Tripwire: A Synchronisation Primitive for Virtual
Memory Mapped Communication

David Riddoch?, Steve Pope Derek Roberts Glenford Mapp,
David Clarké, David Ingram, Kieran Mansley, Andy Hoppet?

{djr, slp, der, gem, djc, dmi, kjm, ai@uk.research.att.com

L AT&T Laboratories Cambridge,
24a Trumpington Street, Cambridge, England

2 Laboratory for Communications Engineering,
Department of Engineering, University of Cambridge, England

Abstract dramatically reduced overhead and latency, and deliver
substantial performance benefits to applications.
Existing user-level network interfaces deIiv_er high However, these new interfaces are typically unsuit-
bandwidth, low latency performance to applicationgpe for use in general purpose local area networks. The
but are typically unable to support diverse styles gfierface is often designed to support a particular class
communication and are unsuitable for use in multiprgs proplem, and is thus a poor solution for others. In
grammed environments. Often this is because the Ngdine cases the interface does not scale well with the
work abstraction is presented at t00 high a level, afimper of applications and endpoints on a single sys-
support for synchronisation is inflexible. _ tem. What is needed is a network interface that will
In this paper we present a new primitive for in-bangejiver high performance for a wide variety of commu-

synchronisation: th&ripwire. Tripwires provide a flex- pication styles, and do so in a multiprogrammed envi-
ible, efficient and scalable means for synchronisatiggnment.

that is orthogonal to data transfer. For data transfer, non-coherent distributed shared

We describe the implementation of a non-cohere temory offers very low overhead and latency, and high

distributed shared memory network interface, wi andwidth. Small messages can be transferred with a

Tripwires for synchronisation. This interface providef"éW processor reads or writes, and larger messages us-

a Iow-l_evel communications model with gigabit clas% DMA. Messages are delivered directly into the ad-
bandwidth and very low overhead and latency. We sh ess space of the receiving application with no CPU in-

how it supports a variety of communication styles, Irll'olvement, and because the interface presented is low-

cluding remote procedure call, message passing ql&(,"iel it is also very flexible

streaming. A key problem for distributed shared memory based
communications, however, is that efnchronisation

1 Introduction For example, the DEC Memory Channel has a com-
munication latency of onl®.9us, yet acquiring an un-

It is well known that traditional network architecturescontended spin-lock takes20us[7]. In order to re-

such as ethernet and ATM, deliver relatively poor pedlise high performance for applications in a multipro-

formance to real applications, despite impressive igrammed environment it is critical that applications be

creases in raw bandwidth. This has been shown to &e to synchronise in a timely, efficient and scalable

largely due to high software overhead. To address tRignner.

problem a variety of user-level network interfaces have Mechanisms used for synchronisation in existing so-

been proposed[l, 2, 3, 4, 5, 6]. These have achievations include polling known locations in memory cor-

responding to endpoints, raising an interrupt when cer-
tain pages are accessed, or sending out-of-band syn-
chronisation messages. These solutions are inflexible,
and typically give high performance only for restricted
styles of communication and classes of problem.

The main contribution of this paper is a novel in-band
synchronisation primitive for distributed shared mem-
ory systems: thd&ripwire . Tripwires provide a means
to synchronise with reads and writes across the network
to arbitrary memory locations. This enables very flex- Figure 1: The CLAN NIC.
ible, efficient and fine-grained synchronisation. Using
Tripwires, synchronisation becomes orthogonal to data
transfer, decoupled from the transmitter, and a number pcrBus

of optimisations which reduce latency become possible. t T

In the rest of this paper we present a new gigabit (] interrupt
class network interface which provides non-coherent En“glfjle % Igmfz
distributed shared memory with Tripwires for synchro- matching
nisation. We describe the low-level software interface V3PCl Bridge s
to the network, support for efficient and scalable syn- : !
chronisation, and go on to give some performance re- 1960 Local Bus
sults. We also show how the network interface can be t 1
_used to implement a variety of higher-level prot_ocols, ‘Readcmol oo FIFO H WierFo ‘
including remote procedure call, message passing and Y ¥

streaming data. Initial results suggest that excellent per- "~
formance and scalability is delivered to a wide variety | erorcontral

of applications. |
This project derives from earlier work remot- Fibre optic
transc‘aver

ing peripherals[8] in order to support the Collapsed -
LANJ9].

Figure 2: Logical structure of the CLAN NIC.
2 The Interconnect Hardware

We have implemented a user-level Network |nterfa%p|icati0n is mapped over the network onto physica|
Controller (NIC) based on a non-coherent shared mefiemory in another node, which is also mapped into
ory model. The current implementation of the NIGhe address space of an application on that node. Data
is a 33 MHz, 32 bit PCI card, built from off thetransfer is achieved by an application issuing processor
shelf components including a V3 PCI bus bridge, a8ad or write instructions to the mapped addresses —
Altera FPGA, and HP's G-Link chip set and opticaknown as Programmed 1/0 or P1O. The NIC also has a
transceivers. The latter serialise the data stream at ér@grammab]e DMA engine1 enab“ng concurrent pro-
Gbit/s, and were chosen to map neatly onto the spee@g§sing and communication.

the target PCI bus. Read and write requests arriving at the NIC are pro-

This platform has enabled us to perform synchrgessed in FIFO order, and likewise at the receiving
nisation experiments at gigabit speeds whilst retainiRgc: thus PRAM[10] consistency is preserved. Appli-
the flexibility of FPGA timescales. Figure 2 shows gations must use memory barrier instructions at appro-
schematic for the NIC. priate places to ensure that writes are not re-ordered by
the processor or memory management hardware when
order is significant.

It should be noted that this interface is not intended
The basic communications model supported by the Nt€ provide an SMP-like shared memory programming
is that of non-coherent shared memory. Using this
model, a portion of the virtual address space of one. Direct Memory Access

2.1 Non-coherent shared memory

model. Although some algorithms designed to run dion of the NIC. Error detection is performed using par-
an SMP might work correctly on a hon-coherent menty.

ory system, the performance is likely to be very poor It should be noted that other physical layers and link
due to the non-uniform memory access times. RatHayer protocols are possible and desirable, and by using
it is intended that higher-level communications abstraan existing standard we would make use of commodity
tions be implemented on top of this interface, hiding thegh performance switches.

details of the hardware and peculiarities of the platform,

which include: 2.3 True zero copy
e The latency for network reads is nearly twice thathe network interface and on-the-wire protocol de-
for writes. scribed above are able to support true zero copy through

thte whole network. Read and write requests (whether
Fom programmed I/O or DMA) are serialised by the
NIC immediately, without buffering. This is shown in
Figure 3.

e On some platforms there are size and alignm
restrictions when accessing remote memory.

