
A Low Overhead Application/Device-driver Interface
for User-level Networking

D. Riddoch
Laboratory for Communications Engineering

Department of Engineering
University of Cambridge, England

S. Pope
AT&T Laboratories Cambridge

24a Trumpington Street
Cambridge, England

Abstract
Recent user-level network interfaces have placed

an increasing proportion of their functionality in
hardware, in order to provide an efficient user-level
interface. The performance of such systems is signif-
icantly better than that of traditional network archi-
tectures, but comes at a cost; namely increasing com-
plexity of the hardware, reduced flexibility and limited
scalability.

In this paper we present a technique that reduces
the overhead of the application/device-driver inter-
face, hence shifting the tradeoff towards a soft im-
plementation. We show how this technique is used
to improve the performance of the CLAN user-level
network interface. Results given show that the per-
formance of this interface exceeds that of other tech-
nologies that provide a direct user-level interface to
the hardware, whilst retaining the flexibility and sim-
plicity of a software interface.

Keywords:user-level, networking, device-driver, asyn-
chronous

1 Introduction

The performance of traditional network architec-
tures is largely limited by the high software over-
head on the host[1]. Contributions include the
cost of making system calls, demultiplexing, pro-
tocol stacks and copying of data between address-
spaces and buffers. In the last few years a num-
ber of projects have addressed these problems by
providing a user-level interface to the network
interface[2, 3]. Applications access the network
directly through a virtual memory mapping onto
the hardware and/or through a region of host mem-
ory shared with it. In some cases the network pro-

vides reliable data delivery, allowing very simple,
low-overhead protocols, since there is no need for
error detection, correction or retransmission. The
reduced software overhead also significantly im-
proves cache performance.

These innovations have contributed to greatly
improved throughput and latency, and reduced
overhead. However, they come at a price; namely
increasing complexity (and hence cost) of the hard-
ware, and reduced flexibility and scalability. If a
resource is to be accessible at user-level by multi-
ple applications, there need to be multiple indepen-
dent instances of that resource in hardware. The
number of instances limits the number of applica-
tions or endpoints than can be supported simulta-
neously. An example is the Virtual Interface Ar-
chitecture (VIA)[4], where significant hardware re-
sources are needed for each endpoint[5].

Thus there is a tradeoff inherent in deciding
whether a particular feature should have a user-
level accessible interface, or be managed by the
device-driver. Existing systems strike a balance by
attempting to provide those features that are on the
critical path at user-level. Typically data transfer
can be achieved entirely at user-level, whereas con-
nection management and synchronisation require a
system call.

In this paper we describe an interface between
the application and device-driver that reduces the
overhead incurred when using resources that are
managed by the device-driver. A region of memory
shared by the device-driver and application is used
to pass various data and control messages asyn-
chronously. Applications pass commands to the
device-driver, and receive messages and other out-

of-band data entirely at user-level, significantly re-
ducing the number of system calls.

2 The CLAN Network Interface

As part of the CLAN[6] project at AT&T Laborato-
ries Cambridge we have developed a gigabit class
user-level network interface controller (NIC). The
basic communications model is non-coherent dis-
tributed shared memory, wherein a portion of the
virtual address space of an application is logically
mapped over the network onto physical memory in
another node. This is implemented by a virtual ad-
dress mapping onto the NIC, which forwards read
and write requests over the network, as illustrated
in Figure 1.

AperturesTripwiresDMAOOB

CLAN NIC

IP

Application
A B

Application
C

Application

Device
driver

Virtual memory mapping App/driver interface

H/W

OS

User

Figure 1: The CLAN network interface.

An application may set up an mapping onto
memory in an application on a remote node, known
as anaperture. Communication is achieved by
writing (and reading) to (from) the aperture using
programmed I/O or DMA.

As shown in the figure, the NIC provides a num-
ber of additional resources, which are only directly
accessible by the device driver:

Fixed sizeout-of-band messagesare sent be-
tween endpoints, and are used for connection man-
agement and miscellaneous control. Each endpoint
has a (configurable) fixed length queue for out-of-

band messages, and when this is full further mes-
sages are discarded. Message reception is driven
by an interrupt from the NIC.

