
Tripwire: A Synchronisation Primitive for Virtual
Memory Mapped Communication

David Riddoch1;2, Steve Pope1, Derek Roberts1, Glenford Mapp1,
David Clarke1, David Ingram1, Kieran Mansley1, Andy Hopper1;2

fdjr, slp, der, gem, djc, dmi, kjm, ahg@uk.research.att.com

1 AT&T Laboratories Cambridge,
24a Trumpington Street, Cambridge, England

2 Laboratory for Communications Engineering,
Department of Engineering, University of Cambridge, England

Abstract

Existing user-level network interfaces deliver high
bandwidth, low latency performance to applications,
but are typically unable to support diverse styles of
communication and are unsuitable for use in multipro-
grammed environments. Often this is because the net-
work abstraction is presented at too high a level, and
support for synchronisation is inflexible.

In this paper we present a new primitive for in-band
synchronisation: theTripwire. Tripwires provide a flex-
ible, efficient and scalable means for synchronisation
that is orthogonal to data transfer.

We describe the implementation of a non-coherent
distributed shared memory network interface, with
Tripwires for synchronisation. This interface provides
a low-level communications model with gigabit class
bandwidth and very low overhead and latency. We show
how it supports a variety of communication styles, in-
cluding remote procedure call, message passing and
streaming.

1 Introduction

It is well known that traditional network architectures,
such as ethernet and ATM, deliver relatively poor per-
formance to real applications, despite impressive in-
creases in raw bandwidth. This has been shown to be
largely due to high software overhead. To address this
problem a variety of user-level network interfaces have
been proposed[1, 2, 3, 4, 5, 6]. These have achieved

dramatically reduced overhead and latency, and deliver
substantial performance benefits to applications.

However, these new interfaces are typically unsuit-
able for use in general purpose local area networks. The
interface is often designed to support a particular class
of problem, and is thus a poor solution for others. In
some cases the interface does not scale well with the
number of applications and endpoints on a single sys-
tem. What is needed is a network interface that will
deliver high performance for a wide variety of commu-
nication styles, and do so in a multiprogrammed envi-
ronment.

For data transfer, non-coherent distributed shared
memory offers very low overhead and latency, and high
bandwidth. Small messages can be transferred with a
few processor reads or writes, and larger messages us-
ing DMA. Messages are delivered directly into the ad-
dress space of the receiving application with no CPU in-
volvement, and because the interface presented is low-
level, it is also very flexible.

A key problem for distributed shared memory based
communications, however, is that ofsynchronisation.
For example, the DEC Memory Channel has a com-
munication latency of only2:9�s, yet acquiring an un-
contended spin-lock takes120�s[7]. In order to re-
alise high performance for applications in a multipro-
grammed environment it is critical that applications be
able to synchronise in a timely, efficient and scalable
manner.

Mechanisms used for synchronisation in existing so-
lutions include polling known locations in memory cor-

1

responding to endpoints, raising an interrupt when cer-
tain pages are accessed, or sending out-of-band syn-
chronisation messages. These solutions are inflexible,
and typically give high performance only for restricted
styles of communication and classes of problem.

The main contribution of this paper is a novel in-band
synchronisation primitive for distributed shared mem-
ory systems: theTripwire . Tripwires provide a means
to synchronise with reads and writes across the network
to arbitrary memory locations. This enables very flex-
ible, efficient and fine-grained synchronisation. Using
Tripwires, synchronisation becomes orthogonal to data
transfer, decoupled from the transmitter, and a number
of optimisations which reduce latency become possible.

In the rest of this paper we present a new gigabit
class network interface which provides non-coherent
distributed shared memory with Tripwires for synchro-
nisation. We describe the low-level software interface
to the network, support for efficient and scalable syn-
chronisation, and go on to give some performance re-
sults. We also show how the network interface can be
used to implement a variety of higher-level protocols,
including remote procedure call, message passing and
streaming data. Initial results suggest that excellent per-
formance and scalability is delivered to a wide variety
of applications.

This project derives from earlier work remot-
ing peripherals[8] in order to support the Collapsed
LAN[9].

2 The Interconnect Hardware

We have implemented a user-level Network Interface
Controller (NIC) based on a non-coherent shared mem-
ory model. The current implementation of the NIC
is a 33 MHz, 32 bit PCI card, built from off the
shelf components including a V3 PCI bus bridge, an
Altera FPGA, and HP’s G-Link chip set and optical
transceivers. The latter serialise the data stream at 1.5
Gbit/s, and were chosen to map neatly onto the speed of
the target PCI bus.

This platform has enabled us to perform synchro-
nisation experiments at gigabit speeds whilst retaining
the flexibility of FPGA timescales. Figure 2 shows a
schematic for the NIC.

2.1 Non-coherent shared memory

The basic communications model supported by the NIC
is that of non-coherent shared memory. Using this
model, a portion of the virtual address space of one

Figure 1: The CLAN NIC.

DMA
Engine

V3 PCI Bridge

Tripwire
control &
matching

i960 Local Bus

TX fifo

Protocol and
error control

TX mux

Error FIFORead Control Write FIFO

RX demux

Protocol

Fibre optic
transceiver

interrupt

PCI Bus

Figure 2: Logical structure of the CLAN NIC.

application is mapped over the network onto physical
memory in another node, which is also mapped into
the address space of an application on that node. Data
transfer is achieved by an application issuing processor
read or write instructions to the mapped addresses —
known as Programmed I/O or PIO. The NIC also has a
programmable DMA1 engine, enabling concurrent pro-
cessing and communication.

Read and write requests arriving at the NIC are pro-
cessed in FIFO order, and likewise at the receiving
NIC; thus PRAM[10] consistency is preserved. Appli-
cations must use memory barrier instructions at appro-
priate places to ensure that writes are not re-ordered by
the processor or memory management hardware when
order is significant.

It should be noted that this interface is not intended
to provide an SMP-like shared memory programming

1: Direct Memory Access

2

model. Although some algorithms designed to run on
an SMP might work correctly on a non-coherent mem-
ory system, the performance is likely to be very poor
due to the non-uniform memory access times. Rather
it is intended that higher-level communications abstrac-
tions be implemented on top of this interface, hiding the
details of the hardware and peculiarities of the platform,
which include:

� The latency for network reads is nearly twice that
for writes.

