The Grenade Timer:
Fortifying the Watchdog Timer Against Malicious Mobile Code*

Frank Stajano t I

Ross Anderson

T University of Cambridge Computer Laboratory,
New Museums Site, Cambridge CB2 3QG, United Kingdom

Tel: +44 1223 334600; Fax: +44 1223 334678
Email: name. surname@cl.cam.ac.uk

T AT&T Laboratories Cambridge,
24a Trumpington Street, Cambridge CB2 1QA, United Kingdom
Tel: 444 1223 343000; Fax: +44 1223 313542
Email: fms@att.com

Abstract

Systems accepting mobile code need protection from
denial of service attacks staged by the guest program.
While protected mode is the most general solution, it
is not available to the very low-cost microcontrollers
that are common in embedded systems.

In this paper we introduce the grenade timer, an
evolution of the watchdog timer that can place a hard
upper bound on the amount of processor time that
guest code may consume. Unlike its predecessor, it
is resistant to malicious attacks from the software it
controls; but its structure remains extremely simple
and maps to very frugal hardware resources.

Keywords: mobile agents, security, denial of service,
watchdog timer.

1 Introduction

We move towards a scenario of ubiquitous comput-
ing: all around us, payment cards, vehicles, consumer
electronics, white goods and office equipment already
have computing capabilities, which will be further
enhanced when coupled with short range wireless
telecommunications facilities [2, 9, 12]. In the future,
we may expect computing and networking facilities
to become embedded in all the objects that surround
us, from clothes to doorknobs.

Mobile code is now an established development in
distributed systems, and is already part of the de-
ployed Internet infrastructure in so far as most desk-
top browsers run Java. Cellular telephones have al-
ready become miniature web browsers and it will not

*Appears in “Proceedings of 7th International Workshop
on Mobile Multimedia Communications (MoMuC 2000)”,
Waseda, Tokyo, Japan, 23—-26 October 2000.

take long for vendors to want to push new function-
ality into their customers’ phones or even SIM cards,
much like web sites nowadays do with Java applets
and ActiveX controls. More advanced forms of mo-
bile code have also been envisaged, such as itinerant
agents [4].

It seems plausible to expect that ubiquitous com-
puting and mobile code will eventually intersect, with
small pieces of code roaming around from one appli-
ance to another. There will be many uses for such
an arrangement, of which automatic firmware up-
dates, configuration management, resource discovery
and personalisation will probably be seen as the least
imaginative. However useful the application, though,
mobile code will ultimately be unacceptable to con-
sumers without proper system-level safeguards, oth-
erwise its introduction will dramatically decrease re-
liability and, ultimately, personal safety. Interesting
though it may be to have a fridge capable of reorder-
ing food over the Internet when it finds itself empty,
the conventional fridge may still be preferable if the
wired one is vulnerable to viruses that randomly de-
frost it or turn it off, spoiling its contents in the pro-
cess'.

To protect the host system from untrusted mobile
code, one should first explicitly identify the security
properties to be safeguarded. Farmer et al. [8] offer an
excellent taxonomy of the security issues for mobile
agents, but place the emphasis on the more difficult
problems of protecting the agent, compared to which
the protection of the host is easy. So does Ordille [13],
who examines trust as the agent roams along a path
not determined in advance. Much of the literature
on security tends to concentrate on the more the-

ILet us not forget that viruses were the earliest and ar-
guably still the most widespread instances of mobile code.

oretically challenging problems: plenty of attention
is devoted to confidentiality (keeping information se-
cret), some to authenticity (verifying the identities
of the principals involved) and integrity (preventing
unauthorised modifications), but very little to avail-
ability (ensuring that the system keeps on working).
In our case, though, like in many other real-world sce-
narios including banking and emergency services, the
priorities are reversed, and the most pressing concern
is to avoid denial of service attacks. We shall there-
fore concentrate on those. In particular, we wish to
be able to limit the amount of processor time that
the guest program will consume.

This is especially important for devices that inte-
grate several functions. Our practical experience with
frauds against digital prepaid electricity meters [1]
suggests the following insight. If you imagine a mul-
tifunction meter containing not only the system soft-
ware from the electricity company but also some code
from the user’s bank which takes care of reloading
the meter with money when necessary, you will see
that the electricity company needs to be sure that the
banking program cannot take over control of the pro-
cessor. Otherwise, if a poorly (or maliciously) written
banking application got stuck in an endless loop, the
meter would no longer be able to turn off the power
once the available credit balance were exhausted.