2.2 Wire protocol

Write requests for remote memory arrive at the NIC DMA Transfer

over the PCI bus, and are serialised immediately into Memory

packets, each of which represents a write burst. A write PIO Transfer

packet header simply contains a destination address, DMA read

and is followed by the burst data. The length of the ‘ /)

burst is not encoded in the header, and so a packet can Swem‘Bus |

start to be emitted as soon as the first word of data ar-

rives at the NIC, and finishes when no more data within I

the burst is available. Thus the minimum packet size is (DMA

. . . CPU

just a header and a single word of data, and the maxi-

mum is bounded only by the largest write burst that is | porex

generated. This burst based protocol is similar to that

us?ﬂ;na?grg?g:r? s(,jupercompu_ter_ network[11]. quure 3: The path of data through the system for PIO

y data word within a packet can D€ DMA network writes

calculated from the address in the packet header anéj '

the offset of the data word within the packet. A conse-

guence of this is that packets may be split at any point,At the receiving NIC incoming data is transfered di-

as a new header for the second part of the packet candagly into host memory, again without buffering. The

calculated trivially. Similarly consecutive packets thafelivery of the data does not involve any processing on

happen to represent a single burst can easily be idéfe CPU in the receiving node, and so has very low

tified, and coalesced. This technique is well knowsverhead. As shown in Figure 4, the cache on the re-

within the memory system of single systems, but hegeiving node snoops the system bus, and if data in the

is being extended into the LAN. cache is written by a remote node, it will be updated or
The utility of this can be seen when implementing iavalidated.

switch, an important function of which is to schedule

the network resource between endpoints. It is impoj- et

tant that a large packet does not hog an output por':;go'f4 Synchronisation

the switch unfairly, and so it should be possible to split traditional network architectures all messages pass

packets. Using the protocol presented it is possiblettoough the operating system kernel, which implicitly

do this in a worm-hole switch with no buffering, whilsiprovides a handle to provide synchronisation with mes-

preserving the efficiency of large packets when theresage transmission and arrival. Shared memory inter-

no contention. Even if a packet is split, it may poterfaces, however, do not of themselves offer any means

tially be coalesced at another switch further on its roufer efficient synchronisation between communicating
Hardware flow control is based on the Xon/Xoffrocesses.

scheme, but we expect to move to a new scheme comWithin a single system, shared memory systems typ-

bining Xon/Xoff with credits in the next implementadcally use some lock primitive such as the mutex and

1/0 Bus

‘ Cache ‘ ‘

soumdu

PIO write

Memory

1/0 Bus ‘ ‘

o
<E
3

w]
<
>

andfireswhen that memory location is read or written
via the network.

For example, an application can setup a Tripwire to
detect writes to a particular memory location in its ad-
dress space, and will be notified when that location is
written to by a remote node. Itis also possible to setup
Tripwires to detect reads, or to specify a range of mem-
ory locations.

This is achieved by snooping the addresses in the
stream of network traffic passing through the NIC, and
comparing each of them with the addresses of the mem-
ory locations associated with each of the Tripwftes,
without hindrance to the passing stream. The compari-
son is performed by a content-addressable memory, and

Figure 4: The path of data through a receiving nodea synchronising action is performed when a match is de-

condition variable of pthreads, or semaphores. Mechg

tected.

The synchronising action performed is to place an
integer identifier for the Tripwire into a FIFO on the
C and raise an interrupt. The device driver’s inter-

nisms used in existing distributed shared memory Sy service routine retrieves these identifiers, and does

tems include:

e Polling memory locations, otherwise known
spinning This technique provides the best laten

whatever is necessary to synchronise with the applica-
tion owning the Tripwire. This is not the only possible

aﬁ/pe of action; others include setting a bit in a bitmap in
Post memory (in the address space of the application)

when servicing a single endpoint, but does nat incrementing an event counter
scale well with the number of endpoints and the We believe that the combination of non-coherent

processor resource is wasted whilst polling.

been used on a number of systems, and allows

shared memory with Tripwires for synchronisation pro-

Generate an interrupt on page access. This wé%es a flexible and efficient platform for communica-

receiving process to synchronise with remote ac-o The choice ofnon-coherentshared memory al-

cesses to it's pages. However, the granularity is at
the level of the page, so it is not possible to se-
lectively synchronise with specific events within a
data transfer.

Explicit out-of-band synchronisation messages (as
used by the Scalable Coherent Interface[12]). Thise
solution complicates the network interface and is
inflexible.

If the performance advantages of memory mapped®
networking are to be fully realised, then an efficient and
flexible user-level synchronisation mechanism must be,
provided.

2.5 Tripwires for synchronisation

Here we present a novel primitive for in-band synchro-
nisation: theTripwire . Tripwires provide a means to
synchronise with cross network accesses to arbitrary
memory locations. Each Tripwire is associated with

lows a relatively simple and highly efficient im-
plementation with very low latency. For example,
although the SCI specification includes hardware
based coherency, to date very few implementations
have included it.

Communications overhead is very low; small
transfers can be implemented using just a few pro-
cessor writes, and larger transfers using DMA.

Multicast can be implemented efficiently with suit-
able support in the switch.

Tripwires allow highly flexible, efficient and fine-
grained synchronisation; it is possible to detect
reads or writes to arbitrary locations in memory.