� On some platforms there are size and alignment
restrictions when accessing remote memory.

2.2 Wire protocol

Write requests for remote memory arrive at the NIC
over the PCI bus, and are serialised immediately into
packets, each of which represents a write burst. A write
packet header simply contains a destination address,
and is followed by the burst data. The length of the
burst is not encoded in the header, and so a packet can
start to be emitted as soon as the first word of data ar-
rives at the NIC, and finishes when no more data within
the burst is available. Thus the minimum packet size is
just a header and a single word of data, and the maxi-
mum is bounded only by the largest write burst that is
generated. This burst based protocol is similar to that
used in the Cray T3D supercomputer network[11].

The address of any data word within a packet can be
calculated from the address in the packet header and
the offset of the data word within the packet. A conse-
quence of this is that packets may be split at any point,
as a new header for the second part of the packet can be
calculated trivially. Similarly consecutive packets that
happen to represent a single burst can easily be iden-
tified, and coalesced. This technique is well known
within the memory system of single systems, but here
is being extended into the LAN.

The utility of this can be seen when implementing a
switch, an important function of which is to schedule
the network resource between endpoints. It is impor-
tant that a large packet does not hog an output port of
the switch unfairly, and so it should be possible to split
packets. Using the protocol presented it is possible to
do this in a worm-hole switch with no buffering, whilst
preserving the efficiency of large packets when there is
no contention. Even if a packet is split, it may poten-
tially be coalesced at another switch further on its route.

Hardware flow control is based on the Xon/Xoff
scheme, but we expect to move to a new scheme com-
bining Xon/Xoff with credits in the next implementa-

tion of the NIC. Error detection is performed using par-
ity.

It should be noted that other physical layers and link
layer protocols are possible and desirable, and by using
an existing standard we would make use of commodity
high performance switches.

2.3 True zero copy

The network interface and on-the-wire protocol de-
scribed above are able to support true zero copy through
the whole network. Read and write requests (whether
from programmed I/O or DMA) are serialised by the
NIC immediately, without buffering. This is shown in
Figure 3.

Cache

Memory

T
ripw

ires

DMA
CPU

I/O Bus

System Bus

DMA Transfer

PIO Transfer

DMA read

PIO write
PIO read

Figure 3: The path of data through the system for PIO
and DMA network writes.

At the receiving NIC incoming data is transfered di-
rectly into host memory, again without buffering. The
delivery of the data does not involve any processing on
the CPU in the receiving node, and so has very low
overhead. As shown in Figure 4, the cache on the re-
ceiving node snoops the system bus, and if data in the
cache is written by a remote node, it will be updated or
invalidated.

2.4 Synchronisation

In traditional network architectures all messages pass
through the operating system kernel, which implicitly
provides a handle to provide synchronisation with mes-
sage transmission and arrival. Shared memory inter-
faces, however, do not of themselves offer any means
for efficient synchronisation between communicating
processes.

Within a single system, shared memory systems typ-
ically use some lock primitive such as the mutex and

3

Cache

Memory

T
ripw

ires

DMA
CPU

I/O Bus

System Bus

Figure 4: The path of data through a receiving node.

condition variable of pthreads, or semaphores. Mecha-
nisms used in existing distributed shared memory sys-
tems include:

� Polling memory locations, otherwise known as
spinning. This technique provides the best latency
when servicing a single endpoint, but does not
scale well with the number of endpoints and the
processor resource is wasted whilst polling.

� Generate an interrupt on page access. This has
been used on a number of systems, and allows the
receiving process to synchronise with remote ac-
cesses to it’s pages. However, the granularity is at
the level of the page, so it is not possible to se-
lectively synchronise with specific events within a
data transfer.

� Explicit out-of-band synchronisation messages (as
used by the Scalable Coherent Interface[12]). This
solution complicates the network interface and is
inflexible.

If the performance advantages of memory mapped
networking are to be fully realised, then an efficient and
flexible user-level synchronisation mechanism must be
provided.

2.5 Tripwires for synchronisation

Here we present a novel primitive for in-band synchro-
nisation: theTripwire . Tripwires provide a means to
synchronise with cross network accesses to arbitrary
memory locations. Each Tripwire is associated with
some memory location (which may be local or remote),

andfireswhen that memory location is read or written
via the network.

For example, an application can setup a Tripwire to
detect writes to a particular memory location in its ad-
dress space, and will be notified when that location is
written to by a remote node. It is also possible to setup
Tripwires to detect reads, or to specify a range of mem-
ory locations.

This is achieved by snooping the addresses in the
stream of network traffic passing through the NIC, and
comparing each of them with the addresses of the mem-
ory locations associated with each of the Tripwires,2

without hindrance to the passing stream. The compari-
son is performed by a content-addressable memory, and
a synchronising action is performed when a match is de-
tected.

The synchronising action performed is to place an
integer identifier for the Tripwire into a FIFO on the
NIC and raise an interrupt. The device driver’s inter-
rupt service routine retrieves these identifiers, and does
whatever is necessary to synchronise with the applica-
tion owning the Tripwire. This is not the only possible
type of action; others include setting a bit in a bitmap in
host memory (in the address space of the application)
or incrementing an event counter.

We believe that the combination of non-coherent
shared memory with Tripwires for synchronisation pro-
vides a flexible and efficient platform for communica-
tions:

� The choice ofnon-coherentshared memory al-
lows a relatively simple and highly efficient im-
plementation with very low latency. For example,
although the SCI specification includes hardware
based coherency, to date very few implementations
have included it.

� Communications overhead is very low; small
transfers can be implemented using just a few pro-
cessor writes, and larger transfers using DMA.

� Multicast can be implemented efficiently with suit-
able support in the switch.

� Tripwires allow highly flexible, efficient and fine-
grained synchronisation; it is possible to detect
reads or writes to arbitrary locations in memory.

� Synchronisation is completely orthogonal to data
transfer. It is possible to synchronise with the ar-
rival of a message, an arbitrary position in a data
stream, or on control signals such as flags or coun-
ters.

2: The current incarnation of the NIC supports 4096 Tripwires.

4

� Synchronisation is decoupled from the transmitter.
The recipient of a message decides where in the
data stream to synchronise, and can optionally tune
this for optimal performance.