2 The watchdog timer

The most general mechanism for limiting the re-
sources consumed by mobile code is probably a pro-
cessor with a protected mode facility, on which the
operating system can implement pre-emptive multi-
tasking. The guest program is run in real mode and,
when its allotted time expires, it is stopped by the op-
erating system running in protected mode. Address
protection also prevents the guest program from read-
ing or writing memory outside its allotted segment,
thereby addressing first-order confidentiality and in-
tegrity concerns?.

Where the hardware does not provide a protected
mode facility, running mobile code safely is more dif-
ficult. Emulating protected mode in software is not
usually a viable option, since checking the legitimacy
of every instruction being run leads to unacceptable
performance. Static verification before execution, as
in Java, requires that the language in which the pro-
gram is expressed be suitably restricted. This is not
unreasonable for mobile code, if only for portability
reasons, but it means that the host must run a vir-
tual machine instead of native code. The overhead
and performance penalty are negligible on a desktop

2Second-order problems are still possible, such as violations
of confidentiality through the exploitation of covert channels,
but we won’t go into details here.

machine, but might be significant for the tiny micro-
processors used in ubiquitous computing devices. Ac-
cepting only object code that was previously checked
and signed by some trusted authority, as happens in
the ActiveX architecture, may be appropriate in some
circumstances but gives fewer guarantees on the ac-
tual behaviour of the code, while at the same time
imposing more serious centralised restrictions and/or
vulnerabilities.

Practically all modern microprocessors offer a pro-
tected mode, so the discussion about alternatives may
at first appear to have only historical interest. How-
ever we should not underestimate the fact that, at
the scale of deployment envisaged for the ubiquitous
computing scenario, one of the primary operational
directives will be “low cost”, and that a sub-dollar
difference in the cost of the processor may make the
difference between success and failure in the market-
place. Besides, embedded applications tend to use
single chip microcontrollers, for which the availabil-
ity of a protected mode (with the associated compli-
cations in the memory management architecture) is
still much less common than for microprocessors for
desktop systems.

Another observation is that a server based on the
latest microprocessor and pre-emptive multitasking
OS is such a complex system that people are now
forced to look with suspicion at claims of availability
guarantees based on the properties of its kernel. It is
not uncommon for builders of mission critical systems
that must run 24 x 7 to adopt a “belt and braces”
attitude and supplement those kernel guarantees with
a hardware watchdog timer.

The concept of a watchdog timer is powerful yet
deceptively simple. The timer is basically a counter
that is decremented at every clock tick and that will
reset the processor when it reaches zero. It is used
to ensure that a software crash will not hang an
unattended machine. The software must periodically
prove to be working by reloading the counter; if it
fails to do that for too long, the watchdog will even-
tually reboot the system.

The watchdog timer was originally developed for
high reliability embedded systems such as those used
for industrial process control. The rationale was that
EMI and electrical surges in a noisy environment
could flip bits of the memory at random and there-
fore cause the execution of meaningless code, which
had the potential to lock up the machine indefinitely.
Commercial implementations are available either as
an external chip or as integrated in the microcon-
troller [5, 6, 7]. But watchdog timers are now also
used in PC-based servers; they are available as PC
expansion cards [3, 10] (sometimes they are even in-
cluded on the motherboard) and are supported by
several BIOS manufacturers [11, 14].

3 The grenade timer

The watchdog timer, however, despite its usefulness
for controlling a program that might accidentally run
astray, cannot protect the system against a malicious
program that purposefully tries to keep the proces-
sor to itself. The operating system could tell the
guest program “I am about to execute you, and I
will grant you up to 20 million clock cycles; if you
have not returned control to me by then, you will be
terminated”. But if by hypothesis we use a proces-
sor where all code runs in real mode, the above is
pointless: without the distinction between real mode
and protected mode, if the operating system can load
the counter with the value “20 million cycles”, then
so can the guest program, which is therefore free to
extend its own lifetime indefinitely.

We were thinking about this problem in the con-
text of providing a restricted execution facility for
mobile code that might run on the hardware node
developed at AT&T Laboratories Cambridge for the
Prototype Embedded Network (previously known as
Piconet) project [2]; this portable short-range wire-
less system uses the TMP93PS40 16-bit microcon-
troller from Toshiba (based on the TLCS-900/L pro-
cessor) which, like most other microcontrollers, does
not offer a protected mode.

