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Abstract - Low power consumption is a key design metric for 
wireless network devices that have limited battery energy.  The 
problem of reducing power consumption needs to be addressed 
at every level of system design.  This paper investigates the 
issues of designing low power protocols in the context of the 
PEN system, a mobile ad hoc network developed at AT&T 
Laboratories Cambridge.  It describes the ad hoc protocols that 
have been implemented, outlining both the design of individual 
protocols and the structure of the overall stack.  The power-
relevant mechanisms from the various protocols are collated in 
a summary. 

I. INTRODUCTION 

In a mobile embedded networking environment, the 
communicating nodes are small and rely on limited battery energy 
for their operation.  Since energy is a limited resource, and battery 
technology has been slow to improve, the design of low power 
architectures and protocols has become a pressing issue.  This paper 
investigates the issues of designing a low power protocol stack for 
the PEN1 system, a mobile ad hoc radio network developed at 
AT&T Laboratories Cambridge [1].  An embedded network is one 
made up of a set of autonomous, embeddable, and possibly mobile, 
nodes that communicate intermittently.  Nodes are radio-peers: each 
node is obliged neither to listen nor to transmit continuously.  The 
maximum achievable bandwidth on an embedded network is quite 
low, making it more suited for control rather than data applications.  
To reduce power consumption, PEN nodes are powered down for 
much of their duty cycle and awaken periodically to rendezvous 
with other nodes.  This has interesting implications on the design of 
Medium Access Control (MAC) and higher-level protocols, 
requiring them to deal with the problem of nodes being powered 
down and thus unable to respond immediately. 

A prime design requirement for the protocols is that they are as 
simple as possible in order to minimise power consumption and 
maintain the overall energy efficient properties of the stack.  For this 
reason, existing de-facto protocols are not really suited for the 
envisaged energy-constrained environment.  IP, for instance, is just 
too complex, particularly with respect to its routing functions; a 
typical implementation yields far greater code size and results in 
system demands that will be too excessive for a PEN node.   

Although they are by no means standard, the function of many 

                                                                 
1 Prototype Embedded Network – this is the working title for the Embedded 
Network previously known as “Piconet” 

of the layers in the PEN protocol stack are similar to those in the 
Open Systems Interconnection (OSI) seven layer protocol stack [5].  
In particular the PEN MAC layer has a similar function to the OSI 
Link layer – to share the physical communication medium; the PEN 
Routing layer has a similar function to the OSI Network layer – to 
route over subnetworks; and, the PEN Transport layer has a similar 
function to the OSI Transport layer – to provide a required quality of 
service.  One major difference, however, is the presence of an 
additional layer between the MAC layer and the Routing layer called 
the Rendezvous layer which is responsible for scheduling and 
forecasting times of inactivity and thus has a major role in power 
saving. 

Each protocol in the stack has been implemented as an 
independent module and they are accessed through Application 
Program Interfaces (APIs) that are supersets of the one used to 
access the Transport layer in an end system.  This means that many 
of the layers can be omitted from a system build should the function 
they provide not be required.  For example the Routing layer can be 
omitted when the system requires interaction only with local nodes, 
or the Transport layer can be omitted if large Service Data Units 
(SDUs) and data integrity are not required.  Reduced software size 
can have a beneficial effect on power consumption if it results in a 
lower processor overhead for the periods during which a node is 
active. 

II. PHYSICAL LAYER 

In order to simplify development, the PEN hardware was 
designed to make use of off-the-shelf components, whilst at the 
same time striving to minimise power consumption and maximise 
functionality. A Radiometrix ‘BIM-418’ module operating at 
418MHz using narrow-band frequency modulation provides the 
radio interface.  This is capable of a raw data-rate of 40kbit/s, half-
duplex, but requires a balanced data stream so a 4 bit to 6 bit 
encoding is used, reducing the usable data-rate to around 25kbit/s. 

Although the BIM provides a carrier detect signal, it was found 
to be extremely unreliable, so a data-sense technique had to be used 
to detect channel utilisation.  This relies upon an out-of-band 62 bit 
preamble at the start of each packet, which, upon reception, allows 
synchronization of the receive clock and then detection of a start of 
packet marker. 

A Xilinx 3090 Field Programmable Gate Array (FPGA) 
implements the encoding which also provides an effective error 
detection method since only 1 in 4 6-bit codes are valid.  The FPGA 
also handles preamble generation and detection, as well as 
implementing some of the MAC features discussed in the next 
section. 
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III. MAC LAYER 

The Media Access Control protocol serves two main functions: 
the first is to provide a communication service appropriate to the 
hardware available, and the second is to do so in a manner that will 
minimise power consumption.  Given that data is to be 
communicated, power can be saved only by mechanisms that 
attempt to minimise the amount of time that the radio has to be on.  
One such type of mechanism reduces the amount of radio traffic 
simply by choosing a time to transmit that minimises the likelihood 
of failure and therefore retransmission.  Note that design choices in 
favour of such considered timing are likely to result in less 
aggressive protocols that would not meet a design choice in favour 
of high throughput or low latency.  In this sense low power protocol 
operation must be traded against these other qualities of service. 

The MAC protocol uses a novel contention mechanism which 
bounds the probability of collision given likely communication 
scenarios and traffic levels.  It is part of the philosophy behind PEN 
that communication should be possible when all nodes in range turn 
on their transmitters and receivers only occasionally.  This 
effectively removes the possibility of exploiting continuous 
synchronization signals, such as might be required in a Time 
Division Multiple Access (TDMA) scheme.  The contention 
mechanism is novel because it makes use of implicit 
synchronization signals inevitably created by the normal operation 
of the radio to schedule transmissions in a way that will result in 
fewer collisions than a pure Data Sense Multiple Access (DSMA) 
scheme, but more than a TDMA scheme.  In a sense, the protocol is 
an intermediate hybrid between these two extremes. 

When the radio channel is busy, there will be a tendency for 
transmissions from different nodes to collide.  Since the hardware 
prevents transmissions only once a valid preamble is read, collisions 
that occur during a preamble will not be detected.  In that case, some 
other mechanism is needed to detect the collision.  
Acknowledgements are used for this purpose (but only for unicast 
data units, ACKs from multicast transmissions would be too difficult 
to implement - MAC multicast transmissions therefore are 
inherently susceptible to this loss).  Unacknowledged unicast data 
cannot be guaranteed not to have been delivered since the ACK may 
have collided undetectably; a retried transmission can therefore 
result in duplicated delivery. 