� It is possible to reduce latency by overlapping
scheduling and message processing with data
transfer. See section 4.3.

� As well as synchronising with accesses to local
memory by remote nodes, Tripwires can be used
to synchronise with accesses to remote memory by
the local node. This can be used to detect comple-
tion of an outgoing asynchronous DMA transfer
for example.

Together these points mean that it is possible to im-
plement a wide variety of higher level protocols effi-
ciently, including remote procedure call (RPC), stream-
ing, message passing and shared memory based distri-
bution of state.

The current incarnation of the NIC requires that ap-
plications interact with the device driver to setup Trip-
wires and synchronise when a Tripwire fires. A new
version, under active development, will enable applica-
tions to program Tripwires at user-level through a vir-
tual memory mapping onto the NIC. When a Tripwire
fires, notification will be delivered directly into the ap-
plication’s host memory, and so synchronisation may
also take place at user-level. Only when the application
blocks waiting for a Tripwire or other event need the
driver request that the NIC generate an interrupt as the
synchronising action.

3 Low Level Software

The device driver for the NIC targets the Linux 2.2
kernel on x86 and Alpha platforms, and WinDriver
portable driver software (Linux and Windows NT), and
requires no modifications to the operating system core.
The NIC can thus be used in the vast majority of recent
commodity workstations.

The interface presented by the device driver and
hardware is wrapped in a thin library. The main pur-
pose of this layer is to insulate higher levels of code
from changes to the division of functionality between
user-level, device driver and hardware implementation.
For example, a future incarnation of the hardware may
provide facilities to perform connection setup entirely
at user-level.

This layer also makes it easy to write code which can
be used both at user-level and for in-kernel services,3

since it abstracts above the device driver and hardware
interface.

3.1 Endpoints

An endpointis identified by host address and a port
number. Fixed size4 out-of-band messages are demul-
tiplexed by the device driver into per-endpoint queues,
and are used for connection setup, tear down and ex-
ceptional conditions. The message queue resides in a
segment of memory shared by the application and de-
vice driver, and so messages can be dequeued without a
system call. This technique is used throughout the de-
vice driver interface to reduce the overhead of passing
data between the device driver and application. This
technique is described in detail elsewhere[13].

The out-of-band message transfer is itself imple-
mented in the device driver using the NIC’s shared
memory interface and Tripwires, using a technique sim-
ilar to that shown in Section 4.1.

An API is provided to create and destroy endpoints,
and manage connections. To amortise the relatively
high cost of creating endpoints and their associated re-
sources, they may be cached and reused across connec-
tion sessions.

3.2 Apertures

An aperturerepresents a region of shared memory, ei-
ther in the local host memory or mapped across the net-
work. An aperture is identified by an opaque descriptor,
which may be passed across the network and used by an
application to map a region of its virtual address space
onto the remote memory region, or used as the target of
a DMA transfer.5

The NIC uses a very simple direct mapping between
PCI bus addresses and network addresses, and provides
no explicit protection on the receive path. Physical
pages of memory in an aperture must be contiguous,
and must be locked down to prevent them from being
swapped out by the operating system. Basic protection
is provided by the virtual memory system at the gran-
ularity of the page — a process may only create map-
pings to remote apertures for which it holds a descriptor
— but a faulty or malicious node could circumvent this
protection. We will be addressing these problems in fu-
ture revisions of the NIC.

It should be noted that although facilities are pro-
vided for managing connections, this is not the only

3: Such as IP and NFS, see Section 6.

4: 40 byte payload.

5: In this context the descriptor is known as an RDMA cookie.

5

model supported. Any number of apertures may be as-
sociated with an endpoint, and mappings can be made
to any aperture in any other host independently of con-
nections.

3.3 Tripwires

An API is provided to allocate Tripwires, and to setup
and enable Tripwires to detect local and remote reads
and writes. The application may test the state of a Trip-
wire, or block until a Tripwire fires.

When a Tripwire fires the NIC places an integer iden-
tifier for the Tripwire into a FIFO and raises an in-
terrupt. The interrupt service routine wakes any pro-
cess(es) waiting for that Tripwire, and sets a bit in a
bitmap. This bitmap resides in memory shared by the
application and device driver, and so it is possible to test
whether a Tripwire has fired at user-level. Thus polling
Tripwires is very efficient.

A Tripwire may be markedonce only, so that it is dis-
abled when it fires. This improves efficiency for some
applications, by saving a system call to disable the Trip-
wire, but is unlikely to be necessary when Tripwire pro-
gramming is available at user-level.

A Tripset groups a number of Tripwires from a sin-
gle endpoint together so that the application can wait
for any of a number of events to occur.

3.4 DMA

The NIC has a single DMA engine, which reduces
communications overhead by allowing concurrent data
transfer and processing on the CPU. There is cur-
rently no direct user-level interface to DMA hardware,
so DMA requests must be multiplexed by the device
driver.

All DMA interfaces that we are aware of require that
the application invoke the device driver or access the
hardware directly for each DMA request. We have im-
plemented a novel interface which reduces the number
of system calls required and schedules the DMA engine
fairly among endpoints. The application maintains a
queue of DMA requests in a region of memory shared
with the device driver, and the device driver reads re-
quests from that queue.

When the first request is placed in the queue, the
application must invoke the device driver. After that
the device driver will dequeue entries asynchronously,
driven by the DMA completion interrupt, until the
queue is empty. The application may continue to add
entries to the queue, and only need invoke the device
driver if the queue empties completely. The device

driver maintains a circularly linked list of DMA request
queues which are not yet empty, and services them in a
round-robin fashion. Note that this asynchronous inter-
face would work just as well if the DMA engine were
managed on the NIC.

3.5 Multiple endpoints

The primitives discussed above are sufficient to manage
communication through a single endpoint efficiently,
bit it is also necessary to have non-blocking manage-
ment of multiple endpoints to support common event
driven programming models typically used in server
applications. Traditionally some variant on the BSD
selectsystem call is used. However, the deficiencies
of these are well known, and even with sophisticated
optimisations[14] do not scale well with the number of
endpoints.