Inspired by the watchdog timer concept, we came
up with a construction that solves the above prob-
lem. We call it the grenade timer. It allows a system
without protected mode to limit the execution time
of a guest program.

The novel idea is to build a counter that can not be
reloaded once it is running. An egg-timer set to count
downwards for five minutes can easily be stopped or
wound back at any time during its countdown; how-
ever a hand grenade whose fuse has been lit will def-
initely explode after the set number of seconds, re-
gardless of any attempt to put the pin back in. We
want our counter to be like a grenade: once the op-
erating system has pulled out the pin and tossed the
fizzing grenade to the guest process, no authority in
the world (not even the operating system itself) must
be able to postpone the scheduled explosion.

We may however provide an escape mechanism
that makes the explosion happen immediately: this is
equivalent to firing a bullet into the fizzing grenade to
make it blow up prematurely. This is a useful thing
to do when a well-behaved guest program wants to
return control to the operating system before having
consumed its entire quota of allocated cycles.

We complete the metaphor by explicitly saying
that the operating system wears a thick armour that
protects it from explosions: when the grenade goes
off (which corresponds to the processor been reset),
the guest process dies, but the operating system is
unharmed.

This simple construction adds a “poor man’s pro-
tected mode” to the processor: as long as the grenade
is fizzing, the system is in real mode and the executing
process can’t escape the fact that it will have to relin-
quish control when the grenade goes off>. When the
grenade is not fizzing, the running process is by defi-
nition in protected mode, because it has the power to
set the delay and pull the pin to start the countdown
if and when it wishes.

It may be instructive to compare the relation-
ship between the watchdog timer and the grenade
timer with that between the CRC (cyclic redun-
dancy check) and the cryptographically strong one-
way hash.

Both the CRC and the hash are functions that take
as input a bit string of arbitrary length and return
as output a short bit string of fixed length. In both
cases, the purpose of the output is to act as error-
detecting redundancy: if the input string is changed,
the precomputed redundancy will no longer match,
and a verifier will be able to detect the change. The
difference between the two is that the CRC only re-
sists to random errors, while the hash (which is more
expensive to compute) also resists to malicious at-
tacks. The CRC is designed to detect random bit
errors such as those due to telecommunication noise;
but an attacker may flip unimportant bits in a forged
message until it yields the desired CRC, therefore
making the forgery undetectable. The hash, however,
is designed to stop just that, and makes it computa-
tionally infeasible to generate a message with a given
hash output.

The situation is somewhat similar with our timers.
The watchdog timer is designed to interrupt pro-
grams that might accidentally lock up, but is insuffi-
cient to stop programs that actively try to circumvent
it. The grenade timer, instead, explicitly addresses
the case of malicious attacks. Informally,

watchdog : grenade = CRC : hash.

At the circuit diagram level (see figure 1), the
external interface of the grenade coprocessor as de-
scribed so far (which contains little more than a
counter) is as follows:

The RESET input brings the device in a known ini-
tial state: it is a necessary system-level facility out-
side the control of the main processor and we shall
not consider it any further here.

The device® is in real mode when IS_FIZZING is
1 and in protected mode otherwise. The LOAD input
and the COUNT_VALUE data bus may be used to load

3The position to which the processor jumps on reset will
always run in protected mode and therefore needs to be safe-
guarded from unauthorised changes, otherwise the guest pro-
gram could substitute itself to the operating system code and
bypass any protection. See section 4.

40r, more precisely, the system that incorporates it.

COUNT_VALUE

LOlAD %

PULL_PIN > BOOM
FIRE
——> IS_FIZZING
CLOCK
—~
RESET

Figure 1: External interface of the grenade timer.

a new counter value, but only in protected mode, i.e.
when IS_FIZZING = 0.

The PULL_PIN input only works from protected
mode. When raised, it causes the device to start
counting down from the currently loaded count value;
IS_FIZZING goes to 1 as the count starts.

When the counter reaches 0, the BOOM output (to
be connected to the main processor’s RESET line) goes
to 1 for one clock cycle and IS_FIZZING comes back
to 0.

The FIRE input only works® while IS_FIZZING is 1;
it forces the explosion to happen (BOOM will go to 1
for one cycle) and the fizzing to stop, but it does not
reset the counter to 0, so that the operating system
can read the current COUNT_VALUE to see how many
ticks remained when the grenade exploded.