Synchronisation is completely orthogonal to data

transfer. It is possible to synchronise with the ar-

rival of a message, an arbitrary position in a data
stream, or on control signals such as flags or coun-
ters.

some memory location (which may be local or remote)2. The current incarnation of the NIC supports 4096 Tripwires.

e Synchronisation is decoupled from the transmittegince it abstracts above the device driver and hardware
The recipient of a message decides where in thmerface.
data stream to synchronise, and can optionally tune
this for optimal performance. 3.1 Endpoints

e It is possible to reduce latency by overlappingn endpointis identified by host address and a port
scheduling and message processing with daf@mber. Fixed siZeout-of-band messages are demul-
transfer. See section 4.3. tiplexed by the device driver into per-endpoint queues,

- . and are used for connection setup, tear down and ex-

* As well as synchronising W'th accesses to IOcﬁgptional conditions. The message queue resides in a
memory by_remc_)te nodes, Tripwires can be us gment of memory shared by the application and de-
to synchronise W'th accesses to remote memory ., driver, and so messages can be dequeued without a
t_he local node. T_h|s can be used to detect ComloLeil'stem call. This technique is used throughout the de-
tion of an outgoing asynchronous DMA tr":mee\r/ice driver interface to reduce the overhead of passing
for example. data between the device driver and application. This

Together these points mean that it is possible to ir%e_chnique is described in detail elsewhere(13].
9 P P The out-of-band message transfer is itself imple-

plement a wide variety of higher level protocols eﬁ'r'nented in the device driver using the NIC’s shared

ciently, including remote procedure call (RPC), stream—emory interface and Tripwires, using a technigue sim-

ing, message passing and shared memory based diﬁg}'to that shown in Section 4.1
bution of state. N

. . _ An APl is provided to create and destroy endpoints,
The current incarnation of the NIC requires that a%nd manage connections. To amortise the relatively

pI!cat|ons interact W'.th the device c_Jrlvgr o setup T”Fﬁigh cost of creating endpoints and their associated re-
wires and synchronise when a Tripwire fires. A new

) . . ._sources, they may be cached and reused across connec-
version, under active development, will enable apphc{%n sessions
tions to program Tripwires at user-level through a vir- '
tual memory mapping onto the NIC. When a Tripwire

fires, notification will be delivered directly into the ap3-2 Apertures

plication’s host memory, and so synchronisation may, ,nertyrerepresents a region of shared memory, ei-
also take place at user-level. Only when the applicatigqy, iy the local host memory or mapped across the net-
bk.)CkS waiting for a Tripwire or other eyent need thﬁ/ork. An aperture is identified by an opaque descriptor,
driver request that the NIC generate an interrupt as fifiich may be passed across the network and used by an
synchronising action. application to map a region of its virtual address space
onto the remote memory region, or used as the target of
a DMA transfer

The NIC uses a very simple direct mapping between
ECI bus addresses and network addresses, and provides

The device driver for the NIC targets the Linux 2 .y . . :
.. "no explicit protection on the receive path. Physical
kernel on x86 and Alpha platforms, and WinDriver . :
ages of memory in an aperture must be contiguous,

portable driver software (Linux and Windows NT), anf .
requires no modifications to the operating system co%‘.d must be locked down _to prevent them_from be'f‘g
The NIC can thus be used in the vast majority of rece%"tvappgd out by the.operatmg system. Basic protection
commodity workstations is provided by the virtual memory system at the gran-

The interface presented by the device driver aifity of the page — a process may only create map-
. . 0 . ings to remote apertures for which it holds a descriptor
hardware is wrapped in a thin library. The main puP—

pose of this layer is to insulate higher levels of code. but a faulty or malicious node could circumvent this

from changes to the division of functionality betweeBrOteCtlpr.]' We will be addressing these problems in fu-
ure revisions of the NIC.

user-level, device driver and hardware implementation. -
. i It should be noted that although facilities are pro-
For example, a future incarnation of the hardware may . : o
. S . . vided for managing connections, this is not the only
provide facilities to perform connection setup entirely
at user-level. 3. Such as IP and NFS, see Section 6.
This layer also makes it easy to write code which can. 40 byte payload.
be used both at user-level and for in-kernel servicess. In this context the descriptor is known as an RDMA cookie.

3 Low Level Software

model supported. Any number of apertures may be aiver maintains a circularly linked list of DMA request

sociated with an endpoint, and mappings can be magleeues which are not yet empty, and services them in a

to any aperture in any other host independently of coreund-robin fashion. Note that this asynchronous inter-

nections. face would work just as well if the DMA engine were
managed on the NIC.

3.3 Tripwires

An API is provided to allocate Tripwires, and to setup

and enable Tripwires to detect local and remote reads

and writes. The application may test the state of a Trig-> Multiple endpoints
wire, or block until a Tripwire fires.

. .When a Tripvyire 'firefs the NIC places an i.nteger id_eq—he primitives discussed above are sufficient to manage
tifier for the Tripwire into a FIFO and raises an ingommunication through a single endpoint efficiently,
terrupt. The interrupt service routine wakes any prgi it is also necessary to have non-blocking manage-

cess(es) waiting for that Tripwire, and sets a bit in @ant of multiple endpoints to support common event

bitmap. This bitmap resides in memory shared by thejen programming models typically used in server

application and device driver, and so itis possible to teg{jications. Traditionally some variant on the BSD
whether a Tripwire has fired at user-level. Thus pollingjectsystem call is used. However, the deficiencies
Tripwires is very efficient. of these are well known, and even with sophisticated

A Tripwire may be markednce onlyso thatitis dis- optimisations[14] do not scale well with the number of
abled when it fires. This improves efficiency for SOMgndpoints.

applications, by saving a system call to disable the Trip- _ _ _
wire, but is unlikely to be necessary when Tripwire pro- \We have developed a solution to this problem in the
gramming is available at user-level. form of anasynchronous event queugripwire, DMA

A Tripset groups a number of Tripwires from a Sin_completion and out-of-band message events are deliv-

gle endpoint together so that the application can w&fied by the device driverinto a circular queue. The API
for any of a number of events to occur. allows the application to register and unregister interest

in individual events, poll for events and block until the
gueue is non-empty.