When there are a number of nodes contending for the radio 
channel, it is probable (although not necessary) that they will all 
observe the same traffic and many of them will be able to determine 
the time at which the current transmission has completed.  In effect, 
this event synchronizes the contending nodes that observed it.  It is 
important that these nodes do not simply choose to (re)try their 
transmissions once the channel becomes free (since this will 
guarantee an invisible collision that will require an ACK timeout to 
detect). 

To address this problem the MAC protocol introduces a fixed 
contention period of C ms following these events.  Each node 
chooses a random time within the contention period to start its 
preamble of P (1.55) ms and does not collide with another preamble 
starting in that period with a probability of (1+P/C)-1.  Thus, when 
there are n contending nodes the probability that there is no collision 
with the first preamble is (1+P/C)-(n-1), and if there is no collision the 
transmitting node will have been chosen fairly.  The protocol uses a 
32 ms contention period yielding a probability of a successful 

transmission of 0.954(n-1) although the effects of unsynchronized 
nodes will actually reduce this. 

In order to prevent ACKs having to contend with other 
synchronous transmissions, a fixed allowance is made by all nodes 
that detect the end of a unicast transmission for the time that an 
ACK is expected to take to be returned.  If no ACK is observed, 
synchronized nodes will begin their contention period only after this 
allowance has expired.  In order for this delay to be minimised, it is 
important for ACKs to be generated promptly.  In the case of unicast 
data the MAC protocol also handles the retransmission of data units 
- a maximum number of retransmissions being specified by the 
protocol's user.  There are two main reasons why a data unit might 
not be acknowledged: 

• the addressed node does not exist or is not currently 
receiving so acknowledgements are not being sent; and, 

• the radio channel is congested and data units or their 
acknowledgements are being lost 

To allow for the latter case, random ‘backoff’ times chosen from 
a retry duration that increases linearly with every retried 
transmission are introduced. 

Power management involves the periodic shutdown of the radio, 
both its transmitter and its receiver.  When power is re-established, 
the reason is often in order to perform a radio transmission.  Because 
the radio can detect only data unit preambles, and not the data units 
themselves, no transmission is allowed for the maximum duration 
that a data unit can take to pass.  However, if a preamble is sensed 
and reported before the expiry of that time, it is possible to contend 
for the channel earlier, along with the other users of the channel.  In 
certain circumstances this might actually reduce the latency for 
access to the radio channel when there is already traffic on the 
channel (particularly if it consists of small multicast data units - 
many of which can pass in the maximum packet time). 

In summary, the MAC protocol is designed to: 
• Provide fair contention for the radio channel under likely, 

lightly loaded, circumstances 
• Provide an acknowledged unicast service (with no 

guarantee of single delivery) 
• Provide a best-effort unacknowledged multicast service 

IV. RENDEZVOUS LAYER 

The MAC layer described above provides a means for nearby 
nodes to exchange PDUs, attempting to control power usage by 
minimising the likelihood of collision and retransmission.  In order 
to hear incoming packets, the MAC layer must leave the radio 
receiver active; with the current hardware, this requires the CPU, 
FPGA and transceiver to be powered on.  Hence, a node actively 
listening for packets consumes approximately 55mA whilst a node 
that is asleep consumes only 16µA.  If the transceiver were able to 
recognise and process incoming packets by itself, the power 
consumption might not have been so high and leaving it active all 
the time may have been an acceptable burden.  To obtain a 
significant reduction in power usage however, it becomes necessary 
to power down the CPU, FPGA and transceiver as often as possible.   

This is where the Rendezvous layer comes into play.  It is a 
communication protocol designed to sit just above the MAC layer 
and encapsulate all of these power saving decisions and timings 
independently of the MAC layer.  Given the PEN vision of ad hoc 
networking, with radio-peer communication between mobile nodes, 
designing a protocol that allows nodes to spend most of their time 
with their receivers switched off is difficult.  Existing solutions 
include using a master node to store data whilst the destination is 
powered down and forwarding the data when it powers up, or 
providing a framing structure for other nodes to synchronize their 
active periods to ([2], [3]).  The problem with these approaches is 
that they presuppose the existence of a master node with a large 
battery source that can consume significantly more power than the 
slave nodes; they are therefore not radio-peer solutions.  Also, the 
necessary designation of master nodes, and the formation of clusters 
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are expensive procedures given the degree of mobility that is 
anticipated for PEN nodes.  Since node interactions may occur in 
many varied environments, it is important that communication 
between low power nodes be possible without relying on the 
presence of nodes with greater power reserves. 

To meet these requirements an asynchronous protocol that 
supports radio-peer communication between low power nodes is 
proposed. 

A. Beacons 

The basis for this design is introduced in [12] which explores the 
behaviour of two rendezvous systems: ‘server beaconing’ and ‘client 
beaconing’, as the rate of interaction increases.  ‘Server beaconing’ 
has the server node sleeping most of the time, but periodically 
waking to send out a broadcast packet and advertise its presence.  
Following this broadcast, the node will listen briefly for replies from 
interested clients.  Any client that wishes to use a particular server 
must switch on its receiver and listen for beacons from the server.  
‘Client beaconing’ reverses the above strategy.  The server listens 
continuously for broadcasts from clients wishing to use its service.  
Whilst this results in high power consumption for a server node, it 
minimises the power consumption of client nodes.  As a result, this 
scheme offers lower overall power consumption when there are a 
large number of clients trying to access a relatively small number of 
servers. 

In the PEN environment, it is anticipated that the rate of 
interaction will be fairly low.  A scheduled rendezvous can easily be 
negotiated in cases where an ongoing association is required, so the 
basic rendezvous scheme is intended for the remaining first contact 
scenarios.  As such, a variation on ‘server beaconing’ is the best 
solution.  In PEN, ‘server beaconing’ is actually applied to any node 
that could accept Rendezvous layer datagram SDUs, whether or not 
it is a server.  Such nodes will send out periodic beacons using the 
MAC multicast service, on a well-known multicast address, to all 
Rendezvous layer equipped nodes.  Any node wishing to send 
Rendezvous layer datagram SDUs would listen for beacons from 
such nodes, and then forward its SDUs.  Since reception is 
comparatively expensive relative to transmission, this ensures that 
the default state for a server node is one in which the minimum 
power is being expended.  Nodes wishing to send SDUs must 
expend more power listening for beacons, and so the penalty, in 
terms of power, is placed upon the node originating the exchange.  
Note that this system takes advantage of the fact that PEN operates 
on a single frequency: frequency hopping systems would need to 
isolate a control frequency on which to broadcast availability. 