The NIC has a programmable remote direct
memory access (RDMA) engine, which transfers
blocks of data from local memory to a remote lo-
cation. The transfer is performed in parallel with
processing on the CPU, thus providing low over-
head data transfer for medium and large messages.
This shared resource is multiplexed by the device-
driver.

Distributed shared memory itself provides no ef-
ficient means to synchronise with the arrival of data
from the network, since it is delivered into an appli-
cation’s address space asynchronously. The CLAN
NIC provides a novel primitive, thetripwire, which
provides efficient and flexible synchronisation with
cross-network accesses to arbitrary shared memory
locations. A tripwire is associated with some mem-
ory location, andfireswhen that location is read or
written via the network. The CLAN network and
tripwire synchronisation primitive are described in
detail elsewhere[7].

3 Application/Driver Interface

The main technique used to pass information be-
tween the application and device-driver is theasyn-
chronous queue. This is simply a circular buffer,
similar to those commonly used within applica-
tions, but placed in a segment of memory that is
mapped into the address-space of both the applica-
tion and device-driver.

Two pointers (read_i andwrite_i) give the
positions in the buffer of the head and tail of the
queue, the consumer incrementing the read pointer
modulo the size of the queue, the producer manag-
ing the write pointer likewise. The traditional im-
plementation uses an additional flag to distinguish
the full and empty cases, and requires mutual ex-
clusion to ensure consistency.

However mutual exclusion between the oper-
ating system (OS) and application is difficult to
achieve without using system calls. Instead we
eliminate the flag, and define the queue to be empty
when the pointers are equal, and full when there is
a single free slot in the buffer. Atomic integer up-

dates ensure consistency.

3.1 Out-of-band message queues

An asynchronous queue is used to pass out-of-band
messages from the device-driver to CLAN com-
munication endpoints. It is essential that the OS
be isolated from the (mis)behaviour of the applica-
tion, and so must not rely on the validity of data in
the memory segment shared with the application.
Thus the device-driver keeps its description of the
layout and state of the queue in private memory
that is not shared with the application, as illustrated
in Figure 2.

q_size

write_i

Virtual
mapping
onto
application
data

q_size

lazy_write_i

read_i

Q
ueue entries

Driver Application

Figure 2: Asynchronous message queue.

The application needs to be able toread
the value of the write pointer, so a copy
(lazy_write_i) is maintained in the shared re-
gion, and is updated wheneverwrite_i is up-
dated. The C code to enqueue a message is given
in Example 1. If the queue fills, further messages
are discarded.

Example 1Out-of-band message delivery.
void oob_q_put(const oob_msg* msg)
{

next_write_i = (write_i + 1) % q_size;
if(next_write_i == shm->read_i)

/* discard */ return;
shm->q[write_i] = *msg;
MEMORY__BARRIER();
write_i = next_write_i;
shm->lazy_write_i = write_i;
if(any_processes_blocked)

wake_them_up();
}

As shown in Example 2, the application de-
queues messages entirely at user-level; a system
call is only required if the application wishes to
block waiting for a message. Polling for messages
is thus very cheap, which is critically important
for a user-level network, because applications must
frequently check for messages when communicat-
ing in order to determine if the remote endpoint has
been closed. This is done on the receive side when-
ever there is no data immediately available, and on
the transmit side before sending data.

Example 2Out-of-band message retrieval.
int oob_q_get(oob_msg* msg, int blocking)
{

if(read_i == lazy_write_i)
if(blocking) oob_q_wait();
else return Q_WOULDBLOCK;

*msg = q[read_i];
MEMORY__BARRIER();
read_i = (read_i + 1) % q_size;
return Q_OK;

}

3.2 RDMA request queues

A similar queue is used to pass RDMA requests
in the other direction; from the application to the
device-driver. A request consists of a pointer to the
source in local memory, a descriptor for the des-
tination in remote memory, and the length. The
device-driver maintains a list of RDMA request
queues that are currently active, and services them
in a round-robin fashion. Requests are dequeued,
checked for correctness and then passed on to the
NIC. When a request completes an interrupt is gen-
erated, and the interrupt-service-routine is used to
start the next request. Where possible, a request is
checked and mapped in parallel with the execution
of the previous request, in order to minimise the
turn-around time between requests.