3.4 DMA
As with out-of-band messages above, this queue is

The NIC has a single DMA engine, which reducesaintained in memory shared by the device driver and
communications overhead by allowing concurrent dad@plication. The cost of event delivery (1) and
transfer and processing on the CPU. There is cu@ents are dequeued without a system call — so this in-
rently no direct user-level interface to DMA hardwareerface is very efficient. Indeed event delivery becomes
so DMA requests must be multiplexed by the devigaore efficient when a server is heavily loaded with net-
driver. work traffic, since the server is less likely to have to

All DMA interfaces that we are aware of require thahake a system call to block before retrieving events.
the application invoke the device driver or access thore information is given elsewhere[13].

hardware directly for each DMA request. We have im- rldeally such a mechanism should be a standard part

plemented a novel interface which reduces the numb(? i ; but while that i th it
of system calls required and schedules the DMA engiﬂean operating system, but while that 1 not the case |

fairly among endpoints. The application maintains IS important to be able to block waiting for I/O activity

queue of DMA requests in a region of memory shar other devices in the system as well as the network.

with the device driver, and the device driver reads r 0 support this the asynchronous event queue itself is

When the first request is placed in the queue, tRe q Py

application must invoke the device driver. After that A number of other solutions to this problem with
the device driver will dequeue entries asynchronous{y(1) cost have been proposed, including POSIX real-
driven by the DMA completion interrupt, until thetime signals, thédev/poll interface in the Solaris
queue is empty. The application may continue to adgerating system and others[15]. The main contribu-
entries to the queue, and only need invoke the deviten of our approach is the delivery of events directly to
driver if the queue empties completely. The devidbe application without a system call.

4 Programming the NIC

4.1 Simple message transfer

Figure 5 shows how a simple, one-way, point-to-point

message transfer protocol is implemented.

Example 1Simple message transfer.
void send_msg(const void* msg)

{

while(!tx_ready)
tripwire_wait(tx_ready_trip);

tx_ready = O;

memcpy(remote->buffer, msg, msg_length);

remote->rx_ready = 1;

}

Receive }/oid recv_msg(void* msg)
R while(!rx_ready)
: I tripwire_wait(rx_ready_trip);
[rx_ready = 0;
memcpy(msg, buffer, msg_length);
- =1
x_ready) remote->tx_ready ;
Message
buffer client writes a request into the server’'s message buffer,
and when the RPC completes the result is written back
into the client's message buffer. This arrangement only

Host
memory

| Remote

- - aperture

D Tripwire

requires two control flags and two Tripwires (one in the
client and one in the server), since the order in which
messages can be sent is restricted.

Figure 5: Message transfer using semaphores. 4.2 Adistributed queue

A disadvantage of the above protocol is that the sender
o)] and receiver are tightly coupled — they must synchro-

Onthe transmitting sidex_ready is aboolean flag pise at each message transfer. This prevents streaming
which istruewhen the buffer is free for sending. Onthe g hence decreases bandwidth. This can be alleviated
receive sidex_ready s true when a valid message By using a queue as shown in Figure 6. The correspond-
ready in the buffer. Initiallytx_ready is set to true ing C program is shown in Example 2.
andrx_ready is setto false.

To send a message the sender must wait until
tx_ready is true, set it to false (to indicate that the

Receive
buffer is busy), copy the message into the remote buffer

and setrx_ready to true. The receiver waits for jmmmmmmmm s NG >

rx_ready to become true, clears it, copies the mes- e | lazy_write |
sage out of the buffer and resétsready to true, so
that the buffer can be used again.

This protocol will work as described on any PRAM-
consistent shared memory system — the difficulty be-
ing synchronising with updates to tive'rx_ready e
flags. This is achieved using Tripwires.

A C program implementing this protocol is shown
in Example 1. For simplicity the example shows that
the message data is copied twice — into and out of the Host ---
message buffer — but this is not necessary. The sender D memory - -
could write the message data directly into the remote
buffer, and on the receiving side the application could
read the message contents directly from the message
buffer, giving true zero copy.

We have used this simple protocol to support a re-This implementation works similarly to a type of
mote procedure call (RPC) style of interaction. Thgueue commonly used within applications. Fixed size

Send

S911ud anend

| Remote
- aperture

D Tripwire

Figure 6: A distributed queue.

messages are stored in a circular buffer. Two countessites. This is important because reads have a rela-

read_i andwrite_i , give the positions in the buffertively high latency, and generate more network traffic.
at which the next message should be dequeued andlareach case the control variables that must be read by
gueued respectively. an endpoint are stored in local memory. This memory

The traditional implementation uses an additionid cacheable, so polling the endpoints is very efficient.
flag to distinguish between the full and empty caseslt is interesting to note that both of the protocols
when the counters are equal. However, this requiregigen above will work correctly without Tripwires, by
lock to ensure atomic update, which would significantlgolling the values of the control variables, and this
degrade performance in a distributed implementatigthoice can be made independently in the transmitter
For this reason we do not use the additional flag; thad receiver. Tripwires merely provide a flexible way to
gueue is considered to be empty when the counters syschronise efficiently, and a number of enhancements
equal, and full when there is only one empty slot in traye possible:
receive buffer. This effectively reduces the size of the

queue by one e If a message is expected soon, the application may

choose to poll the control variables for a few mi-
croseconds before blocking. This reduces latency
and overhead by avoiding a system call[16].

Example 2A distributed queue.

void g_put(const g_elm* elm)

e Itis possible to overlap data transfer with schedul-

while((write_i + 1) % q_size == lazy_read_i) . L.
tripwire_wait(lazy_read_i_trip); ing of the receiving application. This is done by
remote->qg[write_i] = *elm; ; ; : P Wi H ;
wiite | = (write_i + 1) % q_size; setting a Tripwire in _the receiving appl!catlon for
remote->lazy_write_i = write_i; some memory location that will be written early
} in the message transfer, and going to sleep. The
void q_get(q_elm* elm) application will be rescheduled as the rest of the
while(read i == lazy write_i) message is being transfered, thus reducing latency.
tripwi it(l ite_i_trip);
relm ;'p‘év['rrgg;vji;(azy—wr' e—'f P) * Itis even possible to begin processing the header
read i = (read_i + 1) % q_size; of a message in parallel with receiving the body, by
remote->lazy read_i = read_j; R . k
} setting separate Tripwires for the header and body

of the message.

DMA or PIO can be used for the data transfer. The
choice will depend on the characteristics of the ap-
plication and the size of the messages.