Following the transmission of its beacon a node must listen for 
replies before powering down.  This listen window must be long 
enough to allow all nearby nodes to send their replies, but at the 
same time be minimised to avoid wasting power.  To resolve these 
requirements a sliding window system is used.  A minimum listen 
duration Tmin is specified, along with a window duration Twindow.  

The node will remain listening for at least Tmin and until an interval 
Twindow has passed with no further PDUs received. 

B. Discovery and Description 

An important part of PEN is the process of discovering nearby 
nodes that offer facilities with which one wishes to interact.  It is of 
course important that this is a power efficient process.  By having 
each node send out beacons that contain a list of the services offered 
by that node, the processes of discovery and description are 
combined.  This avoids the need to expend power querying the 
capabilities of a node after its presence is discovered.  To minimise 
the size of the beacon PDUs, short identifiers called Application 
Protocol IDentifiers (APIDs) are used to identify different service 
types.  When an application wishes to receive incoming datagram 
SDUs, it specifies the APID that it wishes to listen on.  This APID is 
then appended to the beacon PDU, advertising the service to 
interested clients.  APIDs are similar to TCP port numbers in that 
they determine both the application and the protocol being 
communicated with.   

By varying the interval between beacons it is possible to 
customise the power usage profile of a node.  It is assumed that 
nodes spend most of their time idle.  Whilst idle the only protocol 
activity is waking up periodically to send out a beacon, so if the 
interval between beacons is increased, so is battery life.  However, if 
the beacon period is too long, nodes wishing to communicate must 
spend longer waiting to hear a beacon and so will consume more 
power.  It is important to note that this also increases the latency of 
the communication.  As a result there is a trade off between battery 
life and communication latency. 

C. Application specified QOS 

Different applications will have differing requirements for 
latency and battery life, so the selection of beacon interval is best 
left to the application.  This also ensures that application developers 
are aware of the power decisions that they are making, leading to 
power efficient applications [8].  However, there is a need to 
reconcile differing requirements when a node contains many 
applications.  This is fairly straightforward as the overhead in 
advertising multiple services in a single beacon is minimal, so only a 
single beacon is required2.  The interval for this beacon should be 
the minimum of those requested by the applications.  Since at least 
one application has requested this interval, there is a justification for 
expending the power needed to satisfy it, and all other applications 
will benefit from the reduced latency it provides. 

When a node wishes to send a Rendezvous layer datagram SDU, 
it must listen for a beacon from the destination node.  Since nodes 
may be mobile, it is possible that the destination node may not be 
within range.  In this case it is important to have an upper bound on 
how long the source node will listen before timing out.  It is this 
issue that brings together APIDs and beacon intervals.  All datagram 
SDUs have a destination APID that denotes which type of 
application on the destination node the SDU should be sent to.  
When that destination application opened its APID it had to specify 
its required beacon interval.  In order to send to that application, the 
application’s APID must be known, so it is only a small extra 
requirement that the associated beacon interval be known.  In this 
way the APID and interval can be considered a tuple that is required 
for addressing.  The actual beacon interval of the node may be 
smaller than this value, but not greater.  Once the beacon interval of 
the destination application is known, it is possible to timeout after a 
sensible multiple of this time.  The exact multiple will depend upon 
the reliability of broadcast transmissions in the MAC layer. 

                                                                 
2 Unless the number of APIDs being advertised is too great to fit within a 
single beacon, in which case a tiered beacon structure could be used, 
advertising high priority APIDs in one frequently broadcast beacon, and 
others in a less frequently broadcast beacon. 
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D. Transmission Modes 

The beacon system discussed above offers a number of useful 
transmission modes when sending a datagram SDU.  Firstly there is 
a unicast form of transmission called TX_SPECIFIC.  In this 
transmission mode the sender specifies a Rendezvous address 
consisting of the destination MAC address and destination APID 
(with associated interval I), both of which must match at the 
receiver.  The sender will then listen for a beacon from the requested 
destination and forward the Rendezvous SDU if the requested APID 
is advertised.  Under ideal conditions, this should result in the 
sending node listening for an average time of I/2.  

A second mode of transmission offers a less directed form of 
unicast termed TX_ANY.  The sender specifies a Rendezvous 
address consisting of just a destination APID (and associated 
interval); it does not specify a destination MAC address.  As before, 
the node will listen for beacons but the datagram SDU is forwarded 
to the first recipient found to offer that APID.  This mode will 
reduce the time spent listening when there are many suitable 
recipients and is useful for service discovery when any instance of a 
given service is acceptable. 

The final mode offered is the least power efficient, but offers a 
form of broadcast that may be useful in some cases.  It is called 
TX_ALL and attempts to forward a copy of the Rendezvous SDU to 
all recipients within range offering the requested APID.  To 
accomplish this, the node must listen for at least a full beacon 
interval and forward a copy of the datagram SDU to each suitable 
recipient detected.  Upon completion a list of nodes that the SDU 
was sent to is returned to the application, along with the MAC return 
code for each attempt. 

When a transmission is pending, a node will actively listen for a 
suitable destination node to be heard.  This power consumption 
accounts for much of that consumed in Rendezvous 
communications.  Whilst it is necessary to listen in order to hear the 
destination node, an SDU may not be sufficiently important to 
justify the power consumption.  For that reason a ‘best effort only’ 
flag is added to SDUs sent to the Rendezvous layer for transmission.  
This flag indicates that the node should not expend power listening 
on behalf of this SDU, but if there is no significant penalty for doing 
so, the SDU should otherwise be treated as normal.  Frequently there 
will be other pending SDUs which result in the node listening, so 
‘best effort’ SDUs would still stand a chance of success.  
Continuously powered nodes incur no penalty for listening, so can 
treat ‘best effort’ SDUs like any other. 