We have developed a solution to this problem in the
form of anasynchronous event queue. Tripwire, DMA
completion and out-of-band message events are deliv-
ered by the device driver into a circular queue. The API
allows the application to register and unregister interest
in individual events, poll for events and block until the
queue is non-empty.

As with out-of-band messages above, this queue is
maintained in memory shared by the device driver and
application. The cost of event delivery isO(1) and
events are dequeued without a system call — so this in-
terface is very efficient. Indeed event delivery becomes
more efficient when a server is heavily loaded with net-
work traffic, since the server is less likely to have to
make a system call to block before retrieving events.
More information is given elsewhere[13].

Ideally such a mechanism should be a standard part
of an operating system, but while that is not the case it
is important to be able to block waiting for I/O activity
on other devices in the system as well as the network.
To support this the asynchronous event queue itself is
integrated with the system’s choice of ‘select’ variant,
and becomes ‘readable’ when the queue is not empty.

A number of other solutions to this problem with
O(1) cost have been proposed, including POSIX real-
time signals, the/dev/poll interface in the Solaris
operating system and others[15]. The main contribu-
tion of our approach is the delivery of events directly to
the application without a system call.

6

4 Programming the NIC

4.1 Simple message transfer

Figure 5 shows how a simple, one-way, point-to-point
message transfer protocol is implemented.

rx_ready

tx_ready

Remote
aperture

TripwireHost
memory

Message
buffer

ReceiveSend

Figure 5: Message transfer using semaphores.

On the transmitting sidetx_ready is a boolean flag
which istruewhen the buffer is free for sending. On the
receive siderx_ready is true when a valid message is
ready in the buffer. Initiallytx_ready is set to true
andrx_ready is set to false.

To send a message the sender must wait until
tx_ready is true, set it to false (to indicate that the
buffer is busy), copy the message into the remote buffer
and setrx_ready to true. The receiver waits for
rx_ready to become true, clears it, copies the mes-
sage out of the buffer and resetstx_ready to true, so
that the buffer can be used again.

This protocol will work as described on any PRAM-
consistent shared memory system — the difficulty be-
ing synchronising with updates to thetx/rx_ready
flags. This is achieved using Tripwires.

A C program implementing this protocol is shown
in Example 1. For simplicity the example shows that
the message data is copied twice — into and out of the
message buffer — but this is not necessary. The sender
could write the message data directly into the remote
buffer, and on the receiving side the application could
read the message contents directly from the message
buffer, giving true zero copy.

We have used this simple protocol to support a re-
mote procedure call (RPC) style of interaction. The

Example 1Simple message transfer.
void send_msg(const void* msg)
{

while(!tx_ready)
tripwire_wait(tx_ready_trip);

tx_ready = 0;
memcpy(remote->buffer, msg, msg_length);
remote->rx_ready = 1;

}

void recv_msg(void* msg)
{

while(!rx_ready)
tripwire_wait(rx_ready_trip);

rx_ready = 0;
memcpy(msg, buffer, msg_length);
remote->tx_ready = 1;

}

client writes a request into the server’s message buffer,
and when the RPC completes the result is written back
into the client’s message buffer. This arrangement only
requires two control flags and two Tripwires (one in the
client and one in the server), since the order in which
messages can be sent is restricted.

4.2 A distributed queue

A disadvantage of the above protocol is that the sender
and receiver are tightly coupled — they must synchro-
nise at each message transfer. This prevents streaming
and hence decreases bandwidth. This can be alleviated
by using a queue as shown in Figure 6. The correspond-
ing C program is shown in Example 2.

read_iwrite_i

lazy_write_i

Q
ueue entries

lazy_read_i

Remote
aperture

TripwireHost
memory

ReceiveSend

Figure 6: A distributed queue.

This implementation works similarly to a type of
queue commonly used within applications. Fixed size

7

messages are stored in a circular buffer. Two counters,
read_i andwrite_i , give the positions in the buffer
at which the next message should be dequeued and en-
queued respectively.

The traditional implementation uses an additional
flag to distinguish between the full and empty cases
when the counters are equal. However, this requires a
lock to ensure atomic update, which would significantly
degrade performance in a distributed implementation.
For this reason we do not use the additional flag; the
queue is considered to be empty when the counters are
equal, and full when there is only one empty slot in the
receive buffer. This effectively reduces the size of the
queue by one.

Example 2A distributed queue.
void q_put(const q_elm* elm)
{

while((write_i + 1) % q_size == lazy_read_i)
tripwire_wait(lazy_read_i_trip);

remote->q[write_i] = *elm;
write_i = (write_i + 1) % q_size;
remote->lazy_write_i = write_i;

}

void q_get(q_elm* elm)
{

while(read_i == lazy_write_i)
tripwire_wait(lazy_write_i_trip);

*elm = q[read_i];
read_i = (read_i + 1) % q_size;
remote->lazy_read_i = read_i;

}

The distribution of the control state between the
sender and receiver is motivated by the desire to avoid
cross-network reads. The sender ‘owns’ thewrite_i
counter, which it updates each time a message is writ-
ten into the remote buffer. A copy of this counter,
lazy_write_i , is held in the receiver, the sender
copying the value ofwrite_i to lazy_write_i
each time the former is updated. Theread_i counter
is maintained similarly, with the receiver owning the
definitive value.

Thus the sender’s and receiver’s lazy copies of
read_i and write_i respectively may briefly be
out-of-date. This issafethough, since the effect is that
the receiver may see fewer messages in the buffer than
there really are, and the sender may believe that the
buffer contains more messages than it does. The in-
consistency is quickly resolved.

4.3 Discussion

When designing the two protocols given above, care
was taken to ensure that all cross-network access were

writes. This is important because reads have a rela-
tively high latency, and generate more network traffic.
In each case the control variables that must be read by
an endpoint are stored in local memory. This memory
is cacheable, so polling the endpoints is very efficient.

It is interesting to note that both of the protocols
given above will work correctly without Tripwires, by
polling the values of the control variables, and this
choice can be made independently in the transmitter
and receiver. Tripwires merely provide a flexible way to
synchronise efficiently, and a number of enhancements
are possible:

� If a message is expected soon, the application may
choose to poll the control variables for a few mi-
croseconds before blocking. This reduces latency
and overhead by avoiding a system call[16].

