the Bat system throughout our

three-floor, 10,000-sq.-ft. office building, and all 50
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staff members use it continuously. The system uses
750 receiver units and three radio cells, and tracks
200 Bats.

Figure 2 shows the current Bat device. Each Bat
measures 8.0 cm × 4.1 cm × 1.8 cm, has a unique 48-
bit ID, and draws power from a single AA lithium cell.
In addition to two input buttons, a Bat has a buzzer
and two LEDs for output. Applications send com-
mands over the wireless network to generate feedback
via these devices.

Built around a DSP microprocessor, the location
system receiver units use a matched-filter signal-detec-
tion approach. Receivers are wired together in a daisy-
chain network and are installed unobtrusively above
the tiles in our building’s suspended ceilings.

To simplify maintenance of the location system,
telemetry data can be obtained from the Bats, indi-
cating current battery health and firmware version
number. Further, system administrators can send com-
mands over the wireless and wired networks to repro-
gram Bats and receivers in the field.

About 95 percent of 3D Bat position readings are
accurate to within 3 cm. Each base station can address
three Bats simultaneously, 50 times each second, giv-
ing a maximum location update rate across each radio
cell of 150 updates per second. The signals from simul-
taneously triggered Bats are encoded using a differ-
ential-phase modulation scheme, allowing receivers
to distinguish among them.

Scheduling and power saving
Because we use Bats to tag many mobile objects in

the environment, we must fully exploit the limited
number of location-update opportunities. We also
take every opportunity to reduce the power con-
sumption of Bats because frequently changing the bat-
teries of several hundred devices would require
significant effort.

Base stations use a quality-of-service measure to
share location-update opportunities between Bats.
The base stations can preferentially allocate location
resources to objects that move often or are likely to
be moved. A scheduling process that runs on each
base station determines not only when the base sta-
tion will address a particular Bat but also when it will
next address it. The process passes this information
to the Bat across the wireless link, allowing the Bat to
enter a low-power sleep state for the intervening time.
The scheduling algorithm and Bats incorporate mech-
anisms that allow rapid changes to the QoS alloca-
tions.3

Rapid changes to the schedule prove particularly
useful when a user presses a Bat button. This action
generally indicates that the user wishes to perform
some task with the Bat. In these cases, it helps to
obtain a low-latency position update for the Bat. The

Bat transmits a button-press message over the wire-
less network, and the base station responds by sched-
uling an immediate location-update opportunity for
that Bat.

Bats register with a base station using their unique
48-bit IDs and receive a temporary 10-bit ID local to
the base station. The system subsequently refers to the
Bat by its local ID, which it reclaims if the Bat moves
out of the base station’s range. This procedure limits the
Bat population per base station, but results in shorter
addressing messages and subsequent power savings.

Each Bat has a sensitive motion detector that lets it
tell the base stations whether it is moving or station-
ary. Because the base station doesn’t need to repeat-
edly determine the position of stationary objects, the
system places nonmoving Bats into a low-power sleep
state, from which they wake only when they move
again. This design saves power and frees up location-
update opportunities for allocation to other Bats.

Taken together, the Bat’s low-power features result
in a battery lifetime of around 12 months.

Indoor sensor alternatives
Alternative indoor-location sensors suitable for wide-

scale deployment include other ultrasonic systems such
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Figure 1. Operation of
the Bat location sen-
sor system. A Bat is
triggered over a wire-
less link (1), which
causes it to emit an
ultrasonic pulse (2).
Ceiling-mounted
receivers measure the
pulse’s times of flight,
and a controller
retrieves the times of
flight  (3) over a wired
network. The con-
troller uses these
measurements to cal-
culate Bat-receiver
distances and thus the
Bat’s 3D position.

Figure 2. Bat wire-
less tag device. Pow-
ered by a single AA
lithium cell, each Bat
has a unique 48-bit
ID, two input buttons,
and—for output—a
buzzer and two LEDs. 
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as Cricket,4 indoor radio systems such as PinPoint5 and
Radar,6 and infrared systems like Active Badge.7,8

However, because none of these systems can provide
3D location data with an accuracy of less than one
meter, the fidelity of a model constructed using data
from them would be poor. Indeed, our experiences in
developing and using the Active Badge system suggest
that context-aware applications often require location
information that has a much finer granularity.

In an outdoor environment, GPS9 provides accu-
rate position information relative to the large scale of
outdoor features, such as roads and fields; thus, it
comes close to the ideal of sharing perceptions on this
scale. However, many sentient computing applications
rely on information accurate to the human scale,
which cannot be obtained using such sensors.