4 Limiting the addressable

range

The mechanism so far described only protects agains
the guest program not relinquishing control, but not
against integrity or confidentiality violations. This
is serious: if the guest can overwrite the OS code,
any protection can be circumvented. Placing the OS
in ROM, as is frequently done in embedded systems,
makes it safe from modifications; but the working
area would still be subject to corruption. Besides, in
an environment supporting dynamic updates to the
system, the OS could be held in Flash or RAM.
This issue may be addressed by augmenting the
grenade timer with some extra lines that intercept the
processor’s address bus (see figure 2). The grenade
timer, while fizzing, masks out the top bits of the
address bus (even only one bit is sufficient in princi-
ple if one wishes to save on pin count) and replaces

5Since FIRE is unresponsive when PULL_PIN works and
vice versa, an attempt to minimise pin count might combine
PULL_PIN and FIRE into a single input line whose function would
depend on the state of IS_.FIZZING. Here, for clarity, we prefer
to keep the two signals distinct.

them with a fixed page address defined by the oper-
ating system before pulling the pin. This prevents
the guest program from reading or writing memory
or I/O addresses outside the authorised page.

3

CPU MEMORY

TOPMOST
BITS

ADDRESS BUS

Figure 2: Restricting the range of accessible ad-
dresses.

There are however some subtleties to do with pass-
ing control from the OS to the guest and with call-
ing OS services from the guest. We have thought of
mechanisms to deal with those issues, which we shall
briefly sketch below, but we don’t find them particu-
larly elegant, so suggestions and criticisms from read-
ers will be welcomed.

To call the OS from the guest, the program pokes
a system call request into a well-known memory loca-
tion designated as a mailbox, protects it with a CRC
for integrity, and raises FIRE. This resets the proces-
sor, which jumps into the OS. The start-up code of
the OS checks the mailbox and, if the CRC matches,
proceeds with the evaluation of the request (other
criteria will decide whether to honour the request,
including sanity checks on the parameters and the
amount of ticks left over in the grenade timer when
it was shot). The CRC is then deleted by the OS,
so that the presence of a valid one can be taken as a
guarantee of freshness; this allows the OS to distin-
guish a system call from a genuine reset due to ex-
ternal causes. Finally, the grenade timer is restarted
and the guest code is reentered, as described below.

To pass control from OS to guest we envisage a
special section of code spanning the page boundary.
The code starts in protected mode, raises PULL_PIN
as it crosses the boundary and then finds itself in
real mode with the grenade fizzing. The obvious lim-
itation of the fixed entry point may be overcome by
using another mailbox in a similar way.

5 Conclusions

We introduced the grenade timer as an inexpensive
mechanism for imposing a hard limit of the CPU time
that a guest program may consume, in the absence
of a protected mode for the host processor.

Today the majority of embedded systems are still
based on simple microcontrollers that do not offer a
protected mode. If we extrapolate and merge the sce-
narios of ubiquitous computing and of mobile agents,
we obtain a world in which even embedded devices
will customarily run mobile code. In those circum-
stances, a true protected mode architecture seems the
most appropriate way to support safe sandboxing.

In the interim, though, for as long as the hard-
ware designer finds the best trade-offs in a simpler
microcontroller that does not offer that feature, the
grenade timer may prove useful. It does not re-
quire many more gates than a simple counter and
will therefore easily fit in a corner of the general pur-
pose FPGA that the system almost certainly already
includes.

6 Acknowledgements

We are grateful to Paul Osborn of AT&T for useful
comments on an earlier draft.

References

[1] Ross J. Anderson and S. Johann Bezuiden-

houdt. “On the Reliability of Electronic
Payment Systems”. IEEE Transactions on
Software Engineering, 22(5):294-301, May

1996. http://www.cl.cam.ac.uk/ftp/users/
rjal4/meters.ps.gz.

[2] Frazer Bennett, David Clarke, Joseph B.
Evans, Andy Hopper, Alan Jones and David
Leask. “Piconet: Embedded Mobile Network-
ing”. IEEE Personal Communications, 4(5):8—
15, Oct 1997. ftp://ftp.uk.research.att.
com/pub/docs/att/tr.97.9.pdf.

[3] Berkshire Products. “ISA PC Watchdog Board
User’s Manual”. Manual, Berkshire Products,
Suwanee, GA, 2000. http://www.berkprod.
com/docs/isa-wdog.pdf.

