
The Design and Implementation of a Low Power Ad Hoc Protocol Stack
Gray Girling, Jennifer Li Kam Wa, Paul Osborn

AT&T Laboratories Cambridge
24a Trumpington Street

Cambridge, UK
http://www.uk.research.att.com/

{GGirling, JLi-Kam-Wa, POsborn}@uk.research.att.com

Radina Stefanova
Laboratory for Communications Engineering

Department of Engineering
University of Cambridge

Cambridge, UK
http://www-lce.eng.cam.ac.uk

Radina.Stefanova@cl.cam.ac.uk

Abstract - Low power consumption is a key design metric for
wireless network devices that have limited battery energy. The
problem of reducing power consumption needs to be addressed
at every level of system design. This paper investigates the
issues of designing low power protocols in the context of the
PEN system, a mobile ad hoc network developed at AT&T
Laboratories Cambridge. It describes the ad hoc protocols that
have been implemented, outlining both the design of individual
protocols and the structure of the overall stack. The power-
relevant mechanisms from the various protocols are collated in
a summary.

I. INTRODUCTION

In a mobile embedded networking environment, the
communicating nodes are small and rely on limited battery energy
for their operation. Since energy is a limited resource, and battery
technology has been slow to improve, the design of low power
architectures and protocols has become a pressing issue. This paper
investigates the issues of designing a low power protocol stack for
the PEN1 system, a mobile ad hoc radio network developed at
AT&T Laboratories Cambridge [1]. An embedded network is one
made up of a set of autonomous, embeddable, and possibly mobile,
nodes that communicate intermittently. Nodes are radio-peers: each
node is obliged neither to listen nor to transmit continuously. The
maximum achievable bandwidth on an embedded network is quite
low, making it more suited for control rather than data applications.
To reduce power consumption, PEN nodes are powered down for
much of their duty cycle and awaken periodically to rendezvous
with other nodes. This has interesting implications on the design of
Medium Access Control (MAC) and higher-level protocols,
requiring them to deal with the problem of nodes being powered
down and thus unable to respond immediately.

A prime design requirement for the protocols is that they are as
simple as possible in order to minimise power consumption and
maintain the overall energy efficient properties of the stack. For this
reason, existing de-facto protocols are not really suited for the
envisaged energy-constrained environment. IP, for instance, is just
too complex, particularly with respect to its routing functions; a
typical implementation yields far greater code size and results in
system demands that will be too excessive for a PEN node.

Although they are by no means standard, the function of many

1 Prototype Embedded Network – this is the working title for the Embedded
Network previously known as “Piconet”

of the layers in the PEN protocol stack are similar to those in the
Open Systems Interconnection (OSI) seven layer protocol stack [5].
In particular the PEN MAC layer has a similar function to the OSI
Link layer – to share the physical communication medium; the PEN
Routing layer has a similar function to the OSI Network layer – to
route over subnetworks; and, the PEN Transport layer has a similar
function to the OSI Transport layer – to provide a required quality of
service. One major difference, however, is the presence of an
additional layer between the MAC layer and the Routing layer called
the Rendezvous layer which is responsible for scheduling and
forecasting times of inactivity and thus has a major role in power
saving.

Each protocol in the stack has been implemented as an
independent module and they are accessed through Application
Program Interfaces (APIs) that are supersets of the one used to
access the Transport layer in an end system. This means that many
of the layers can be omitted from a system build should the function
they provide not be required. For example the Routing layer can be
omitted when the system requires interaction only with local nodes,
or the Transport layer can be omitted if large Service Data Units
(SDUs) and data integrity are not required. Reduced software size
can have a beneficial effect on power consumption if it results in a
lower processor overhead for the periods during which a node is
active.

II. PHYSICAL LAYER

In order to simplify development, the PEN hardware was
designed to make use of off-the-shelf components, whilst at the
same time striving to minimise power consumption and maximise
functionality. A Radiometrix ‘BIM-418’ module operating at
418MHz using narrow-band frequency modulation provides the
radio interface. This is capable of a raw data-rate of 40kbit/s, half-
duplex, but requires a balanced data stream so a 4 bit to 6 bit
encoding is used, reducing the usable data-rate to around 25kbit/s.

Although the BIM provides a carrier detect signal, it was found
to be extremely unreliable, so a data-sense technique had to be used
to detect channel utilisation. This relies upon an out-of-band 62 bit
preamble at the start of each packet, which, upon reception, allows
synchronization of the receive clock and then detection of a start of
packet marker.