MODELING THE ENVIRONMENT
Our system uses data from its sensors and from ser-

vices such as an Alcatel 4400 CTI telephone switch to
update its world model. The model functions essen-
tially as a distributed application programming inter-
face (API) for the environment, allowing applications
to control the environment and query its state. The
model handles all system-level issues, including ses-
sions, events, persistence, and transactions. We make
each software object a Common Object Request
Broker Architecture (Corba) object and store its per-
sistent state in an Oracle database.2 The model schema
contains 80 different interface types, while the model
of our building contains about 1,900 actual instances
of physical objects.

The system uses knowledge of the tracked objects’
dynamics to filter the incoming location data, and
then uses the filtered data to update the world model.
Because the model must mirror the user’s perception
of the world, the data must be accurate and robust,
and must be updated with minimal latency. These
requirements constrain our choice of filtering algo-
rithms. We chose a method that follows these rules:

• Sensor errors impose low-amplitude noise on the
reported positions of near-stationary objects, so
the method heavily damps those streams of sight-
ings that differ by only a few centimeters.

• The system cannot readily distinguish large errors

from real object motions, because object accel-
erations are high relative to the sample rate.
Therefore, we simply accept large changes in
reported object position. If a large sensor error
were to occur, this would result in a large error
in the reported object position, but this is accept-
able, because larger sensor errors become
increasingly unlikely.

• If a reported change in object position implies an
unreasonably high velocity, the method makes an
exception to the last rule and discards the sighting.

We can further increase the fidelity of the model by
determining if someone appears to be seated. The sys-
tem looks for periods of constant-velocity motion
above a certain speed. Seeing such motion, it assumes
that the person is walking forward and is upright, and
records the floor-to-Bat height. If the Bat ever drops
below this level significantly, we infer that the user
has taken a seat. Because the user’s body shadows the
Bat’s ultrasonic signal, only receivers in front of the
person will detect signals from the Bat (assuming that
the person wears the Bat somewhere on the front of
the body). Therefore, we can estimate the person’s ori-
entation from the Bat’s position and the pattern of
receivers that detected it.

Figure 3 shows a 3D visualization of the model,
which indicates how the sentient computing system’s
view of the world accurately matches the environ-
ment’s real state.

SOFTWARE SUPPORT FOR SENTIENT SYSTEMS
We have found that we require several common fea-

tures in many of our sentient computing applications.
It is sensible to integrate such services with the API
provided by the world model, so that they become
available to all applications.

Spatial monitor
A spatial monitor formalizes imprecise spatial

relationships in terms of containment and overlap-
ping relationships between suitable 2D spaces, as
the “Spatial Monitoring—Programming with Space”
sidebar describes. This allows developers to use an
event-driven style of programming that treats spaces
on the floor like buttons on a traditional GUI dis-

Figure 3. The world
as seen by (a) users
and (b) the sentient
computing system.

(a) (b)



play, while people and other mobile objects become
somewhat like mouse pointers. 

In our building, the spatial monitor handles approx-
imately 3,700 individual spaces. The monitor, world
model, and underlying database all run on one Sun
Ultra 250 workstation, which has 500 Mbytes of
memory and two 300-MHz processors.

Timeline-based data storage
Sentient computing lets users personalize their net-

work appliances. Many of these appliances generate
data, which the system must store in a way that does not
require the user to specify its destination. For example,
if a user takes a photograph with a wireless camera, the
computing system needs to automatically store the pic-
ture in such a way that the user can easily retrieve it.

Based on earlier work,10 we developed a method that
creates a timeline that contains the data each individ-
ual generates and also incorporates information from
the model. Users can query this timeline with a tempo-
ral query language to retrieve data based on context.

APPLICATIONS
Sentient computing systems provide a wide range

of location-aware applications for users.

Browsing
An important application class, model browsers

simply display the environment’s current state. In addi-
tion to the 3D visualization shown in Figure 3, we
have also implemented the continuously updated map
shown in Figure 4.

The map can display personnel, furniture, tele-
phones, workstations, and other relevant information
so that users can

• find a colleague by name;
• immediately find the phone nearest to a person,

determine whether it is in use or not, then place a
call by clicking on the phone displayed on the
map;

• see, by the disposition of their neighbors on the
map, whether to contact a person or not—for
example, a person standing next to a visitor may
not wish to be disturbed; and
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Figure 4. A 2D-map
visualization of the
world model. In
Room 210, a user
(djc) is sitting in front
of his workstation
while using his tele-
phone, which is col-
ored red to indicate
that it is off the hook. 