� It is possible to overlap data transfer with schedul-
ing of the receiving application. This is done by
setting a Tripwire in the receiving application for
some memory location that will be written early
in the message transfer, and going to sleep. The
application will be rescheduled as the rest of the
message is being transfered, thus reducing latency.

� It is even possible to begin processing the header
of a message in parallel with receiving the body, by
setting separate Tripwires for the header and body
of the message.

� DMA or PIO can be used for the data transfer. The
choice will depend on the characteristics of the ap-
plication and the size of the messages.

� The distributed queue can be adapted in a number
of ways, including support for streaming unstruc-
tured data, sending multi-part messages, and pass-
ing meta-data.

5 Raw Performance

In this section we present a number of micro-
benchmarks which demonstrate the raw performance
of the hardware, and how this translates into high per-
formance for practical applications. All tests are per-
formed at user-level.

5.1 System characterisation

The test nodes are 530 MHz Alpha systems running the
Linux 2.2 operating system. Fine grain timing was per-
formed using the free running cycle counter. A number
of system parameters were first measured:

8

� The system call overhead (measured using an
ioctl) is about:75�s. The true overhead of sys-
tem calls is made significantly worse, however, by
the effect they have on the cache.

� The scheduler overhead when a single process is
un-blocked is8�s.

� The interrupt latency is3�s.

5.2 Shared memory

These benchmarks exercise the distributed shared mem-
ory interface, and use ‘spinning’ for synchronisation.

1. The round-trip time for a single DWORD was
measured by repeatedly writing a word to a known
location in a remote application, which then copied
that word into a known location in the sending
application. The round-trip time is3:7�s, giving
an application to application one-way latency of
1:9�s.

2. The raw bandwidth was found by measuring the
interval between the arrival of the first DWORD of
a message at the processor, and arrival of the last
DWORD. Figure 7 shows the results for DMA and
PIO. Peak bandwidth is 910 Mbit/s, and is limited
by a stall for one cycle on the receiving V3 PCI
bridge at the start of each burst.

0

200

400

600

800

1000

256 1024 4096 16384 65536 262144

B
an

dw
id

th
 (

M
bi

t/s
)

Transfer size (bytes)

DMA
PIO

Figure 7: Raw bandwidth vs. size

The plots given in Figure 7 need some further expla-
nation. Firstly, it is not possible to meaningfully mea-
sure the bandwidth for messages smaller than about 256
bytes, since blocking effects of the cache and various
bus bridges dominate. The latency across the NIC hard-
ware (measured using a logic analyser) is about:5�s,
so:9�s are spent traversing buses and bridges — which

are likely holding data back in order to generate large
bursts — and cache loading.

The surprising results for programmed I/O are due
to a bug in the V3. Under some circumstances, the
V3’s internal FIFOs lock, causing the V3 to emit sin-
gle word bursts until the FIFOs drain. A workaround in
our FPGA logic detects this condition, and backs off for
a time to allow the V3 to recover. This effect causes the
negative gradient seen in the figure.

The receiving V3 generates 16 DWORD bursts on the
PCI bus for PIO traffic, and 256 DWORDS for DMA
traffic. Together with the additional V3 stall at the start
of each burst, this severely limits the PIO bandwidth. To
address this we have some initial work implementing
coalescing of bursts on the receiving NIC. Initial tests
suggest that with this logic in place the performance of
PIO will be very similar to that of DMA.

5.3 An event-based server

The benchmarks presented in this section are designed
to exercise the Tripwire synchronisation primitive, and
show how this interface scales and performs under load.

The server application is built using a single-threaded
event processing model, the main event loop being
based on the standard BSDselectsystem call. The
file descriptor corresponding to an asynchronous event
queue (section 3.5) is a member of theselect set, and
becomes readable when there are entries in the queue.
In this case a handler extracts events from the queue and
dispatches them to call-back functions associated with
each endpoint. The event queue is serviced until it is
empty, and then polled for up to15�s before returning
to the main select loop.

When a connection is established a Tripwire is ini-
tialised to detect client requests. This Tripwire is reg-
istered with the asynchronous event queue, and the re-
quest management code receives a call-back whenever
a request arrives.

The test client makes a connection to the server,
and issues requests to perform the various benchmarks.
When waiting for an acknowledgement or reply the
client spins, which is reasonable since the reply will
usually arrive in less time that it takes for a process to
go to sleep and be rescheduled.

5.3.1 Round-trip time

In the first set of tests we measure the round-trip time
for a small message under differing conditions of server
load. Each test is repeated a large number of times, and
the result reported is the mean:

9

� When a large (> 15�s) gap is left between each
request the server goes to sleep between requests,
and the round-trip time consists of the transmit
overhead, the hardware latency, the interrupt over-
head, the rescheduling overhead, the message pro-
cessing overhead and the reply. The total is
16:8�s.

� As explained in Section 3.5, a server using the
asynchronous event queue becomes more efficient
when kept busy, since it avoids both system calls
and going to sleep. In this benchmark messages
are sent as quickly as possible, one after another,
but with only one message in flight at a time. In
this case the round-trip time consists of the same
steps as above, but without the reschedule, and im-
proved cache performance. The round-trip time is
reduced to just7:9�s.

� Figure 8 shows how the server performs as the
number of connections increases. The two traces
correspond to the server being busy and idle, as
above. The client chooses a connection at random
for each request. As expected, theresponse time is
independent of the number of connections.

0

5

10

15

20

25

0 200 400 600 800 1000

R
ou

nd
 tr

ip
 ti

m
e

(u
s)

Number of endpoints

server busy
server idle

Figure 8: Round-trip time vs. number of endpoints

� In the final test multiple requests are sent by the
client on different connections before collecting
each of the replies. This simulates the effect of
multiple clients in the network, and is shown in
Figure 9. Note that even when the server is over-
loaded the performance of the network interface is
not degraded.

The curve is tending towards 340000 requests per
second, and given that the server is effectively per-
forming a no-op, we can assume that all the pro-
cessor time is spent processing messages. Thus

100000

150000

200000

250000

300000

350000

0 10 20 30 40 50

R
eq

ue
st

s
pe

r
se

co
nd

Number of endpoints

Figure 9: Requests per second vs. number of endpoints

the total per-message overhead on the server when
fully loaded is1=340000s, or 2:9�s.