E. Pleas and Offers 

Nodes that have large and cheap power reserves gain little by 
going to sleep.  However, with the algorithm described above a node 
wishing to send to a continuously powered node would still wait for 
it to broadcast a beacon.  One solution might be to send the 
datagram SDU speculatively, in case the destination node happens to 
be listening.  If that fails, the normal approach of waiting for a 
beacon can be adopted.  Whilst this would work, it has the 
disadvantage of sending a potentially large PDU when the 
destination is not listening.  Because of the design of the MAC layer, 
this would result in a number of retransmissions, which waste 
further bandwidth. 

The solution adopted is to use small 'plea' PDUs.  When a 
datagram SDU is queued for transmission, a plea PDU containing 
only its destination addressing information is broadcast.  Any node 
receiving this plea that can satisfy its requirements will respond with 
an ‘offer’ PDU.  Queued SDUs are therefore sent on receipt of either 
a beacon, or an offer.  This approach allows a node to contact other 
active nodes almost immediately and ensures that the datagram 
SDUs are only ever sent when the destination node is known to be 
listening, and using the MAC acknowledged unicast mode.  In the 
case of the TX_ANY transmission mode, the originating node will 
not have to wait if a suitable recipient is available, and such 

datagrams are more likely to be sent to continuously powered nodes 
that have greater power resources with which to process the 
datagram. 

Although their occurrence is not necessarily synchronized with a 
Rendezvous layer user, the beacon, offer and plea PDUs do provide 
a relatively low power opportunity for (limited) communication.   
Therefore, each of these PDUs incorporates an SDU that can be used 
by the user – for example, by the Routing layer. 

F. Results 

A standard PEN node runs from a 9V lithium battery (Ultralife 
U9VL), chosen so as to maximise energy density.  Whilst asleep the 
node consumes only 16µA, but this can rise as high as 90mA when 
active.  By using a power efficient idle task, an average consumption 
of 55mA is achieved for a node with its transceiver active.   

A node that does not use the Rendezvous layer must keep its 
transceiver active at all times, so as to receive PDUs.  In the 
prototype hardware this prevents the MAC layer and CPU from 
powering down, so such a node will drain its battery in 
approximately 20 hours.  Using the Rendezvous layer, the node can 
power down in periods that a node has not advertised its availability 
– resulting in power savings proportional to the time during which it 
is asleep.  These savings are demonstrated in Fig. 5. 

Depending upon the application, considerably longer beacon 
intervals may be acceptable.  For example, in a distributed sensor 
application, a sensor may only need to beacon once an hour to 
upload its readings.  Such behaviour could extend the battery life to 
several months.  Unlike many other protocols (such as those of 
Bluetooth which has a minimum duty cycle) it is possible for 
different nodes to exhibit radically different behaviour depending 
upon their applications’ requirements; there is no enforced set of 
timings to which all nodes must abide. 

In summary, the Rendezvous layer: 
• permits communication between nodes that spend much of 

their time asleep 
• provides a mechanism for node discovery 
• allows nodes to vary their power usage depending upon 

their application 
V. ROUTING LAYER 

The PEN Routing and Relay layer has been specifically 
designed to route data between nodes in a power-managed network.  
Logically this layer is above the Rendezvous layer, but in practice its 
implementation is closely integrated with that of the Rendezvous 
layer. 

The lack of fixed infrastructure in PEN complicates the task of 
routing by requiring each host in the network to act as a relay.  The 
low power requirement adds a further constraint to the routing 
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problem, as the algorithm must be energy efficient.  Existing routing 
algorithms do not perform well in this respect as most of them have 
not considered the energy of hosts in the network as a resource 
constraint.  They assume that nodes can be powered on continuously 
and all nodes within range of a source will always receive its 
transmissions.  These assumptions do not hold in a power-managed 
network like PEN as nodes are powered down for the majority of 
their duty cycle in order to conserve energy.  In fact, it can further be 
said that broadcasts are not viable in such a power-managed network 
because of their high energy cost.  

The Routing protocol allows nodes to communicate with 
neighbours more than one radio hop away without placing a 
significant overhead on the energy resources of the network.  Most 
importantly, the Routing algorithm allows nodes to continue 
operating in a low power mode.  Furthermore, the per-hop routing 
delay is comparable to the Rendezvous layer synchronization delay 
between nodes.   

In addition to data delivery, the PEN Routing layer consists of 
two further functions: route discovery and route maintenance.  
Routes are discovered on demand as this makes a more efficient use 
of the energy in nodes since they do not have to expend energy 
discovering and maintaining routes they may never use.  The penalty 
paid for this approach is a greater delivery delay when a node does 
not have a route to a destination as it must first perform the route 
discovery.  Route maintenance also takes an on demand approach.  
A route is detected as broken because a node tried to use it and 
failed, and only then are other nodes notified or the route fixed. 

Nodes may be mobile, but one major assumption is that they do 
not move very frequently or with a great speed.  In a large network 
this is liable to be the case.  Node mobility degrades the 
performance of any routing algorithm as routes are broken more 
frequently and have to be reconfigured, but it does not add any extra 
complexity to the routing problem: route maintenance is still 
required to handle cases where the network topology does change, 
but more importantly - because of the unpredictable nature of radio 
as a communication medium - it must be able to reconfigure a route 
in the case where intermediate relays experience so much radio 
channel interference that they are unable to function. 

When any transmission using the Rendezvous layer is made, a 
far larger amount of energy is expended in synchronizing with the 
receiving node than in transmitting the data PDU.  This implies that 
the PDUs periodically used to synchronize nodes should be used to 
exchange as much routing information as possible.  The functions of 
the different Rendezvous layer PDUs, pleas, offers and beacons, 
have been described in the previous section and the routing 
algorithm uses these to carry different types of routing information. 