A Xilinx 3090 Field Programmable Gate Array (FPGA)
implements the encoding which also provides an effective error
detection method since only 1 in 4 6-bit codes are valid. The FPGA
also handles preamble generation and detection, as well as
implementing some of the MAC features discussed in the next
section.

PHY
MAC

Rendezvous
Routing

Transport

Fig. 1. The PEN protocol stack

Physical Layer SDU

Synchronization signal
Start of packet marker

Preamble
Fig. 2. Physical layer PDU format

III. MAC LAYER

The Media Access Control protocol serves two main functions:
the first is to provide a communication service appropriate to the
hardware available, and the second is to do so in a manner that will
minimise power consumption. Given that data is to be
communicated, power can be saved only by mechanisms that
attempt to minimise the amount of time that the radio has to be on.
One such type of mechanism reduces the amount of radio traffic
simply by choosing a time to transmit that minimises the likelihood
of failure and therefore retransmission. Note that design choices in
favour of such considered timing are likely to result in less
aggressive protocols that would not meet a design choice in favour
of high throughput or low latency. In this sense low power protocol
operation must be traded against these other qualities of service.

The MAC protocol uses a novel contention mechanism which
bounds the probability of collision given likely communication
scenarios and traffic levels. It is part of the philosophy behind PEN
that communication should be possible when all nodes in range turn
on their transmitters and receivers only occasionally. This
effectively removes the possibility of exploiting continuous
synchronization signals, such as might be required in a Time
Division Multiple Access (TDMA) scheme. The contention
mechanism is novel because it makes use of implicit
synchronization signals inevitably created by the normal operation
of the radio to schedule transmissions in a way that will result in
fewer collisions than a pure Data Sense Multiple Access (DSMA)
scheme, but more than a TDMA scheme. In a sense, the protocol is
an intermediate hybrid between these two extremes.

When the radio channel is busy, there will be a tendency for
transmissions from different nodes to collide. Since the hardware
prevents transmissions only once a valid preamble is read, collisions
that occur during a preamble will not be detected. In that case, some
other mechanism is needed to detect the collision.
Acknowledgements are used for this purpose (but only for unicast
data units, ACKs from multicast transmissions would be too difficult
to implement - MAC multicast transmissions therefore are
inherently susceptible to this loss). Unacknowledged unicast data
cannot be guaranteed not to have been delivered since the ACK may
have collided undetectably; a retried transmission can therefore
result in duplicated delivery.

When there are a number of nodes contending for the radio
channel, it is probable (although not necessary) that they will all
observe the same traffic and many of them will be able to determine
the time at which the current transmission has completed. In effect,
this event synchronizes the contending nodes that observed it. It is
important that these nodes do not simply choose to (re)try their
transmissions once the channel becomes free (since this will
guarantee an invisible collision that will require an ACK timeout to
detect).

To address this problem the MAC protocol introduces a fixed
contention period of C ms following these events. Each node
chooses a random time within the contention period to start its
preamble of P (1.55) ms and does not collide with another preamble
starting in that period with a probability of (1+P/C)-1. Thus, when
there are n contending nodes the probability that there is no collision
with the first preamble is (1+P/C)-(n-1), and if there is no collision the
transmitting node will have been chosen fairly. The protocol uses a
32 ms contention period yielding a probability of a successful

transmission of 0.954(n-1) although the effects of unsynchronized
nodes will actually reduce this.

In order to prevent ACKs having to contend with other
synchronous transmissions, a fixed allowance is made by all nodes
that detect the end of a unicast transmission for the time that an
ACK is expected to take to be returned. If no ACK is observed,
synchronized nodes will begin their contention period only after this
allowance has expired. In order for this delay to be minimised, it is
important for ACKs to be generated promptly. In the case of unicast
data the MAC protocol also handles the retransmission of data units
- a maximum number of retransmissions being specified by the
protocol's user. There are two main reasons why a data unit might
not be acknowledged:

• the addressed node does not exist or is not currently
receiving so acknowledgements are not being sent; and,

• the radio channel is congested and data units or their
acknowledgements are being lost

To allow for the latter case, random ‘backoff’ times chosen from
a retry duration that increases linearly with every retried
transmission are introduced.