The distribution of the control state between the
sender and receiver is motivated by the desire to avoid
cross-network reads. The sender ‘owns’ Write i
counter, which it updates each time a message is write The distributed queue can be adapted in a number
ten into the remote buffer. A copy of this counter, of ways, including support for streaming unstruc-
lazy write_i , is held in the receiver, the sender tured data, sending multi-part messages, and pass-
copying the value ofnrite_i to lazy_write i ing meta-data.
each time the former is updated. Tread_i counter

is maintained similarly, with the receiver owning th
definitive value. 5 Raw Performance
Thus the sender’s and receiver's lazy copies

fo. . . .
read_i and write_i respectively may briefly beﬁq this sect|on_ we present a number of micro-
tbenchmarks which demonstrate the raw performance

out-of-date. This isafethough, since the effect is tha he hard d how this t lates into hiah
the receiver may see fewer messages in the buffer t z;ﬁ € harcware, and how this transiates into high per-
mance for practical applications. All tests are per-

there really are, and the sender may believe that
buffer contains more messages than it does. The R[med atuser-level.
consistency is quickly resolved.
5.1 System characterisation

4.3 Discussion The test nodes are 530 MHz Alpha systems running the

Linux 2.2 operating system. Fine grain timing was per-
When designing the two protocols given above, cafermed using the free running cycle counter. A number
was taken to ensure that all cross-network access wefaystem parameters were first measured:

e The system call overhead (measured using are likely holding data back in order to generate large
ioctl) is about.75us. The true overhead of sys-bursts — and cache loading.
tem calls is made significantly worse, however, by The surprising results for programmed 1/O are due

the effect they have on the cache.

to a bug in the V3. Under some circumstances, the
V3’s internal FIFOs lock, causing the V3 to emit sin-

e The scheduler overhead when a single processyig word bursts until the FIFOs drain. A workaround in

un-blocked iBps.

e The interrupt latency i8us.

5.2 Shared memory

our FPGA logic detects this condition, and backs off for
a time to allow the V3 to recover. This effect causes the
negative gradient seen in the figure.

The receiving V3 generates 16 DWORD bursts on the
PCI bus for PIO traffic, and 256 DWORDS for DMA

These benchmarks exercise the distributed shared m&@iic- Together with the additional V3 stall at the start

ory interface, and use ‘spinning’ for synchronisation.

of each burst, this severely limits the PIO bandwidth. To
address this we have some initial work implementing

1. The round-trip time for a single DWORD wagoalescing of bursts on the receiving NIC. Initial tests
measured by repeatedly writing a word to a knowgtggest that with this logic in place the performance of
location in a remote application, which then copied!O Will be very similar to that of DMA.
that word into a known location in the sending

application. The round-trip time 8.7us, giving 5§ 3 An event-based server
an application to application one-way latency of

1.9us.

The benchmarks presented in this section are designed
to exercise the Tripwire synchronisation primitive, and

2. The raw bandwidth was found by measuring thgow how this interface scales and performs under load.
interval between the arrival of the first DWORD of Te server application is built using a single-threaded
a message at the processor, and arrival of the Ig§knt processing model, the main event loop being
DWORD. Figure 7 shows the results for DMA anghased on the standard BSilectsystem call. The
PI10. Peak bandwidth is 910 Mbit/s, and is limitege gescriptor corresponding to an asynchronous event
by a stall for one cycle on the receiving V3 Pchueue (section 3.5) is a member of thelect setand

bridge at the start of each burst.

1000

MA —+—

e

PIO -
]

800
it

-

600 |5+

rrrrrrrrrrrrrrrrrrrrr

400

Bandwidth (Mbit's)

200

256 1024 4096 16384 65536 262144
Transfer size (bytes)

Figure 7: Raw bandwidth vs. size

becomes readable when there are entries in the queue.
In this case a handler extracts events from the queue and
dispatches them to call-back functions associated with
each endpoint. The event queue is serviced until it is
empty, and then polled for up thus before returning

to the main select loop.

When a connection is established a Tripwire is ini-
tialised to detect client requests. This Tripwire is reg-
istered with the asynchronous event queue, and the re-
guest management code receives a call-back whenever
arequest arrives.

The test client makes a connection to the server,
and issues requests to perform the various benchmarks.
When waiting for an acknowledgement or reply the
client spins, which is reasonable since the reply will
usually arrive in less time that it takes for a process to
go to sleep and be rescheduled.

The plots given in Figure 7 need some further expla-

nation. Firstly, it is not possible to meaningfully me

331 Round-trip time

sure the bandwidth for messages smaller than about 256
bytes, since blocking effects of the cache and variolrsthe first set of tests we measure the round-trip time
bus bridges dominate. The latency across the NIC hafoka small message under differing conditions of server

ware (measured using a logic analyser) is abdut,

load. Each test is repeated a large number of times, and

S0.9us are spent traversing buses and bridges — whittie result reported is the mean:

e When a largeX% 15us) gap is left between each =

request the server goes to sleep between requests, /ﬁ/‘/
and the round-trip time consists of the transmit e
overhead, the hardware latency, the interrupt over- /

cessing overhead and the reply. The total is ¢

head, the rescheduling overhead, the message pro- /
16-8“8. § 200000 /

e As explained in Section 3.5, a server using the ™ /
asynchronous event queue becomes more efficient
when kept busy, since it avoids both system calls © T ® ®
and going to sleep. In this benchmark messages
are sent as quickly as possible, one after anothgigure 9: Requests per second vs. number of endpoints
but with only one message in flight at a time. In
this case the round-trip time consists of the same
steps as above, but without the reschedule, and im-
proved cache performance. The round-trip time is
reduced to just.9us.

the total per-message overhead on the server when
fully loaded is1/340000s, or 2.9us.

e Figure 8 shows how the server performs as tle3.2 Bandwidth

number of connections increases. The two traces)) . .
correspond to the server being busy and idle Elgure 10 shows the bandwidth achieved sending vari-

above. The client chooses a connection at rand&iiS Sizes of message one way to the server, the server
for each request. As expected, theponse time is 2cknowledging each message.
independent of the number of connections

1000

=5

25

T -
server busy —— x P
server idle --x---

800 >
x S

X
20 [g % /
N P SO x._ § N T 600 /
15
400 -

10
200 v /0

S N e — //
X

B o /

0 2

4 16 64 256 1024 4096 16384 65536 262144
Message size (bytes)

Bandwidth (Mbit's)

Round trip time (us)

0 200 400 600 800 1000
Number of endpoints

Figure 10: Unidirectional bandwidth vs. message size

Figure 8: Round-trip time vs. number of endpoints for (a) single messages in flight and (b) streaming.

e In the final test multiple requests are sent by thee For curve (a) each message is sent as a single
client on different connections before collecting DMA, and acknowledged by the server. The client
each of the replies. This simulates the effect of waits for the acknowledgement before sending the
multiple clients in the network, and is shown in next message.