A. Route discovery 

Route discovery begins with a node requesting a route to a 
particular destination that is not available in the routing table.  Each 
node maintains a list of destinations that it requires a route to and 
includes this list (or as much of it as possible) into every plea PDU it 
transmits.  On receiving such a plea, a neighbouring peer will check 
every route requested and reply with an offer PDU containing any of 
the routes it has available.  For any route it does not have, it will add 
the destination to its own list of routes to discover.  The routing table 
stored at each node contains an entry for every destination that it has 
discovered a route to, consisting of a destination address, the address 
of the next hop node along the route to the destination, a routing 
metric and a destination-originated sequence number.  Currently, the 
hop count to the destination is used as the routing metric but other 
measures could be used.  The sequence numbers are used to ensure 
the loop freedom of the routing algorithm.  Although this routing 
algorithm is designed to discover routes on demand, it is 
advantageous to cache routes once they have been discovered in 
order to avoid spending extra energy and time re-discovering them.  
There is always a danger that a node may use a stale route, but 
considering the amount of time and energy expended in discovering 

a new route it is more desirable to rely on route maintenance to 
detect and fix broken routes. 

As described above, non-continuously powered nodes mainly 
use the beaconing mechanism to synchronize.  Beacon PDUs are 
therefore used to carry two types of routing information: routes that 
the node needs and routes that it has available.  On receiving a 
beacon PDU containing route requests, a node sends a gratuitous 
offer containing any of those routes that it has in its routing table.  
This extra offer is the only protocol exchange that is not due to the 
normal operation of the Rendezvous layer.  As it does not know 
what route its neighbours may need, the node may include its whole 
routing table in the beacon PDU, space permitting, or choose a 
certain number of entries to advertise cyclically.  On receiving an 
offer or a beacon PDU, a node updates its routing table with new 
entries, or with better ones as long as the sequence number of the 
new route is higher than that of the one being replaced. 

B. Route maintenance 

The route maintenance procedure must be able to detect a 
broken route and either attempt to route around the breakage or 
inform other nodes trying to route through it that the route is no 
longer valid.  Detecting a broken link is a difficult task because 
nodes are powered down for most of the time and the failure of a 
node to respond could mean that it has powered down or that it has 
moved or that the radio channel is busy.  A node must be able to 
detect reliably that a neighbour has moved out of its transmission 
range with as few false positives as possible because each time a 
broken link is detected the route maintenance procedure is invoked 
at one or more nodes.  This is a waste of energy if the route is not 
broken and may result in a worse route being used (assuming the 
network has previously converged on optimal routes).  While a node 
has its receiver powered on, it will receive a number of MAC layer 
PDUs not addressed to it that would normally be discarded.  
However they contain one important piece of information: namely 
that the node that sent them was within transmission range at that 
time.  Using this information each node’s Routing layer maintains a 
list of all its neighbours along with the time that it last received a 
transmission from them and this table is used in determining 
whether a given neighbour has moved out of range. 

A failure to transmit data using the Rendezvous layer indicates 
that either a route could not be found or the next hop node did not 
synchronize with this one (either due to radio interference or node 
migration).  The table of neighbours can be used to give some 
indication of whether that neighbour has moved.  If the elapsed time 
since the last transmission is greater than some pre-defined interval, 
then it is assumed that the neighbour has moved.  If the node 
assumes that its neighbour has not moved, then the transmission 
must have failed because the two nodes failed to synchronize, most 
likely due to radio interference.  The PDU is then given another 
chance at transmission but this time using the ‘best effort’ facility.  
This allows a PDU to be retried without exerting any overhead on 
the node’s energy resources and in fact the only extra energy that the 
node consumes is in transmitting the PDU.  Therefore if the 
assumption that the neighbour has not moved away is correct, the 
PDU is given another chance at transmission.  The penalty paid is in 
an increase in the route reconfiguration delay due to the node having 
a second transmission attempt; however this is justified by the aim 
to minimise energy consumption rather than routing delay. 

If a particular route is found to be broken, the source of the 
failed PDU must be notified.  The routing PDU is marked as being 
an error and returned along a route to its source if such a route is 
available.  If at some point an error PDU fails to be transmitted, it is 
discarded.  This is a rather drastic approach to route maintenance as 
the source of a route may not be notified for some time that the route 
is broken and may continue sending PDUs along it.  However, the 
route maintenance procedure should not be a big overhead on the 
energy resources of the relay nodes as the emphasis is on low power 
consumption and only a best effort service to the data PDUs.  



 

Furthermore, as the PDU has just used the route, up to the broken 
link, and as the topology is assumed to vary slowly, it is very likely 
that that portion of the route is still intact, so this failure scenario is 
not likely to occur often. 

C. Results 

The results presented in this section have been obtained using a 
simulation of a PEN network that has been calibrated using 
empirical measurements.  The reason for presenting simulation 
results is that each of the curves on the graph represents 
approximately 500 hours of simulation time.  In order to produce 
more accurate results and because random network topologies are 
used each point in the curves is averaged over twenty simulation 
runs. 

Fig. 6 shows the average energy consumption, i.e. the average 
amount of time spent powered on, per node in a network of ten 
nodes.  The network is assumed to have a static topology and 
therefore the probability of a link is used to define the binomial 
probability of any two nodes in the network being able to directly 
communicate with each other.  A probability of one corresponds to a 
fully connected network where all nodes can communicate directly 
with each other and as the probability is decreased the network 
becomes increasingly more partitioned.  The graph shows that the 
routing protocol does not present a considerable power consumption 
overhead, but to the contrary using routing actually results in lower 
power consumption for the nodes in the majority of cases.  The 
simulation is set up so that a network topology of 10 nodes is 
initialised at the start of each simulation run.  The beacon interval 
for all nodes in the network is defined to be 10 seconds and the 
mean time between datagram arrivals at each node is also set at 10 
seconds.  All datagrams are transmitted using the TX_SPECIFIC 
primitive and for this purpose a node address from the network is 
chosen at random, all node addresses being equally likely, and the 
source node attempts to transmit its datagram to that destination.  

As can be seen below, despite the extra information transmitted 
by the Routing layer, on average, it results in lower power 
consumption at each node.  This is most pronounced for the more 
sparsely connected network topologies.  These results can be 
explained by considering the operation of the Rendezvous layer: 
when a Rendezvous transmission is made, the node is kept powered 
on until it either synchronizes with the intended destination or the 
datagram times out.  For a sparsely connected network the intended 
destination will not be within one radio hop of the source node and 
so it will remain powered on for the full timeout period before it 
decided that this datagram could not be transmitted.  In the presence 
of the Routing layer however, the node will attempt to discover a 
route to the destination and if one is found it will have been stored 

by the node and will be used for all datagrams to that destination.  
On average, the synchronization with a neighbour takes less than a 
beacon interval and so the node can transmit its datagram and power 
down.  As the network becomes more reliably connected, the power 
saved by using the Routing layer is reduced, and for a fully 
connected network the Rendezvous layer consumes less power than 
the Routing layer.  This is because, in this case, all nodes are able to 
communicate with any node in the network through just one radio 
hop and a routing function is unnecessary.  The routing function 
uses energy to discover routes and this is unnecessary since all 
nodes can communicate directly.  However, this overhead is 
relatively small because the Routing layer uses Rendezvous layer 
beacon, plea and offer SDUs to transport its routing information, 
which require no explicit and expensive synchronization.  