Power management involves the periodic shutdown of the radio,
both its transmitter and its receiver. When power is re-established,
the reason is often in order to perform a radio transmission. Because
the radio can detect only data unit preambles, and not the data units
themselves, no transmission is allowed for the maximum duration
that a data unit can take to pass. However, if a preamble is sensed
and reported before the expiry of that time, it is possible to contend
for the channel earlier, along with the other users of the channel. In
certain circumstances this might actually reduce the latency for
access to the radio channel when there is already traffic on the
channel (particularly if it consists of small multicast data units -
many of which can pass in the maximum packet time).

In summary, the MAC protocol is designed to:
• Provide fair contention for the radio channel under likely,

lightly loaded, circumstances
• Provide an acknowledged unicast service (with no

guarantee of single delivery)
• Provide a best-effort unacknowledged multicast service

IV. RENDEZVOUS LAYER

The MAC layer described above provides a means for nearby
nodes to exchange PDUs, attempting to control power usage by
minimising the likelihood of collision and retransmission. In order
to hear incoming packets, the MAC layer must leave the radio
receiver active; with the current hardware, this requires the CPU,
FPGA and transceiver to be powered on. Hence, a node actively
listening for packets consumes approximately 55mA whilst a node
that is asleep consumes only 16µA. If the transceiver were able to
recognise and process incoming packets by itself, the power
consumption might not have been so high and leaving it active all
the time may have been an acceptable burden. To obtain a
significant reduction in power usage however, it becomes necessary
to power down the CPU, FPGA and transceiver as often as possible.

This is where the Rendezvous layer comes into play. It is a
communication protocol designed to sit just above the MAC layer
and encapsulate all of these power saving decisions and timings
independently of the MAC layer. Given the PEN vision of ad hoc
networking, with radio-peer communication between mobile nodes,
designing a protocol that allows nodes to spend most of their time
with their receivers switched off is difficult. Existing solutions
include using a master node to store data whilst the destination is
powered down and forwarding the data when it powers up, or
providing a framing structure for other nodes to synchronize their
active periods to ([2], [3]). The problem with these approaches is
that they presuppose the existence of a master node with a large
battery source that can consume significantly more power than the
slave nodes; they are therefore not radio-peer solutions. Also, the
necessary designation of master nodes, and the formation of clusters

MAC Layer SDU

Dest Addr

Src Addr

Protocol Id

Length CRC

Fig. 3. MAC layer PDU format

are expensive procedures given the degree of mobility that is
anticipated for PEN nodes. Since node interactions may occur in
many varied environments, it is important that communication
between low power nodes be possible without relying on the
presence of nodes with greater power reserves.

To meet these requirements an asynchronous protocol that
supports radio-peer communication between low power nodes is
proposed.

A. Beacons

The basis for this design is introduced in [12] which explores the
behaviour of two rendezvous systems: ‘server beaconing’ and ‘client
beaconing’, as the rate of interaction increases. ‘Server beaconing’
has the server node sleeping most of the time, but periodically
waking to send out a broadcast packet and advertise its presence.
Following this broadcast, the node will listen briefly for replies from
interested clients. Any client that wishes to use a particular server
must switch on its receiver and listen for beacons from the server.
‘Client beaconing’ reverses the above strategy. The server listens
continuously for broadcasts from clients wishing to use its service.
Whilst this results in high power consumption for a server node, it
minimises the power consumption of client nodes. As a result, this
scheme offers lower overall power consumption when there are a
large number of clients trying to access a relatively small number of
servers.

In the PEN environment, it is anticipated that the rate of
interaction will be fairly low. A scheduled rendezvous can easily be
negotiated in cases where an ongoing association is required, so the
basic rendezvous scheme is intended for the remaining first contact
scenarios. As such, a variation on ‘server beaconing’ is the best
solution. In PEN, ‘server beaconing’ is actually applied to any node
that could accept Rendezvous layer datagram SDUs, whether or not
it is a server. Such nodes will send out periodic beacons using the
MAC multicast service, on a well-known multicast address, to all
Rendezvous layer equipped nodes. Any node wishing to send
Rendezvous layer datagram SDUs would listen for beacons from
such nodes, and then forward its SDUs. Since reception is
comparatively expensive relative to transmission, this ensures that
the default state for a server node is one in which the minimum
power is being expended. Nodes wishing to send SDUs must
expend more power listening for beacons, and so the penalty, in
terms of power, is placed upon the node originating the exchange.
Note that this system takes advantage of the fact that PEN operates
on a single frequency: frequency hopping systems would need to
isolate a control frequency on which to broadcast availability.