[4] Davis Chess, Benjamin Grosof, Colin Harri-
son, David Levine, Colin Parris and Gene
Tsudik. “Itinerant Agents for Mobile Comput-
ing”. IEEFE Personal Communications, 2(5):34—
49, Oct 1995. http://www.research.ibm.com/
massdist/rc20010.ps.

[5] Dallas Semiconductor. “Using the High-Speed
Micro’s Watchdog Timer”. Application Note 80,
Dallas Semiconductor, Oct 1999. http://www.
dalsemi.com/datasheets/pdfs/app80.pdf.

[6] Dallas Semiconductor. “Using the Secure
Microcontroller Watchdog Timer”. Applica-
tion Note 101, Dallas Semiconductor, Nov

[13]

[14]

1999. http://www.dalsemi.com/datasheets/
pdfs/app101.pdf.

Dallas Semiconductor. “Watchdog Timekeeper”.
Application Note 66, Dallas Semiconductor, Jul
1999. http://www.dalsemi.com/datasheets/
pdfs/app66.pdf.

William M. Farmer, Joshua D. Guttman and
Vipin Swarup. “Security for Mobile Agents: Is-
sues and Requirements”. In “Proceedings of
the 19th National Information Systems Security
Conference”, pp. 591-597. Baltimore, Md., Oct
1996. http://csrc.nist.gov/nissc/1996/
papers/NISSC96/paper033/SWARUP96 . PDF.

Jaap Haartsen, Mahmoud Naghshineh, Jon In-
ouye, Olaf J. Joeressen and Warren Allen. “Blue-
tooth: Visions, Goals, and Architecture”. ACM
Mobile Computing and Communications Review,
2(4):38-45, Oct 1998.

ICS Advent. “Model PCI-WDT 500/501
Product Manual”. Manual 00650-144-
1A, ICS Advent, San Diego, CA, 1998.

http://www.icsadvent.com/techlib/
manuals/00650144.pdf.

ITOX, Inc. http://www.itox.com/pages/
products/LitTig/TCub/bulletintcla.htm.

Kevin J. Negus, John Waters, Jean Tourrilhes,
Chris Romans, Jim Lansford and Stephen Hui.
“HomeRF and SWAP: Wireless Networking for
the Connected Home”. ACM Mobile Computing
and Communications Review, 2(4):28-37, Oct
1998.

Joann J. Ordille. “When agents roam, who can
you trust?” In “First Conference on Emerg-
ing Technologies and Applications in Com-
munications (etaCOM)”, Portland, OR, May
1996. http://cm.bell-labs.com/cm/cs/doc/
96/5-09.ps.gz.

Phoenix Technologies. http://www.phoenix.
com/platform/awardbios.html.

http://www.cl.cam.ac.uk/ftp/users/rja14/meters.ps.gz
http://www.cl.cam.ac.uk/ftp/users/rja14/meters.ps.gz
ftp://ftp.uk.research.att.com/pub/docs/att/tr.97.9.pdf
ftp://ftp.uk.research.att.com/pub/docs/att/tr.97.9.pdf
http://www.berkprod.com/docs/isa-wdog.pdf
http://www.berkprod.com/docs/isa-wdog.pdf
http://www.research.ibm.com/massdist/rc20010.ps
http://www.research.ibm.com/massdist/rc20010.ps
http://www.dalsemi.com/datasheets/pdfs/app80.pdf
http://www.dalsemi.com/datasheets/pdfs/app80.pdf
http://www.dalsemi.com/datasheets/pdfs/app101.pdf
http://www.dalsemi.com/datasheets/pdfs/app101.pdf
http://www.dalsemi.com/datasheets/pdfs/app66.pdf
http://www.dalsemi.com/datasheets/pdfs/app66.pdf
http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper033/SWARUP96.PDF
http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper033/SWARUP96.PDF
http://www.icsadvent.com/techlib/manuals/00650144.pdf
http://www.icsadvent.com/techlib/manuals/00650144.pdf
http://www.itox.com/pages/products/LitTig/TCub/bulletintc1a.htm
http://www.itox.com/pages/products/LitTig/TCub/bulletintc1a.htm
http://cm.bell-labs.com/cm/cs/doc/96/5-09.ps.gz
http://cm.bell-labs.com/cm/cs/doc/96/5-09.ps.gz
http://www.phoenix.com/platform/awardbios.html
http://www.phoenix.com/platform/awardbios.html

	Introduction
	The watchdog timer
	The grenade timer
	Limiting the addressable range
	Conclusions
	Acknowledgements