The Routing layer service achieves low power operation by 
accessing details of lower layers that might otherwise have been 
unavailable.  The first is the use of Rendezvous layer protocol 
primitives (Beacon, Plea and Offer) to exchange routing 
information.  The second involves the use of information gathered at 
the MAC layer to make the routing protocol more robust.  In 
summary the Routing layer provides power efficient relay service. 

VI. TRANSPORT LAYER 

Higher up the stack, the Transport protocol provides a data 
integrity service that enables reliable end-to-end transmission of 
application-specific Transport Service Data Units (SDUs) over the 
inherently unreliable radio channel.  

The Transport protocol is designed to operate on a homogeneous 
network where the endpoints are PEN or PEN-like devices, and are 
addressed using a combination of MAC address and Transport Port 
number.  To reduce energy consumption the protocol adopts a two, 
rather than three, phase approach.  It uses a two-way handshake to 
set up a temporary connection between the transmitter or sending 
end of the connection, and the recipient or receiving end.  Setting up 
the connection involves the transmitter sending a single packet 
connection request to the recipient specifying the desired Transport 
Port.  The recipient will respond with a confirmation indicating that 
it is ready to receive data on that port.  The data transfer phase can 
then proceed, with the protocol performing the required 
segmentation and reassembly functions.  In particular, the transport 
service data unit is segmented into a number of transport datagram 
PDUs, which are then transmitted block by block.  The Maximum 
Transfer Unit (MTU) size is fixed; since heterogeneous networks are 
not involved, there is no need to consider refragmentation of PDUs 
as they go from a subnetwork with a greater MTU size to one with a 
smaller one, i.e. the MTU size does not need to be negotiated.  At 
the receiving end, transport PDUs are reassembled into a transport 
SDU that is then passed to the receiving application. 

Since the radio channel is prone to errors, and PDUs can be lost 
or duplicated, it is important that the Transport protocol ensures that 
the SDU is received intact at the recipient end.  To achieve this, each 
transport PDU is assigned a unique sequence number; the sequence 
number is incremented after the transmission of the PDU.  At the 
destination, the sequence numbers are used to identify and suppress 
duplicates.  The recipient also maintains a bitmap of the sequence 
numbers of PDUs it has received so far; it periodically sends the 
transmitter an acknowledgement containing the sequence number of 
the first PDU being acknowledged along with a delivery bitmap 
indicating the receipt status of the next N PDUs where N is the size 
of the bitmap.  When the transmitter receives an acknowledgement, 
it examines the bitmap, discards any undiscarded PDU that was 
successfully received, and retransmits any unsuccessful ones.  The 
Transport protocol ensures that an SDU is delivered only once to its 
destination by associating a unique connection identifier with the 
temporary connection created when an SDU is first transmitted; 
when a recipient receives a subsequent SDU with the same 
connection identifier, it assumes that it is a duplicate and discards it. 

The acknowledgement need not be sent in response to every 
PDU, and can be relatively infrequent (helping to reduce power use), 
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but a transmitter is not allowed to have more than a certain number 
(window size) of outstanding PDUs at a time.  At the start of the 
data transfer, the allowed window size is initialised to a fixed value.  
Each time the transmitter transmits a PDU, the window size is 
decremented by one.  Once the window size becomes zero, the 
transmitter is not allowed to transmit any more Transport PDUs until 
it receives the necessary information from the recipient that it can 
increase its window again.  Such a mechanism provides a basic form 
of flow control and liveness control indication on a per connection 
basis. 

A transmitter with a pending data transaction has a single 
outstanding timer associated with it.  If the transmitter has just 
started a transmission and a request for connection has been sent to 
the intended recipient, the timer is set to the expected response time 
of the recipient.  In case of a timeout, the request is retransmitted 
and a new timer is set; there are a fixed number of retransmission 
attempts before the connection request is aborted.  Once the 
connection is set up and data transfer is in progress, a timer is set for 
every block of PDUs that is sent out.  Expiry of the timer indicates 
that the recipient has not sent back an acknowledgement PDU with a 
delivery bitmap.  When this happens, the transmitter sends out an 
explicit request for an acknowledgement, setting a new timer for the 
acknowledgement to come back.  If the transmitter fails to receive 
an acknowledgement even after sending out a number of requests for 
ACKs, it aborts the connection.  If an acknowledgement is received 
that indicates no new receptions, the transmitter retransmits all the 
PDUs that have been sent, but have not yet been acknowledged; 
there are a maximum number of such retransmission attempts before 
the connection is aborted. 

Similarly a recipient with a pending data transfer has one 
outstanding timer.  The timer is set as soon as the recipient has sent 
back a response to a connection request from the transmitter.  
Subsequently, the timer is reset each time a new Transport PDU is 
received.  If the timer expires, meaning that a PDU has not been 
received for some time, the recipient sends back an ACK bitmap to 
the transmitter indicating that it is still expecting more PDUs.  The 
ACK bitmap specifies the last block of PDUs the recipient has 
received, so the transmitter knows which PDUs need to be sent 
again.  

As soon as a recipient receives the last PDU for a connection, it 
sends back an ACK to the transmitter and closes its end of the 
connection.  On receiving that last ACK, the transmitter terminates 
its side of the connection.  There is no explicit ‘closing’ of a 
Transport connection, thus avoiding the use of extra protocol 
primitives. 