Following the transmission of its beacon a node must listen for
replies before powering down. This listen window must be long
enough to allow all nearby nodes to send their replies, but at the
same time be minimised to avoid wasting power. To resolve these
requirements a sliding window system is used. A minimum listen
duration Tmin is specified, along with a window duration Twindow.

The node will remain listening for at least Tmin and until an interval
Twindow has passed with no further PDUs received.

B. Discovery and Description

An important part of PEN is the process of discovering nearby
nodes that offer facilities with which one wishes to interact. It is of
course important that this is a power efficient process. By having
each node send out beacons that contain a list of the services offered
by that node, the processes of discovery and description are
combined. This avoids the need to expend power querying the
capabilities of a node after its presence is discovered. To minimise
the size of the beacon PDUs, short identifiers called Application
Protocol IDentifiers (APIDs) are used to identify different service
types. When an application wishes to receive incoming datagram
SDUs, it specifies the APID that it wishes to listen on. This APID is
then appended to the beacon PDU, advertising the service to
interested clients. APIDs are similar to TCP port numbers in that
they determine both the application and the protocol being
communicated with.

By varying the interval between beacons it is possible to
customise the power usage profile of a node. It is assumed that
nodes spend most of their time idle. Whilst idle the only protocol
activity is waking up periodically to send out a beacon, so if the
interval between beacons is increased, so is battery life. However, if
the beacon period is too long, nodes wishing to communicate must
spend longer waiting to hear a beacon and so will consume more
power. It is important to note that this also increases the latency of
the communication. As a result there is a trade off between battery
life and communication latency.

C. Application specified QOS

Different applications will have differing requirements for
latency and battery life, so the selection of beacon interval is best
left to the application. This also ensures that application developers
are aware of the power decisions that they are making, leading to
power efficient applications [8]. However, there is a need to
reconcile differing requirements when a node contains many
applications. This is fairly straightforward as the overhead in
advertising multiple services in a single beacon is minimal, so only a
single beacon is required2. The interval for this beacon should be
the minimum of those requested by the applications. Since at least
one application has requested this interval, there is a justification for
expending the power needed to satisfy it, and all other applications
will benefit from the reduced latency it provides.

When a node wishes to send a Rendezvous layer datagram SDU,
it must listen for a beacon from the destination node. Since nodes
may be mobile, it is possible that the destination node may not be
within range. In this case it is important to have an upper bound on
how long the source node will listen before timing out. It is this
issue that brings together APIDs and beacon intervals. All datagram
SDUs have a destination APID that denotes which type of
application on the destination node the SDU should be sent to.
When that destination application opened its APID it had to specify
its required beacon interval. In order to send to that application, the
application’s APID must be known, so it is only a small extra
requirement that the associated beacon interval be known. In this
way the APID and interval can be considered a tuple that is required
for addressing. The actual beacon interval of the node may be
smaller than this value, but not greater. Once the beacon interval of
the destination application is known, it is possible to timeout after a
sensible multiple of this time. The exact multiple will depend upon
the reliability of broadcast transmissions in the MAC layer.

2 Unless the number of APIDs being advertised is too great to fit within a
single beacon, in which case a tiered beacon structure could be used,
advertising high priority APIDs in one frequently broadcast beacon, and
others in a less frequently broadcast beacon.

MAC Layer SDU MAC Layer PDU

Offered APIDs

Time to next beacon

Number of APIDs

Beacon

Rendezvous Layer Datagram SDU Datagram
Dest APID

Src APID

Src beacon interval

Plea
Sought APID

Offer
APID offered

Rendezvous Layer Plea SDU

Rendezvous Layer Offer SDU

Rendezvous Layer Beacon SDU

 Fig. 4. Rendezvous layer PDU formats

D. Transmission Modes

The beacon system discussed above offers a number of useful
transmission modes when sending a datagram SDU. Firstly there is
a unicast form of transmission called TX_SPECIFIC. In this
transmission mode the sender specifies a Rendezvous address
consisting of the destination MAC address and destination APID
(with associated interval I), both of which must match at the
receiver. The sender will then listen for a beacon from the requested
destination and forward the Rendezvous SDU if the requested APID
is advertised. Under ideal conditions, this should result in the
sending node listening for an average time of I/2.