Consider an application that moves a
user’s desktop between systems. This
application would register with the spa-
tial monitor, expressing interest in a cir-
cular space around a person, shaded
green in Figure A, and an area in front
of each display where the user could see

the screen, shown as a blue-colored oval.
When in front of the screen, the area

around the user is contained within the
area in front of the screen. The spatial
monitor detects this relationship, and
sends a positive containment event to the
application. The application responds by

displaying the user’s desktop on that
screen.

When the user moves away from the
screen, the spatial monitor sends a nega-
tive containment event to the application,
causing it to remove the user’s desktop
from the screen.

Figure A. Spatial monitoring application that moves users’ desktops around with them. The application registers with the Spatial Monitor (1); 
as the user (pjs) approaches the display (2) or moves away from it (3), the spatial monitor sends a positive or negative containment event to 
the application that transfers or removes the desktop to or from the screen.

Spatial Monitoring—Programming with Space

(3)(2)(1)
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• request to be informed when a person leaves a
room or arrives in the building, or to receive noti-
fication when the phone located nearest that per-
son is not in use.

Follow-me systems
Application developers can make services ubiqui-

tously available to “users” by moving their interfaces
to the nearest appropriate input or output device, a
technique we call follow-me. 

A follow-me desktop application can display a
user’s Virtual Network Computing11 desktop on the
nearest computer screen, triggered by the buttons on
the user’s Bat. 

When an external call targets the extension num-
ber of an absent user, the user’s Bat makes a ringing
sound. By pressing a button on the user’s Bat, the user
can have the call routed to the nearest phone. If the
user chooses instead to ignore the call, the system will
forward it to a receptionist.

We have installed several cameras in one room in
our building. A user can request to be tracked by these
cameras, and the system will create a video stream in
which the nearest camera is selected to keep the user
in-shot as he or she walks between different desks, dis-
plays, and whiteboards.

Each of these applications uses a different interpre-
tation of the word “nearest.” Spatial containment for-
malizes these notions. To support follow-me desktops,
each workstation has a space extending from it
around the area in which the keyboard can be used.
Follow-me phone calls are supported by spaces that
take into account obstacles posed by other objects,
like desks. Camera selection is supported by spaces
that delineate the floor area in which a given camera
will get a good view of the user.

Simply measuring the distance between two objects
does not fully capture the concept of nearness as people
use it. For example, a telephone that appears to be phys-
ically close to a user may be inaccessible because of inter-
vening desks and walls. Therefore, interpreting nearness

in terms of proximity would not give good results for
any of the applications we’ve described. A proximity-
based approach would too often return the workstation
behind the user, the phone on the other side of the room
divider, or the camera that is next to the user but hap-
pens to be pointing above his or her head.

Novel user interfaces
If we consider a Bat to be a pointer in a 3D user

interface that extends throughout our building, we
can create new types of user interfaces using Bats and
model information. Thus, we can use lower-dimen-
sional spaces to create arbitrarily shaped mouse pan-
els in 2D, slider controls in 1D, and buttons in 0D,
then project the 3D Bat position into these spaces to
control the user interface components.

Mice. We have placed several 50-inch displays
around our building. When a Bat enters the mouse
panel space that is placed in the model around each
screen, the system projects the 3D Bat position into a
2D mouse pointer reading, then transmits it to the
workstation controlling the screen. Any person’s Bat
can then be used as a mouse for any of these screens.

Virtual buttons. A button in a traditional GUI simply
indicates an area of the display with some special
application-level significance, accompanied by a label
that has some meaning to the user. We can take the
same approach with our 3D interface by registering
a point in the model as having an application-level
significance, and labeling the real world with a phys-
ical token at the corresponding point. To activate
these virtual buttons, a user places a Bat on the phys-
ical label and presses one of the Bat’s real buttons.
The button-press message from the Bat interrupts the
scheduler, thereby ensuring that the Bat requests a
location update within 50 ms and allowing it to
process the virtual button press with low latency.
Because each person’s Bat bears a unique identifier,
the system knows who originated each virtual-but-
ton event, thus virtual buttons can control personal-
ized applications.