The Transport protocol integrates with the low power underlying 
protocols and uses their power saving features.  Using the layer 
below, the Transport service is advertised by a particular application 
protocol identifier (APID), and an associated beacon interval.  
Typically the Transport beacon interval is chosen to be large so that 
beacons are not transmitted too frequently; this ensures that the 

channel is not hogged by Transport beacons and reduces power 
consumption.  When a transmitter opens a Transport connection on a 
given Transport Port, it sends out a connection request on the 
Transport APID.  A recipient that is listening on that Transport Port 
accepts the incoming connection request and uses the Transport 
APID to send back a reply.  For the data transfer phase, the 
Transport protocol opens a transient APID with a smaller beacon 
interval.  Using that APID, Transport PDUs are then transmitted as 
quickly as possible, minimising the latency of the connection.  Once 
all the PDUs have been sent, the transient APID is closed, and the 
Transport protocol reverts back to its normal beaconing mode. 

In summary the Transport layer: 
• provides a connectionless service that has, in effect, no 

maximum SDU size  
• provides guaranteed exactly once delivery 
• uses lazy acknowledgements and windowing to reduce the 

power used by ACKs 
• avoids explicit three-phase connection operation in order to 

eliminate extra protocol primitives 
VII. RELATED WORK 

The design of low power architectures and protocols has been 
the subject of a lot of recent research work.  Stemm et al. [10] have 
observed that a significant fraction of a wireless node’s power is 
consumed by its wireless interface cards, and have investigated 
methods of reducing the power consumption of network interfaces, 
with emphasis on hand-held devices. 

Various energy efficient protocols have been proposed at the 
MAC level.  In [4], an energy efficient method for broadcasting data 
through indexing is proposed where a base station computes a 
transmission schedule and broadcasts it to mobiles.  The mobiles are 
then able to stay in standby mode and conserve energy until it is 
their time to transmit.  Various reservation and scheduling 
algorithms have also been proposed for wireless ATM networks.  
Scheduled access is generally good for low power consumption 
since the number of collisions are reduced and key components of 
the wireless interface hardware can be powered down based on the 
knowledge of the location of surrounding nodes and their 
transmission schedules.  In their comparison of various MAC 
protocols [9], Sivalingam et al. conclude that contention usually 
results in high energy consumption while reservation and scheduling 
methods perform better in a low-power environment.  

Mangione [7] proposes a power-efficient MAC protocol for use 
within one cell for communication between a base station and its 
mobiles.  In this protocol, the base station periodically sends a 
beacon followed by a mini-slot containing the ID of nodes that have 
a page waiting for them.  Such nodes stay awake to receive their 
messages while the other nodes power themselves off.  

Zorzi [13] proposes transmission channel probing to overcome 
the problem of unnecessary MAC retransmissions when the radio 
channel quality is impaired.  The idea is to send a short low-power 
probe packet to check the channel quality; if the probe is 
successfully sent, indicating that the channel quality is good, MAC 
retransmissions are scheduled.  As a result, energy is not wasted for 
retransmission when the channel is impaired although energy is used 
to transmit the probes.  At the software level, data compression 
techniques are considered useful for conserving power as they 
reduce the required transmission time.  This is however at the 
expense of the additional CPU cycles for performing the 
compression which on smaller, embedded systems can itself make 
for significant power drain. 

An application-level control approach is proposed in [6].  In this 
solution, the mobile host decides when to suspend and resume the 
communication device.  Hence the mobile host acts as the master 
while the base station is the slave.  Whenever the mobile host is 
asleep, the base station has to buffer any data sent to the mobile 
host.  When the mobile host wakes up, it queries the base station to 
receive its data.  Since the base station has no way of restarting 
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communication if it has run out of buffer space, it is up to the mobile 
host to understand the base station's communication patterns so that 
there is no buffer overflow at the base station.  Essentially the 
suspend/resume cycles have to be matched to the communication 
patterns between the mobile host and the base station. 

IEEE 802.11 [3] defines wireless MAC and PHY layers 
intended for a range of applications, including mobile stations.  The 
PHY layer specifies a frequency-hopping spread spectrum system at 
2.4GHz.  This provides a considerably higher data rate and superior 
resilience to interference than that offered by the existing PEN 
Physical layer, but is also inherently more power hungry.  The MAC 
specification defines behaviour for an IBSS3 formed in an ad hoc 
fashion, with stations collaborating to define a framing structure to 
which all stations in the IBSS synchronize.  This scheme treats all 
stations as equals, so there is no designated master station.  This 
ensures that no station suffers the burden of managing the entire 
group, but also requires that all stations exhibit the same behaviour 
and level of activity regardless of their intended application.  Also, 
only stations within an IBSS can communicate and the 802.11 
procedures for association and authentication are very unsuited to 
supporting the PEN model of high mobility and short transactions. 

Bluetooth [2] was initially conceived as a cable replacement 
architecture, with a range of 10m and sufficient bandwidth to carry a 
real-time voice channel.  It has since evolved from that into an 
architecture for creating personal ad hoc networks, and has had a 
higher power mode added giving a range of around 100m.  
Originally envisaged as having a unit cost of below $5 and ‘low’ 
power usage, products have been delayed in reaching the 
marketplace due to difficulties in achieving these requirements. 

Other emerging wireless communication standards have also 
tackled the power saving issue.  The HiperLAN is the European 
Telecommunications (ETSI) RES 10, with an operational frequency 
band of 5.2 GHz.  Since HiperLAN offers a higher bit rate (over 20 
Mb/s) compared to 2 Mb/s for IEEE 802.11, receiving data is more 
expensive as it requires equalisation (an equaliser being the most 
expensive part of the receiver in terms of power consumption).  The 
solution is to divide the packet into a low-bit-rate part for control 
information and a high-bit rate part for data.  The MAC evaluates 
the control information and, if the packet is addressed to the node, 
the equaliser is turned on and the packet is received at the higher 
data rate.  This ensures that no energy is wasted on receiving packets 
that are not destined for a node.  In HiperLAN, there is also the 
notion of high-power supporter nodes (p-supporter) and nodes that 
aim to save power (p-saver).  Basically there is a contract between a 
p-supporter and a p-saver.  The p-saver is only active during 
prearranged intervals, and the p-supporter has to queue all packets 
destined for a p-saver and schedule their transmission during the 
active intervals of the p-saver.  