5.3.2 Bandwidth

Figure 10 shows the bandwidth achieved sending vari-
ous sizes of message one way to the server, the server
acknowledging each message.

0

200

400

600

800

1000

4 16 64 256 1024 4096 16384 65536 262144

B
an

dw
id

th
 (

M
bi

t/s
)

Message size (bytes)

(a)
(b)

Figure 10: Unidirectional bandwidth vs. message size
for (a) single messages in flight and (b) streaming.

� For curve (a) each message is sent as a single
DMA, and acknowledged by the server. The client
waits for the acknowledgement before sending the
next message.

� Curve (b) shows the bandwidth when streaming
messages. Each message is sent using DMA, and
the next is started without waiting for acknowl-
edgement of the first.

Curve (b) corresponds closely to the theoretical
throughput for a link with a bandwidth of 900 Mbps and

10

a setup time of6�s. This consists of the3�s interrupt
latency and the time taken to setup the next transfer. The
interrupt overhead will be eliminated when user-level
programmable DMA and chaining are supported in the
hardware. Note that half the maximum available band-
width is achieved with messages of about 750 bytes in
size.

Another study[17] has compared the performance of
a number of user-level communication interfaces im-
plemented on the Myrinet interconnect, which has raw
performance comparable with the CLAN NIC. Their
‘Unidirectional Bandwidth’ experiment is equivalent to
this one, and out of AM, BIP, FM, PM and VMMC-2,
only PM gives better performance than the CLAN NIC.
PM[18] is a specialised network interface not suitable
for general purpose networking.

6 Supporting Applications

It is important that innovations in network interface de-
sign translate into real performance improvements at
the application level, for existing as well as new appli-
cations. Support for existing applications can be pro-
vided at a number of levels:

� Implement an in-kernel device driver.

� Recompile applications against a source-
compatible API.

� Replace dynamically loaded libraries.

Of these 2 is likely to give the best performance, but
is at best inconvenient, and often not possible. An in
kernel solution will provide binary compatibility with
existing applications, but performance is likely to be
relatively poor due to the high overheads associated
with interrupts, the protocol stack, cache thrashing and
context switches. The last solution works well when the
network abstraction is provided at a high level, as is the
case with middleware such as CORBA and MPI.

We are actively porting a number of representative
protocols and applications to our network interface, and
this section presents some initial results.

6.1 IP

The Internet Protocol is the transport of choice for the
majority of communication applications, and has been
implemented over almost all network technologies. Be-
cause the protocol is presented to applications at a very
low level, and must be fully integrated with the other

I/O subsystems,6 it is difficult to provide a fully func-
tional implementation at user-level. We have thus cho-
sen initially to provide support by presenting the net-
work interface to the kernel using a standard network
device driver[19].

The implementation is illustrated in Figure 11. A
single connection is made on demand between pairs of
nodes which need to communicate using IP. The receiv-
ing node pre-allocates a small number of buffers, and
passes RDMA cookies for these buffers to the sending
node through a distributed queue (as described in Sec-
tion 4.2). Completion messages are passed through an-
other queue in the opposite direction.

Subsystem

Linux Network

Subsystem

Linux Network

Distributed RDMA
cookie queue

buffers
Pool of receive

Distributed completion
queue

Transmit Receive

Figure 11: The implementation of CLAN IP

Data transfer consists of the following steps:

1. The Linux networking subsystem passes in
a buffer (struct sk_buff) containing the
packet data to send.

2. The packet data is transfered across the network
by DMA, using an RDMA cookie from the dis-
tributed queue as the target.

3. A completion message is written into the comple-
tion queue.

4. On the receive side, a Tripwire is used to synchro-
nise with writes into the completion queue. The
buffer containing the packet data is passed on to
the networking subsystem.

5. New buffers are allocated if necessary, and their
RDMA cookies are passed back to the transmitting

6: Usingselector poll on UNIX systems

11

node. The distributed RDMA cookie queue effec-
tively provides flow control, so we aim to prevent it
from emptying, since this would cause the sender
to stall.

Although the development of this implementation is
still work in progress, we have some preliminary results
from an early version. In Table 1 we compare the round
trip time and small message bandwidth for CLAN IP
with fast- and gigabit ethernet technology. The test uses
TCP/IP, repeatedly sending and returning a message.

RTT B/W at 1KByte

CLAN IP 100�s 225 Mbit/s
100 Mbit ethernet 160�s 23 Mbit/s
Gigabit ethernet 260�s 23-28 Mbit/s

Table 1: Round trip time and bandwidth for CLAN and
ethernet.

Figure 12 shows the bandwidth achieved against
message size for the same test. The gigabit ethernet was
configured to use jumbo frames and large socket buffers
(256 kilobytes) to improve its performance, whereas
CLAN IP is using just 32 kilobytes per socket buffer.

0

50

100

150

200

250

300

16 64 256 1024 4096 16384 65536

B
an

dw
id

th
 (

M
bi

t/s
)

Transfer size (bytes)

3c985, MTU 9000, SNDBUF 256K
CLAN, MTU 8192, SNDBUF 32K

Figure 12: TCP/IP bandwidth for CLAN and gigabit
ethernet, as a function of message size.

Due to a bug in the CLAN NIC which caused dead-
locks7 at the time of this experiment, the bandwidth is
limited to 250 Mbit/s, so no conclusions can be drawn
as to the maximum bandwidth that can be achieved over
CLAN IP. Further, this implementation was only able
to support a single packet in flight at any one time. We
expect the small message bandwidth to be significantly
improved with the new implementation, which allows
streaming. Despite these problems CLAN IP is able to
deliver nearly 10 times the performance of gigabit eth-
ernet for 1 kilobyte messages.

6.2 NFS

Another service which we have implemented in
the Linux kernel is the Sun Network File System
Protocol[20] (NFS). The implementation consists of
two sets of modifications:

� The SunRPC layer runs over a custom socket im-
plementation over the CLAN NIC.

� A number of DMA optimisations are added at
higher levels in the NFS subsystem to increase per-
formance for file data transfer.