When the first request is placed in the queue, the
application makes a system call to let the device-
driver know that the queue is active, but after that
the device-driver dequeues entries asynchronously.
The application may continue to add entries to
the queue, and only need invoke the device-driver
again if the queue empties completely.

By multiplexing multiple soft queues onto a sin-

Applications enqueue
DMA requests
asynchronously

system call to start first
request

Inactive queue:
Application must make

Next request started
by interrupt-service-
routine of previous
request.

Driver takes requests

and starts H/W.
Queues are serviced
using round-robin.

from active queues

ApplicationDriver

Figure 3: RDMA Request Queues

gle hardware resource (rather than providing mul-
tiple hardware queues accessible from user-level)
we can be flexible about scheduling requests. Our
implementation allows applications to indicate that
a number of RDMA requests form part of a single
logical message, and so should be scheduled to-
gether. It would also be trivial to implement a pri-
ority scheme or set a maximum transfer size and
split large requests in order to prevent a single ap-
plication from monopolising the resource.

3.3 Tripwire notification

Applications have to make system calls to ini-
tialise, enable and disable tripwires. These are typ-
ically done at connection setup or when the appli-
cation needs to block, and so are not on the criti-
cal path. The state of a tripwire — whether it has
fired or not — is made available at user-level in a
bitmap stored in memory shared with the device-
driver, and thus can be queried with very low over-
head. Large numbers of tripwires can be polled
efficiently be examining a whole word at a time.

3.4 Asynchronous event queues

The CLAN NIC generates a variety of events, in-
cluding tripwires, RDMA completion and out-of-
band message arrival. A unified mechanism and
interface is needed to deliver these events from
multiple endpoints, and allow efficient synchro-
nisation with event arrival. Traditionally some
variant on the BSDselect system call is used.
However, the deficiencies of this style of inter-

face are well known, and even with sophisticated
optimisations[8] have been shown to incur high
overhead and scale poorly with the number of end-
points.

We have developed a mechanism which deliv-
ers events directly to the application with low over-
head, and with costO(1), using the asynchronous
queue described above. The queue resides in mem-
ory mapped into the OS and application’s address
space, and so the application can dequeue events
entirely at used-level, and only need make a system
call in order to (un)register events and to block.

We have generalised the Linuxwait_queue
by adding a call-back,1 which is used here to en-
queue an event. To prevent the queue from over-
flowing we ensure that each registered event can
only be enqueued once before it is dequeued. This
is implemented by a bitmap which has a single bit
per registered event, and which also lives in the
shared memory segment.

The wait-queue call-backs provide a generic
event hook which we have also used to implement
an in-kernel event-driven NFS service, and a per-
formance improvement for theselectandpoll sys-
tem calls.

4 Performance

In this section we present a number of micro
benchmarks that characterise the performance of
the CLAN NIC and software interface. For com-
parison we also give results for the Giganet cLAN
1000[9] implementation of VIA, which presents
request queues and completion events as hardware
resources that are directly accessible at user-level.

4.1 The test platform

The benchmarks were run on a pair Pentium III
workstations running the Linux 2.2 operating sys-
tem. The CLAN NICs were connected via a
switch, the Giganet NICs connected back-to-back.
The free-running cycle counter was used for fine-
grained performance measurements.

1: The existing implementation can only be used to wake a
sleeping process

The test application consists of a server and
client. The server is single-threaded, with all
completion events multiplexed onto a single asyn-
chronous event queue for CLAN, and a completion
queue for VIA. The client application makes one
or more connections to the server and sends small
messages, which are acknowledged. After process-
ing each request the server spins for up to15�s

before blocking, in order to improve response and
reduce overhead when the server is under load[10].