From this survey of existing power efficient protocols, it can be 
seen that most existing protocols assume some kind of infrastructure 
network where there is a base-station or an elected node that co-
ordinates the action of the other nodes and helps them to control 
their power consumption.  In the embedded environment considered 
here, it cannot be assumed that such a node would be available; the 
PEN algorithms are therefore asynchronous in nature, each node 
decides by itself when to power on or off.  This approach is more 
flexible since each node can control its own power usage 
independently and can operate in a truly ad hoc fashion. 

VIII. CONCLUSIONS 

In this paper an energy efficient MAC protocol was first 
proposed that saves power by minimising the likelihood of collision 
and reducing the number of packet retransmissions.  Above that, a 
Rendezvous protocol was designed that enables PEN nodes to 
remain asleep for much of their duty cycle and switch on their 
transceiver only when it is required.  An optional Routing protocol 
uses routing information opportunistically gleaned during lower 
                                                                 
3 Independent Basic Service Set 

layer protocol exchanges and provides a power saving even when 
used in a relatively well-connected network.  A Transport protocol 
has been built on top of these protocols and provides energy 
efficient transfer of arbitrarily sized SDUs on an end-to-end basis.  

No protocol described is without some mechanism incorporated 
to reduce power consumption, and there is a strong requirement for 
applications to be power-aware.  This underlines one of the main 
conclusions of the project – that low power must be considered 
throughout an embedded system’s design.  To summarize the 
experience gained in the construction of the PEN communications 
infrastructure the following, although sometimes obvious, were each 
found to have a role in reducing power consumption. 

Turn everything off: The majority of power saving simply 
comes from the availability of hardware that allows the selective 
powering down of different system elements and the use of software 
that monitors the use of each hardware element so as to power down 
the ones that are not required. 

Use simple hardware: There are a number of requirements that 
protocols can make of hardware, such as timer precision, complex 
modulation techniques, frequency hopping etc. that, when omitted, 
permit lower power solutions. 

Eliminate radio reception requirements: It is sometimes 
assumed that transmission is more expensive in terms of power than 
reception.  In the area of low power, low range radio, reception is 
likely to be at least as expensive as transmission (and is likely to 
have greater expense in hardware more advanced than that used in 
the PEN project).  Identifying reception as an expensive activity can 
have a significant impact on protocol and system design. 

Schedule Rendezvous times: Protocols that establish periods of 
availability enable periods of radio dumbness and radio silence to be 
implemented relatively low down in a protocol stack.  In lightly 
loaded nodes such periods can allow power to be removed from the 
rest of the system. 

Consider re-using events from underlying protocol layers: 
Although it may break the ideals of ‘information hiding’ it seems 
that making information, that might otherwise be discarded, 
available to higher protocol layers can often save power.  In terms of 
the design of a protocol stack this may involve the explicit 
promotion of details, initially thought to be specific to a protocol, to 
aspects of their layer service. 

Examples from the PEN protocol stack include: the use of the 
end-of-reception event (no matter for whom the reception was 
intended) as a ‘free’ synchronization hint; the accumulation of 
neighbourhood information available from redundant receptions in 
the MAC protocol (which is used in the Routing protocol to provide 
a liveness hint); and the use of the protocol primitives used to 
exchange beacons in the Rendezvous protocol to exchange routing 
information. 

Provide a relaying service: In a radio environment with no 
global synchronization nodes have to expend a significant amount of 
energy in synchronizing with communication partners.  Relaying 
through ubiquitous neighbours decreases the amount of time, and 
thus energy, necessary before communication can occur.  If the 
overhead in operating the relaying protocol is small our 
measurements show that the overall power consumption in the 
network (as opposed to per-node power consumption) is also lower. 

Provide and use cheap low-quality options: If it is simple to 
provide ‘low priority’ communication primitives more cheaply (in 
terms of their power use) than ‘normal’ primitives, consider 
providing them.  Some protocol elements may require only a ‘least 
effort’ delivery service: so as to carry a hint to peers that can be 
safely ignored (by the recipients) with a small performance penalty, 
for example. 



 

Acknowledge streamed data infrequently: When protocol data 
units are expected back-to-back, generating an acknowledgement for 
each of them uses power unnecessarily.  A windowing protocol 
involving ‘lazy’ acknowledgements will save power. 

Avoid contention: When competing for unique access to a 
shared channel, determining the level of contention for the channel 
and delaying transmission for as long as that level is high can save 
transmission power.  The alternative mechanism of relying only on 
acknowledgements and retransmission wastes power on discarded 
transmissions although it may provide lower latency. 

Use channel availability hints: The ‘hidden terminal’ problem 
[11] means that no radio event can be guaranteed to be shared by all 
those sharing the communications medium so protocols must be 
designed without an absolute requirement for synchronization via 
radio signals.  However, the probability that most of its users do 
observe the same events can be used in protocols to provide hints of 
channel availability. 

Keep protocols simple: Protocols are commonly connectionless 
(single phase: data transfer) or ‘soft state’ (two phase: including 
explicit connection establishment) or connection orientated (three 
phase: including explicit connection release).  Additional protocol 
elements supporting more phases, particularly those involved only in 
maintaining the shared knowledge that a connection is in place, 
represent additional power use: not only in their transmission and 
reception; but also, because their regular occurrence may prevent a 
node from powering down. 

Modular implementation: System size, when it becomes large, 
may dictate the use of additional power-consuming hardware 
resources (such as external memory).  Software extent and 
complexity may also require a greater level of activity in the 
hardware base (for example, coming out of low-power modes more 
frequently, or accessing relatively ‘power-hungry’ memory).  It is 
important, therefore, that the software incorporated into an 
embedded application can be tailored to match the application’s 
requirements closely (such as removing unnecessary protocols or 
operating system services).  This can most conveniently be achieved 
by constructing the system from largely independent software 
modules that can be assembled into any particular build as required. 
 

Despite the current limitations of our hardware, our empirical 
measurements show that these principles have enabled us to extend 
the battery life of PEN nodes significantly. 

Further work is required to evaluate the effect that purpose built, 
more integrated, hardware would have on power consumption both 
through a higher quality radio transceiver and through more efficient 
components.  For example, higher bandwidth or faster processors – 
although they might require additional power – may enable a node’s 
workload to be dispatched more quickly and thus enable it to power 
down sooner.  Also the current Rendezvous layer does not take 
advantage of the predictable nature of other nodes’ availability when 
scheduling transmissions – modified protocol implementations that 
do are currently under investigation. 
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