Figure 9. Note that even when the server is over-
loaded the performance of the network interface is
not degraded.

e Curve (b) shows the bandwidth when streaming
messages. Each message is sent using DMA, and
the next is started without waiting for acknowl-

The curve is tending towards 340000 requests per edgement of the first.

second, and given that the server is effectively per-

forming a no-op, we can assume that all the pro- Curve (b) corresponds closely to the theoretical

cessor time is spent processing messages. Thusughputfor a link with a bandwidth of 900 Mbps and

10

a setup time obyus. This consists of théus interrupt 1/0 subsystemS,it is difficult to provide a fully func-
latency and the time taken to setup the next transfer. Timnal implementation at user-level. We have thus cho-
interrupt overhead will be eliminated when user-levekn initially to provide support by presenting the net-
programmable DMA and chaining are supported in tleork interface to the kernel using a standard network
hardware. Note that half the maximum available bandevice driver[19].
width is achieved with messages of about 750 bytes inThe implementation is illustrated in Figure 11. A
size. single connection is made on demand between pairs of
Another study[17] has compared the performance wédes which need to communicate using IP. The receiv-
a number of user-level communication interfaces inmg node pre-allocates a small number of buffers, and
plemented on the Myrinet interconnect, which has rggasses RDMA cookies for these buffers to the sending
performance comparable with the CLAN NIC. Theinode through a distributed queue (as described in Sec-
‘Unidirectional Bandwidth’ experiment is equivalent tdion 4.2). Completion messages are passed through an-
this one, and out of AM, BIP, FM, PM and VMMC-2,other queue in the opposite direction.
only PM gives better performance than the CLAN NIC.
PM[18] is a specialised network interface not suitable
for general purpose networking.

Transmit Receive

Linux Network
Subsystem

Linux Network
Subsystem

6 Supporting Applications 1

)

Pool of receive
IIII buffers

\

N[]

\

N\

It is important that innovations in network interface de-
sign translate into real performance improvements at
the application level, for existing as well as new appli-
cations. Support for existing applications can be pro-

vided at a number of levels: Distributed RDMA

cookie queue

Distributed completion
queue

e Implement an in-kernel device driver.

e Recompile applications a source-

compatible API.

against
Figure 11: The implementation of CLAN IP

e Replace dynamically loaded libraries.
. . Data transfer consists of the following steps:
Of these 2 is likely to give the best performance, but
is at best inconvenient, and often not possible. Aniny The Linux networking subsystem passes in

kernel solution will provide binary compatibility with a buffer @truct sk_buff) containing the
existing applications, but performance is likely to be packet data to send.

relatively poor due to the high overheads associated

with interrupts, the protocol stack, cache thrashing an@.
context switches. The last solution works well when the
network abstraction is provided at a high level, as is the
case with middleware such as CORBA and MPI.

We are actively porting a number of representative3-
protocols and applications to our network interface, and
this section presents some initial results. 4

6.1 IP

The Internet Protocol is the transport of choice for the
majority of communication applications, and has beerg,
implemented over almost all network technologies. Be-
cause the protocol is presented to applications at a very

The packet data is transfered across the network
by DMA, using an RDMA cookie from the dis-
tributed queue as the target.

A completion message is written into the comple-
tion queue.

On the receive side, a Tripwire is used to synchro-
nise with writes into the completion queue. The
buffer containing the packet data is passed on to
the networking subsystem.

New buffers are allocated if necessary, and their
RDMA cookies are passed back to the transmitting

low level, and must be fully integrated with the others. Usingselector poll on UNIX systems

11

node. The distributed RDMA cookie queue effed3.2 NFS

tively provides flow control, so we aim to prevent it

from emptying, since this would cause the sendAPOth_er service _Nh'Ch we have |mple_mented In
to stall. the Linux kernel is the Sun Network File System

Protocol[20] (NFS). The implementation consists of
Although the development of this implementation igvo sets of modifications:
still work in progress, we have some preliminary results
from an early version. In Table 1 we compare the rounde The SunRPC layer runs over a custom socket im-
trip time and small message bandwidth for CLAN IP plementation over the CLAN NIC.
with fast- and gigabit ethernet technology. The test uses

TCP/IP, repeatedly sending and returning a message. ® A number of DMA optimisations are added at
higher levels in the NFS subsystem to increase per-

[RTT__ B/W at 1KByte formance for file data transfer.

CLAN IP 100us 225 Mbit/s
100 Mbit ethernet 160us 23 Mbit/s
Gigabit ethernet | 260us 23-28 Mbit/s

A CLAN connection is setup when a filesystem is
mounted. NFS messages are passed through the socket
layer via the SUNRPC layer, whilst file data is transfered
Table 1: Round trip time and bandwidth for CLAN an(fing DMA directly from the Linux'bgﬁer ca_che into.
ethernet. the receiving nqde. As a_further optlmlsatlpn itis possi-

ble to transfer file data directly from the disk to the re-
ceiving node, bypassing local host memory altogether.

Figure 12 shows the bandwidth achieved againathether this results in a performance gain depends on
message size for the same test. The gigabit ethernet was pattern of file access, and the performance of the
configured to use jumbo frames and large socket buffelisk controller cache.

(256 kilobytes) to improve its performance, whereas We have not been able to perform any standard NFS
CLAN IP is using just 32 kilobytes per socket buffer. benchmarks, since these mandate the use of the UDP
protocol, and often implement the client side NFS. It

300

ST AR would be necessary to implement an ethernet UDP to
L CLAN bridge to make use of these tests.
e As an initial empirical guide we have timed the task

8
38

of compiling the Linux kernel on a local file system, and

one imported over NFS. In both cases éx¢2file sys-

// tem is used. For the local filesystem the compile time is
/ 6 minutes 42 seconds, and over NFS it is 6 minutes 45

Bandwidth (Mbits)
@
3

.
5
8

seconds.
— Although compilation is typically a CPU bound pro-
. / cess, it was not parallelised in this test, so file system
Tt s overhead makes a significant contribution to the com-

)) ~ pile time. This result suggests that importing a file sys-
Figure 12: TCP/IP bandwidth for CLAN and glgablfem over CLAN NFS has very low overhead.
ethernet, as a function of message size.