4.2 Results

Figure 4 shows the bandwidth achieved when
streaming messages of various sizes. Flow control
is provided by acknowledgements sent from the re-
ceiver to the sender, which also indicate the amount
of buffer space available. The DMA performance
of the CLAN NIC is comparable with the perfor-
mance of VIA, and in both cases the small mes-
sage bandwidth appears to be limited by the inter-
request setup time.

0

200

400

600

800

4 16 64 256 1024 4096 16384

B
an

dw
id

th
 (

M
bi

t/s
)

Message size (bytes)

AT&T CLAN, DMA
AT&T CLAN, PIO

Giganet cLAN 1000

Figure 4: Bandwidth vs. message size.

On the CLAN NIC this can be alleviated by us-
ing programmed I/O, which for small messages has
low overhead and consequently superior through-
put. The maximum throughput here is limited by
the memory system on the test nodes. We have
achieved over 900 Mbps on Alpha workstations.

Figure 5 shows the round-trip time for a small
message varies with the number of idle connec-
tions that the server is managing. The plot shows
that for both CLAN and VIA the round-trip time
scales well with respect to the number of connec-
tions. The two plots (for each interface) show the

round-trip time (a) when the server is idle and so
has to rescheduled when a message arrives, and (b)
when the server is kept busy, and so already run-
ning on the processor when the message arrives.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

R
ou

nd
-t

rip
 ti

m
e

(u
s)

Number of idle clients

Giganet cLAN sleep
Giganet cLAN spin
AT&T CLAN sleep

AT&T CLAN spin

Figure 5: Round-trip time vs. idle endpoints.

The final test attempts to show how the inter-
face performs under load. Because we only have
two VIA test nodes, a single client application is
used to make multiple connections to the server,
and simulates the behaviour of many independent
clients. An increasing number of connections are
opened to the server, and a request is sent down
each connection. The results are shown in figure 6.

0

100000

200000

300000

400000

500000

0 20 40 60 80 100

R
eq

ue
st

s
pe

r
se

co
nd

Number of clients

AT&T CLAN
Giganet cLAN

Figure 6: Throughput vs. offered load.

For the VIA result it is not clear whether the bot-
tleneck is in the client or the server, since they have
to perform similar amounts of work. However, the
total per-message overhead can be estimated, and
is 2:2�s for CLAN and6:7�s for VIA.

5 Related Work

The Piglet operating system is an attempt to bring
enhanced performance and quality of service to
multi-processor systems by partitioning the func-
tionality of the OS between processors. Processors
in the system can be associated with I/O devices,
and run a lightweight device kernel (LDK) which
provides the interface for the device, and may im-
plement some of the functionality of the network-
ing subsystem. The LDK communicates with the
host OS and also directly with applications via a
shared memory interface[11]. Endpoints are polled
in order to provide low latency, but the effect on
scalability has not been explored.

In the Nemesis[12] operating system I/O chan-
nels used to transfer data between processes are
implemented by passing buffer descriptors (iorecs)
through an asynchronous queue. Event counts give
the position of the head and tail of the queue, and
also provide synchronisation. The event counts are
an operating system primitive, and are updated by
a system call.

A number of solutions to the problem of deliv-
ering I/O events from multiple sources have been
proposed, including POSIX realtime signals, the
/dev/poll interface in Solaris and others[13].
The main contribution of the asynchronous event
queue given in this paper is the ability to dequeue
events entirely at user-level, and hence with very
low overhead.

6 Conclusions

The CLAN network provides a distributed shared
memory based communications model, with a ad-
ditional facilities for connection management, syn-
chronisation and DMA. Although these key as-
pects of the network interface are managed by the
device-driver, use of a carefully designed shared
memory interface leads to very low overhead. All
the facilities needed on the critical path of commu-
nication can be accessed at user-level.