A CLAN connection is setup when a filesystem is
mounted. NFS messages are passed through the socket
layer via the SunRPC layer, whilst file data is transfered
using DMA directly from the Linux buffer cache into
the receiving node. As a further optimisation it is possi-
ble to transfer file data directly from the disk to the re-
ceiving node, bypassing local host memory altogether.
Whether this results in a performance gain depends on
the pattern of file access, and the performance of the
disk controller cache.

We have not been able to perform any standard NFS
benchmarks, since these mandate the use of the UDP
protocol, and often implement the client side NFS. It
would be necessary to implement an ethernet UDP to
CLAN bridge to make use of these tests.

As an initial empirical guide we have timed the task
of compiling the Linux kernel on a local file system, and
one imported over NFS. In both cases theext2file sys-
tem is used. For the local filesystem the compile time is
6 minutes 42 seconds, and over NFS it is 6 minutes 45
seconds.

Although compilation is typically a CPU bound pro-
cess, it was not parallelised in this test, so file system
overhead makes a significant contribution to the com-
pile time. This result suggests that importing a file sys-
tem over CLAN NFS has very low overhead.

6.3 MPI

In order to test the performance of existing applications
designed to use clusters of workstations, we have ported
the Message Passing Interface standard to the CLAN
network. The LAM[21] implementation was chosen for
its efficient interface to the transport layer, requiring the
implementation of only 9 functions. The entire MPI
standard is fully supported.

7: The deadlocks are due to our implementation using a shared bus
for transmit, receive and Tripwire traffic. The shared bus architecture
is a consequence of using off-the-shelf components.

12

Synchronisation is achieved by spinning, so this im-
plementation is most suitable for use in a system dedi-
cated to a single problem. The round-trip time is16�s,
which compares favourably with other systems, such as
MPI-BIP[22], which has a round-trip time of19�s. It
is interesting to note that MPI-BIP is implemented at
a higher level than our version, so reducing the library
overheads.

We are developing a second version using Tripwires
for synchronisation, which will be suitable for use in
a general purpose workstation, and coexist well with
other applications. This implementation will spin for
a few micro-seconds before going to sleep if no events
occur — so we expect the performance to be compara-
ble with the first version when heavily loaded.

We have tested our first implementation using theN-
bodyproblem, and will present these results and a de-
tailed discussion of the implementation at a later date.

7 Related Work

Although designed as a multiprocessor system, rather
than an interconnect for heterogeneous networks, the
FLASH[2] project shares many of our goals. These in-
clude efficient support for a wide range of protocols in
a general purpose multiprogrammed environment. The
FLASH multicomputer provides cache-coherent dis-
tributed shared memory and message passing. Protocol
specific message handlers run on a dedicated protocol
processor in each node, and can be used to provide flex-
ible and efficient synchronisation.

The Myrinet network interface has been used to im-
plement a large number of user-level networks. Like the
CLAN NIC, it is implemented as a PCI card, and pro-
vides gigabit class raw performance. A programmable
RISC processor is used to implement a particular com-
munications model, making this platform ideal for re-
search purposes. A disadvantage of this approach is that
at any one time, the network is programmed to support
just one model, and so it is difficult to provide simul-
taneous support for diverse protocols. Another prob-
lem is that data is staged in memory on the NIC, which
leads to a latency/bandwidth tradeoff, as explored in the
Trapeze[23] project.

Other important distributed shared memory based
systems include DEC Memory Channel[3], the Scal-
able Coherent Interface[12], SHRIMP[6] and BIP[22].
All of these have addressed the requirements for high
bandwidth, low latency data transfer, providing excel-
lent performance for a particular class of problem, but
support for synchronisation is often inflexible.

The U-Net[1] project was the first to present a user-
level interface to local area networks, using off-the-
shelf communications hardware. U-Net heavily influ-
enced the Virtual Interface Architecture[24], which pro-
vides a communication model based on asynchronous
message passing through work queues. Completion
queues multiplex transmit and receive events, so perfor-
mance scales well with the number of endpoints. Disad-
vantages include relatively high overhead, which leads
to poor performance for small messages, and high per-
endpoint resource requirements[25]. End to end flow
control must be handled explicitly by the application,
as buffer overrun on the receive side leads to the con-
nection being closed.

8 Conclusions

The CLAN project has addressed the problem of syn-
chronisation in distributed shared memory systems.
Our solution, theTripwire, provides an efficient means
for flexible and scalable synchronisation.

Tripwires have a number of advantages over existing
solutions to the synchronisation problem. Synchroni-
sation is orthogonal to data transfer, since applications
may synchronise with arbitrary in-band data. A conse-
quence of this is that synchronisation is decoupled from
the transmitter, allowing great flexibility in the receiver.

In this paper we have presented a high performance
network interconnect based on distributed shared mem-
ory with Tripwires for synchronisation, and shown that
it delivers gigabit class bandwidth and very low over-
head and latency for data transfer. The low-level soft-
ware interface provides a flexible means for synchro-
nisation that is highly scalable. These characteristics
translate to high throughput and short response times
for high-level protocols and practical applications.

For applications such as parallel number-crunching
and multicomputer servers the performance is compara-
ble with, and often exceeds that achieved by other spe-
cialised network interfaces. At the same time superior
performance is delivered to multiprogrammed systems,
making the CLAN NIC suitable for general purpose lo-
cal area networks, and expanding the space of problems
that can be tackled on them.

We believe that significant benefits are drawn from
tailoring the network abstraction to the application, and
by presenting the network interface at a low level it is
possible to implement a wide range of abstractions effi-
ciently.

13

9 Future Work

The authors are currently working on a number of en-
hancements to the CLAN network. We have just built
the first prototype of a high performance, worm-hole
routed switch, and will soon begin testing. Like the
NIC, the switch is based on FPGA technology, and will
allow us to experiment with wire protocols and routing.

In the next revision of the NIC we will implement
user-level programmable Tripwires. This should fur-
ther the reduce the overhead of synchronisation, and
will be achieved by providingVirtual Memory Mapped
Commandsas used in the SHRIMP multicomputer[6].
We also intend to provide DMA chaining, which should
significantly reduce message passing overhead and in-
crease small message bandwidth. Another enhance-
ment is hardware delivery of Tripwire notification to
user-level. This will reduce the number of interrupts
taken and reduce Tripwire notification latency.