One application of this technique, the smart poster,
contains labels for one or more virtual buttons, as
Figure 5 shows. We use smart posters to control fol-
low-me applications. For example, a user can enable
or disable his follow-me desktop or telephone service
with a smart poster. Applications that smart posters
control will normally send some audible feedback
directly via the user’s Bat.

We have also used a smart poster to control a net-
worked scanner. Users press buttons on the poster to
choose resolution, color level, data compression for-
mat, and destination—which can be either their e-mail
in-box or information timeline.

Augmented reality. If, in the future, users have a per-
manently available view of the model, it would not be

Figure 5. A smart
poster. In this exam-
ple, a user controls an
e-mail notification
service with a smart
poster.



necessary to create a label for a virtual button in the
physical world. We have experimented with a non-
stereoscopic head-mounted display, tracked using data
combined from three Bats and an inertial sensor, to
create an augmented reality display that superimposes
information from the model onto the user’s view of
the real world. This system could display labels for
otherwise invisible button spaces. Systems adminis-
trators could also use the augmented reality display
to maintain those parts of the world model that do
not update automatically, such as the positions of fur-
niture. Augmenting the user’s view of the environment
with the model’s current state can make any omissions
or inconsistencies immediately obvious.

Data creation, storage, and retrieval
If we use Bats to locate mobile networked devices,

we can use their positions to infer who holds them. We
can then increase the productivity of each device by

• personalizing the device spontaneously when a
given user picks it up, thereby making it easy for
users to share devices;

• filing any data the device generates according to
user preferences by, for example, placing the data
in the user’s timeline or e-mailing it to the user; and

• placing additional contextual information in the
timeline to aid data retrieval.

Currently, the user must explicitly perform config-
uration, data storage, and indexing—a fixed overhead
that presents a disincentive to use mobile devices for
small tasks. Applying sentient computing to this chal-
lenge may result in large productivity improvements.

Given the current lack of small devices with wire-
less connectivity, we have had to use devices that store
time-stamped data in nonvolatile memory. We also
store time-stamped ownership events that the model
generates, and, when the device synchronizes with the
network, we correlate the information streams to
determine which data corresponds to which user. This
approach precludes any kind of device personaliza-
tion at the time of use, but it does allow us to experi-
ment with personalized filing, postprocessing, and
context-based retrieval.

We have used several types of shared digital cam-
eras, located by Bats, to automatically store pho-
tographs in a user’s timeline. We also have used a
shared digital voice recorder to automatically store
audio memos in the user’s timeline, and we have
implemented a service that transcribes the voice data
using that user’s voice model. We also file the tran-
scription in the timeline along with the voice data used
to generate it. One advantage of a context-aware stor-
age mechanism is that it can associate arbitrary data
items simply by putting them close to one another

without maintaining any kind of referential integrity.
We can use this capability to compose information
sources in powerful ways. Once the system completes
the automatic transcription, we can use a text search
on the transcription to retrieve the voice data.

We have implemented a photo annotation program
as another example of this information-retrieval style.
When a fixed camera takes a photo, the application
queries the model to determine who is in the camera’s
field of view, then stores a suitable caption in the time-
line at the same time it stores the photograph. Thus,
a text search for “+photo +Hopper” returns sections
of a timeline containing photographs of Andy Hopper.
We cannot provide this service for presently available
handheld cameras because we cannot establish the
zoom state of the lens for a given photo.

Figure 6 shows a sample timeline that contains data
that several users generated contemporaneously: a
photograph taken using a handheld camera, an anno-
tated photograph taken using a fixed camera, and a
scanned document.

W e do not yet know how much value any of
our applications will create, but our initial
experiments show promise. We believe that

the only way to fully determine the utility of sentient
computing systems is to build and use them on a real-
world scale.

We can imagine a future in which inexpensive wire-
less technologies such as IEEE 802.11 and Bluetooth12

provide ready access to numerous networked and
mobile devices. However, maximizing the utility of
this richly equipped environment requires removing
the obstacles to sharing and configuring devices.
Sentient computing systems create applications that
appear to perceive the world, making it easy to con-
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Figure 6. A sample
timeline containing
data generated by
several users: a
photo taken with a
handheld camera, an
annotated photo
taken by a fixed cam-
era, and a scanned
document.
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figure and personalize networked devices in ways that
users can easily understand.

But sentient computing is more than a solution to
the problems of configuration and personalization.
When people interact with computer systems in this
way, the environment itself becomes the user inter-
face. We think this goal a natural one for human-com-
puter interaction. ✸
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