The performance of the RDMA engine is com-
parable with that of the Giganet cLAN VIA NIC,
but because it is managed by the device-driver, re-
quires considerably less hardware support. Sup-

porting increasing numbers of applications and
endpoints only requires more memory, whereas for
VIA additional resources are also needed in the
NIC. Further, support for programmed I/O in the
CLAN NIC provides very low overhead and la-
tency for small messages.

The RDMA engine currently requires an inter-
rupt per transfer, which adds significant overhead
and damages applications’ cache performance. A
future revision of the NIC will allow multiple re-
quests to be submitted at once, and will thus gen-
erate fewer interrupts. This will also reduce the
turn-around time between requests, and hence im-
prove small message bandwidth.

The current trend in high performance network-
ing is to make more of the network interface acces-
sible at user-level by providing increasing amounts
of functionality in hardware. However, the CLAN
network succeeds in delivering high bandwidth
with low latency and overhead with an implemen-
tation that is simpler and more scalable. By reduc-
ing the overhead of the application/device-driver
interface, the tradeoff shifts away from a user-
level accessible hardware implementation and to-
wards device-driver management, with the associ-
ated benefits for scalability, flexibility and cost.

Acknowledgements

The authors would like to thank all of the members
of the Laboratory for Communications Engineer-
ing, and AT&T Laboratories Cambridge, particu-
larly members of the CLAN team.

David Riddoch is jointly funded by the Royal
Commission for the Exhibition of 1851 and AT&T
Laboratories Cambridge.

References

[1] Richard Martin, Amin Vahdat, David Culler,
and Thomas Anderson. Effects of Communi-
cation Latency, Overhead, and Bandwidth in
a Cluster Architecture. In24th International
Symposium on Computer Architecture, 1997.

[2] Thorsten von Eicken, Anindya Basu, Vineet
Buch, and Werner Vogels. U-Net: A User-

Level Network Interface for Parallel and Dis-
tributed Computing. In15th ACM Sympo-
sium on Operating Systems Principles, De-
cember 1995.

[3] Matthias Blumrich, Kai Li, Richard Alpert,
Cezary Dubnicki, Edward Felten, and
Jonathan Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multi-
computer. In21st Annual Symposium on
Computer Architecture, pages 142–153,
April 1994.

[4] The Virtual Interface Architecture. http:
//www.viarch.org/ .

[5] Philip Buonadonna, Andrew Geweke, and
David Culler. An Implementation and Anal-
ysis of the Virtual Interface Architecture. In
Supercomputing, November 1998.

[6] The CLAN Project. http://www.uk.
research.att.com/clan/ .

[7] David Riddoch, Steve Pope, Derek Roberts,
Glenford Mapp, David Clarke, David In-
gram, Kieran Mansley, and Andy Hopper.
Tripwire: A Synchronisation Primitive for
Virtual Memory Mapped Communication. In
4th International Conference on Algorithms
and Architectures for Parallel Processing,
December 2000.

[8] Gaurav Banga and Jeffrey Mogul. Scalable
kernel performance for Internet servers under
realistic loads. InUSENIX Technical Confer-
ence, June 1998.

[9] Giganet, Inc. http://www.giganet.
com/ .

[10] Stefanos Damianakis, Yuqun Chen, and Ed-
ward Felten. Reducing Waiting Costs in
User-Level Communication. In11th Interna-
tional Parallel Processing Symposium, April
1997.

[11] Steve Muir and Jonathan Swift. Functional
divisions in the Piglet multiprocessor oper-
ating system. InACM SIGOPS European
Workshop, 1998.

[12] Ian Leslie, Derek McAuley, Richard Black,
Timothy Roscoe, Paul Barham, David Ev-
ers, Robin Fairbairns, and Eoin Hyden. The
Design and Implementation of an Operat-
ing System to Support Distributed Multime-
dia Applications. IEEE Journal on Selected
Areas in Communications, 14(7):1280–1297,
September 1996.

[13] Gaurav Banga, Jeffrey Mogul, and Peter Dr-
uschel. A scalable and explicit event delivery
mechanism for UNIX. InUSENIX Technical
Conference, June 1999.