At a higher-level, we are investigating how this net-
work interface can be used to improve the performance
of middleware. We are developing a software imple-
mentation of the Virtual Interface Architecture, and in-
tend to implement a high-performance transport for a
CORBA ORB.

Other areas for future research include:

� User-level reprogramming of aperture mappings.
A number of other projects have enhanced ex-
isting network interfaces with flexible memory
management[26][27]. It should be possible to ex-
tend this with re-mapping of local and remote
apertures at user-level, using a pool of virtual
memory mappings onto the NIC.

� Hardware delivery of out-of-band messages di-
rectly into an user-level queue. Together with re-
programming of aperture mappings, this would
make it possible to perform connection setup en-
tirely at user-level.

Acknowledgements

The authors would like to thank all of the members of
AT&T Laboratories Cambridge and the Laboratory for
Communications Engineering. David Riddoch is also
funded by the Royal Commission for the Exhibition of
1851.

The work on coalescing write bursts to improve PIO
bandwidth was performed by Chris Richardson whilst
on an internship at AT&T.

References

[1] Thorsten von Eicken, Anindya Basu, Vineet Buch,
and Werner Vogels. U-Net: A User-Level Net-
work Interface for Parallel and Distributed Com-
puting. In 15th ACM Symposium on Operating
Systems Principles, December 1995.

[2] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John
Heinlein, Richard Simoni, Kourosh Gharachor-
loo, John Chapin, David Nakahira, Joel Baxter,
Mark Horowitz, Anoop Gupta, Mendel Rosen-
blum, and John Hennessy. The Stanford FLASH
Multiprocessor. In21st International Symposium
on Computer Architecture, pages 302–313, April
1994.

[3] R. Gillett and R. Kaufmann. Using the Memory
Channel Network.IEEE Micro, 17(1), 1997.

[4] Maximilian Ibel, Klaus Schauser, Chris
Scheiman, and Manfred Weis. High Perfor-
mance Cluster Computing using SCI. InHot
Interconnects V, August 1997.

[5] Nanette Boden, Danny Cohen, Robert Felderman,
Alan Kulawik, Charles Seitz, Javoc Seizovic, and
Wen-King Su. Myrinet — A Gigabit-per-Second
Local-Area Network.IEEE Micro, 15(1), 1995.

[6] Matthias Blumrich, Kai Li, Richard Alpert,
Cezary Dubnicki, Edward Felten, and Jonathan
Sandberg. Virtual Memory Mapped Network
Interface for the SHRIMP Multicomputer. In
21st Annual Symposium on Computer Architec-
ture, pages 142–153, April 1994.

[7] David Culler and Jaswinder Pal Singh.Parallel
Computer Architecture, A Hardware/Software Ap-
proach, chapter 7, page 520. Morgan Kaufmann.

[8] Steve Hodges, Steve Pope, Derek Roberts, Glen-
ford Mapp, and Andy Hopper. Remoting Periph-
erals using Memory-Mapped Networks. Techni-
cal Report 98.7, AT&T Laboratories Cambridge,
1998.

[9] Maurice Wilkes and Andrew Hopper. The Col-
lapsed LAN: a Solution to a Bandwidth Problem?
Computer Architecture News, 25(3), July 1997.

[10] Richard Lipton and Jonathan Sandberg. PRAM:
A Scalable Shared Memory. Technical report,
Princeton University, 1988.

14

[11] David Culler and Jaswinder Pal Singh.Parallel
Computer Architecture, A Hardware/Software Ap-
proach, chapter 10, page 818. Morgan Kaufmann.

[12] IEEE. Standard for Scalable Coherent Interface,
March 1992. IEEE Std 1596-1992.

[13] David Riddoch and Steve Pope. A Low Overhead
Application/Device Driver Interface
for User-Level Networking. Paper in preparation.

[14] Gaurav Banga and Jeffrey Mogul. Scalable ker-
nel performance for Internet servers under realis-
tic loads. InUSENIX Technical Conference, June
1998.

[15] Gaurav Banga, Jeffrey Mogul, and Peter Druschel.
A scalable and explicit event delivery mechanism
for UNIX. In USENIX Technical Conference, June
1999.

[16] Stefanos Damianakis, Yuqun Chen, and Edward
Felten. Reducing Waiting Costs in User-Level
Communication. In11th International Parallel
Processing Symposium, April 1997.

[17] Soichiro Araki, Angelos Bilas, Cezary Dub-
nicki, Jan Edler, Koichi Konishi, and James
Philbin. User-Space Communications: A Quan-
titative Study. InSuperComputing, November
1998.

[18] Hiroshi Tezuka, Atsushi Hori, and Yutaka
Ishikawa. PM: A High-Performance Communica-
tion Library for Multi-user Environments. Tech-
nical Report TR-96015, Tsukuba Research Center
RWCP, 1996.

[19] Alessandro Rubini.Linux Device Drivers, chapter
14 Network Drivers. O’Reilly, 1998.

[20] Sun Microsystems. NFS: Network File System
Protocol Specification, 1989. RFC 1050.

[21] LAM / MPI Parallel Computing.http://www.
mpi.nd.edu/lam/ .

[22] Loic Prylli, Bernard Tourancheau, and Roland
Westrelin. The design for a high performance MPI
implementation on the Myrinet network. InEu-
roPVM/MPI, pages 223–230, 1999.

[23] Kenneth Yocum, Darrell Anderson, Jeffrey Chase,
Syam Gadde, Andrew Gallatin, and Alvin Lebeck.
Balancing DMA Latency and Bandwidth in a
High-Speed Network Adapter. Technical Report
TR-1997-20, Duke University, 1997.

[24] The Virtual Interface Architecture. http://
www.viarch.org/ .

[25] Philip Buonadonna, Andrew Geweke, and David
Culler. An implementation and analysis of the
virtual interface architecture. InSupercomputing,
Nov 1998.

[26] Cezary Dubnicki, Angelos Bilas, Yuqun Chen,
Stefanos Damianakis, and Kai Li. VMMC-2: Ef-
ficient Support for Reliable, Connection-Oriented
Communication. InHot Interconnects V, August
1997.

[27] Matt Welsh, Anindya Basu, and Thorsten von
Eicken. Incorporating Memory Management into
User-Level Network Interfaces. InHot Intercon-
nects V, August 1997.

15