@
8

6.3 MPI

Due to a bug in the CLAN NIC which caused dead-

locks’ at the time of this experiment, the bandwidth ig' order to test the performance of existing applications
vg,éesigned to use clusters of workstations, we have ported

limited to 250 Mbit/s, so no conclusions can be dra) ¢ dard h
as to the maximum bandwidth that can be achieved o Message Passing Interface standard to the CLAN

CLAN IP. Further, this implementation was only ablgetwork. The LAM[21]implementation was chosen for

to support a single packet in flight at any one time. V\'/E? elfflment mterfacf:e tol the ;Eransport Iayir, requiring the
expect the small message bandwidth to be significan@p ((ejm((ajn_ta;|?|n ot only 9d unctions. The entire MPI
improved with the new implementation, which allowStandardis fully supported.

Stre_:amlng. Desplt_e these problems CLAN IR IS a_ble t?. The deadlocks are due to our implementation using a shared bus
deliver nearl_y 10 times the performance of gigabit ety transmit, receive and Tripwire traffic. The shared bus architecture
ernet for 1 kilobyte messages. is a consequence of using off-the-shelf components.

12

Synchronisation is achieved by spinning, so this im- The U-Net[1] project was the first to present a user-
plementation is most suitable for use in a system detbivel interface to local area networks, using off-the-
cated to a single problem. The round-trip timd gs, shelf communications hardware. U-Net heavily influ-
which compares favourably with other systems, suchasced the Virtual Interface Architecture[24], which pro-
MPI-BIP[22], which has a round-trip time d@us. It vides a communication model based on asynchronous
is interesting to note that MPI-BIP is implemented ahessage passing through work queues. Completion
a higher level than our version, so reducing the libragueues multiplex transmit and receive events, so perfor-
overheads. mance scales well with the number of endpoints. Disad-

We are developing a second version using Tripwirgantages include relatively high overhead, which leads
for synchronisation, which will be suitable for use ifo poor performance for small messages, and high per-
a general purpose workstation, and coexist well witthdpoint resource requirements[25]. End to end flow
other applications. This implementation will spin focontrol must be handled explicitly by the application,
a few micro-seconds before going to sleep if no everats buffer overrun on the receive side leads to the con-
occur — so we expect the performance to be comparection being closed.
ble with the first version when heavily loaded.

We have tested our first implementation using khe
bodyproblem, and will present these results and a de- .
tailed discussion of the implementation at a later date3 Conclusions

The CLAN project has addressed the problem of syn-
7 Related Work chronisation in distributed shared memory systems.

Our solution, theTripwire, provides an efficient means
Although designed as a multiprocessor system, rathigf flexible and scalable synchronisation.

chf:S?_?énterc_onneﬁt for heterogfeneous Fen_?/r?rks, _thel'ripwires have a number of advantages over existing
[2] project shares many of our goals. These "Wlutions to the synchronisation problem. Synchroni-

clude effllclent supportlipr a wide rargjge O.f protocils_ll ation is orthogonal to data transfer, since applications
a general purpose muftiprogrammed environment. y synchronise with arbitrary in-band data. A conse-

FLbAtSF(; rr]ultlcaomputer pro(\jndes cache—cohererlljt dtl 'u?nce of this is that synchronisation is decoupled from
ributed shared memory and message passing. Frotq 8transmitter, allowing great flexibility in the receiver.

specific message handlers run on a dedicated protocal

processor in each node, and can be used to provide flex" this paper we have presented a high performance
ible and efficient synchronisation. network interconnect based on distributed shared mem-

The Myrinet network interface has been used to iy with Tripwires for synchronisation, and shown that

plement a large number of user-level networks. Like tIJ1tede"VerS gigabit class bandwidth and very low over-
CLAN NIC, it is implemented as a PCI card, and prc}jead gnd latency fqr data tran.sfer. The low-level soft-
vides gigabit class raw performance. A programmab\féare interface provides a flexible means for synchro-

RISC processor is used to implement a particular 00|1?1'§ati°n that is highly scalable. These characteristics

munications model, making this platform ideal for ret_rans_late to high throughput and_ short response times
igh-level protocols and practical applications.

search purposes. A disadvantage of this approach is ﬁ%th
at any one time, the network is programmed to supportFor applications such as parallel number-crunching
just one model, and so it is difficult to provide simuland multicomputer servers the performance is compara-
taneous support for diverse protocols. Another proble with, and often exceeds that achieved by other spe-
lem is that data is staged in memory on the NIC, whidhalised network interfaces. At the same time superior
leads to a latency/bandwidth tradeoff, as explored in tRgrformance is delivered to multiprogrammed systems,
Trapeze[23] project. making the CLAN NIC suitable for general purpose lo-
Other important distributed shared memory basé@! area networks, and expanding the space of problems
systems include DEC Memory Channel[3], the Scdpat can be tackled on them.
able Coherent Interface[12], SHRIMP[6] and BIP[22]. We believe that significant benefits are drawn from
All of these have addressed the requirements for hitgiloring the network abstraction to the application, and
bandwidth, low latency data transfer, providing excelby presenting the network interface at a low level it is
lent performance for a particular class of problem, bpbssible to implement a wide range of abstractions effi-
support for synchronisation is often inflexible. ciently.

13

9 Future Work

References

The authors are currently working on a number of enfl] Thorsten von Eicken, Anindya Basu, Vineet Buch,

hancements to the CLAN network. We have just built
the first prototype of a high performance, worm-hole
routed switch, and will soon begin testing. Like the
NIC, the switch is based on FPGA technology, and will
allow us to experiment with wire protocols and routing.

and Werner Vogels. U-Net: A User-Level Net-
work Interface for Parallel and Distributed Com-
puting. In15th ACM Symposium on Operating
Systems Principle®ecember 1995.

In the next revision of the NIC we will implement [2] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John

user-level programmable Tripwires. This should fur-
ther the reduce the overhead of synchronisation, and

will be achieved by providingirtual Memory Mapped

Commandss used in the SHRIMP multicomputer[6].
We also intend to provide DMA chaining, which should
significantly reduce message passing overhead and in-
crease small message bandwidth. Another enhance-

ment is hardware delivery of Tripwire notification t

user-level. This will reduce the number of interrupt:

taken and reduce Tripwire notification latency.

At a higher-level, we are investigating how this net-[4
work interface can be used to improve the performance
of middleware. We are developing a software imple-
mentation of the Virtual Interface Architecture, and in-
tend to implement a high-performance transport for a

CORBA ORB.
Other areas for future research include:

e User-level reprogramming of aperture mappings.
A number of other projects have enhanced ex-
isting network interfaces with flexible memory [6]
management[26][27]. It should be possible to ex-
tend this with re-mapping of local and remote
apertures at user-level, using a pool of virtual

memory mappings onto the NIC.

e Hardware delivery of out-of-band messages di-
rectly into an user-level queue. Together with rel
programming of aperture mappings, this would
make it possible to perform connection setup en-

tirely at user-level.

Acknowledgements

The authors would like to thank all of the members of
AT&T Laboratories Cambridge and the Laboratory for[9]
Communications Engineering. David Riddoch is also
funded by the Royal Commission for the Exhibition of

1851.

The work on coalescing write bursts to improve PI{10]
bandwidth was performed by Chris Richardson whilst

on an internship at AT&T.

14

] Maximilian Ibel, Klaus

Heinlein, Richard Simoni, Kourosh Gharachor-
loo, John Chapin, David Nakahira, Joel Baxter,
Mark Horowitz, Anoop Gupta, Mendel Rosen-
blum, and John Hennessy. The Stanford FLASH
Multiprocessor. Ir21st International Symposium
on Computer Architecturgpages 302—313, April
1994.

R. Gillett and R. Kaufmann. Using the Memory
Channel NetworklEEE Micro, 17(1), 1997.

Schauser, Chris
Scheiman, and Manfred Weis. High Perfor-
mance Cluster Computing using SCI. Hhot
Interconnects YAugust 1997.

Nanette Boden, Danny Cohen, Robert Felderman,
Alan Kulawik, Charles Seitz, Javoc Seizovic, and
Wen-King Su. Myrinet — A Gigabit-per-Second
Local-Area NetworklEEE Micro, 15(1), 1995.

Matthias Blumrich, Kai Li, Richard Alpert,
Cezary Dubnicki, Edward Felten, and Jonathan
Sandberg. Virtual Memory Mapped Network
Interface for the SHRIMP Multicomputer. In
21st Annual Symposium on Computer Architec-
ture, pages 142-153, April 1994.

7] David Culler and Jaswinder Pal SingtRarallel

Computer Architecture, A Hardware/Software Ap-
proach chapter 7, page 520. Morgan Kaufmann.

Steve Hodges, Steve Pope, Derek Roberts, Glen-
ford Mapp, and Andy Hopper. Remoting Periph-
erals using Memory-Mapped Networks. Techni-
cal Report 98.7, AT&T Laboratories Cambridge,
1998.

Maurice Wilkes and Andrew Hopper. The Col-
lapsed LAN: a Solution to a Bandwidth Problem?
Computer Architecture New25(3), July 1997.

Richard Lipton and Jonathan Sandberg. PRAM:
A Scalable Shared Memory. Technical report,
Princeton University, 1988.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

David Culler and Jaswinder Pal Singlarallel
Computer Architecture, A Hardware/Software Ap-
proach chapter 10, page 818. Morgan Kaufmann.

[24] The Virtual Interface Architecture http://

www.viarch.org/

[25] Philip Buonadonna, Andrew Geweke, and David

IEEE. Standard for Scalable Coherent Interface,
March 1992. IEEE Std 1596-1992.

David Riddoch and Steve Pope. A Low Overhead
Application/Device Driver Interface [26]
for User-Level Networking. Paper in preparation.

Gaurav Banga and Jeffrey Mogul. Scalable ker-
nel performance for Internet servers under realis-
tic loads. INUSENIX Technical Conferencéune

1998. [27]

Gaurav Banga, Jeffrey Mogul, and Peter Druschel.
A scalable and explicit event delivery mechanism
for UNIX. In USENIX Technical Conferencéune
1999.

Stefanos Damianakis, Yuqun Chen, and Edward
Felten. Reducing Waiting Costs in User-Level
Communication. Inllth International Parallel
Processing Symposiypril 1997.

Soichiro Araki, Angelos Bilas, Cezary Dub-
nicki, Jan Edler, Koichi Konishi, and James
Philbin. User-Space Communications: A Quan-
titative Study. InSuperComputingNovember
1998.

Hiroshi Tezuka, Atsushi Hori, and Yutaka
Ishikawa. PM: A High-Performance Communica-
tion Library for Multi-user Environments. Tech-
nical Report TR-96015, Tsukuba Research Center
RWCP, 1996.

Alessandro RubiniLinux Device Driverschapter
14 Network Drivers. O'Reilly, 1998.

Sun Microsystems. NFS: Network File System
Protocol Specification, 1989. RFC 1050.

LAM / MPI Parallel Computing http://www.
mpi.nd.edu/lam/

Loic Prylli, Bernard Tourancheau, and Roland
Westrelin. The design for a high performance MPI
implementation on the Myrinet network. Bu-
roPVM/MPI, pages 223-230, 1999.

Kenneth Yocum, Darrell Anderson, Jeffrey Chase,
Syam Gadde, Andrew Gallatin, and Alvin Lebeck.
Balancing DMA Latency and Bandwidth in a
High-Speed Network Adapter. Technical Report
TR-1997-20, Duke University, 1997.

15

Culler. An implementation and analysis of the
virtual interface architecture. 18upercomputing
Nov 1998.

Cezary Dubnicki, Angelos Bilas, Yuqun Chen,
Stefanos Damianakis, and Kai Li. VMMC-2: Ef-
ficient Support for Reliable, Connection-Oriented
Communication. IrHot Interconnects VAugust
1997.

Matt Welsh, Anindya Basu, and Thorsten von
Eicken. Incorporating Memory Management into
User-Level Network Interfaces. lHot Intercon-
nects VV August 1997.