A second mode of transmission offers a less directed form of
unicast termed TX_ANY. The sender specifies a Rendezvous
address consisting of just a destination APID (and associated
interval); it does not specify a destination MAC address. As before,
the node will listen for beacons but the datagram SDU is forwarded
to the first recipient found to offer that APID. This mode will
reduce the time spent listening when there are many suitable
recipients and is useful for service discovery when any instance of a
given service is acceptable.

The final mode offered is the least power efficient, but offers a
form of broadcast that may be useful in some cases. It is called
TX_ALL and attempts to forward a copy of the Rendezvous SDU to
all recipients within range offering the requested APID. To
accomplish this, the node must listen for at least a full beacon
interval and forward a copy of the datagram SDU to each suitable
recipient detected. Upon completion a list of nodes that the SDU
was sent to is returned to the application, along with the MAC return
code for each attempt.

When a transmission is pending, a node will actively listen for a
suitable destination node to be heard. This power consumption
accounts for much of that consumed in Rendezvous
communications. Whilst it is necessary to listen in order to hear the
destination node, an SDU may not be sufficiently important to
justify the power consumption. For that reason a ‘best effort only’
flag is added to SDUs sent to the Rendezvous layer for transmission.
This flag indicates that the node should not expend power listening
on behalf of this SDU, but if there is no significant penalty for doing
so, the SDU should otherwise be treated as normal. Frequently there
will be other pending SDUs which result in the node listening, so
‘best effort’ SDUs would still stand a chance of success.
Continuously powered nodes incur no penalty for listening, so can
treat ‘best effort’ SDUs like any other.

E. Pleas and Offers

Nodes that have large and cheap power reserves gain little by
going to sleep. However, with the algorithm described above a node
wishing to send to a continuously powered node would still wait for
it to broadcast a beacon. One solution might be to send the
datagram SDU speculatively, in case the destination node happens to
be listening. If that fails, the normal approach of waiting for a
beacon can be adopted. Whilst this would work, it has the
disadvantage of sending a potentially large PDU when the
destination is not listening. Because of the design of the MAC layer,
this would result in a number of retransmissions, which waste
further bandwidth.

The solution adopted is to use small 'plea' PDUs. When a
datagram SDU is queued for transmission, a plea PDU containing
only its destination addressing information is broadcast. Any node
receiving this plea that can satisfy its requirements will respond with
an ‘offer’ PDU. Queued SDUs are therefore sent on receipt of either
a beacon, or an offer. This approach allows a node to contact other
active nodes almost immediately and ensures that the datagram
SDUs are only ever sent when the destination node is known to be
listening, and using the MAC acknowledged unicast mode. In the
case of the TX_ANY transmission mode, the originating node will
not have to wait if a suitable recipient is available, and such

datagrams are more likely to be sent to continuously powered nodes
that have greater power resources with which to process the
datagram.

Although their occurrence is not necessarily synchronized with a
Rendezvous layer user, the beacon, offer and plea PDUs do provide
a relatively low power opportunity for (limited) communication.
Therefore, each of these PDUs incorporates an SDU that can be used
by the user – for example, by the Routing layer.

F. Results

A standard PEN node runs from a 9V lithium battery (Ultralife
U9VL), chosen so as to maximise energy density. Whilst asleep the
node consumes only 16µA, but this can rise as high as 90mA when
active. By using a power efficient idle task, an average consumption
of 55mA is achieved for a node with its transceiver active.

A node that does not use the Rendezvous layer must keep its
transceiver active at all times, so as to receive PDUs. In the
prototype hardware this prevents the MAC layer and CPU from
powering down, so such a node will drain its battery in
approximately 20 hours. Using the Rendezvous layer, the node can
power down in periods that a node has not advertised its availability
– resulting in power savings proportional to the time during which it
is asleep. These savings are demonstrated in Fig. 5.

Depending upon the application, considerably longer beacon
intervals may be acceptable. For example, in a distributed sensor
application, a sensor may only need to beacon once an hour to
upload its readings. Such behaviour could extend the battery life to
several months. Unlike many other protocols (such as those of
Bluetooth which has a minimum duty cycle) it is possible for
different nodes to exhibit radically different behaviour depending
upon their applications’ requirements; there is no enforced set of
timings to which all nodes must abide.

In summary, the Rendezvous layer:
• permits communication between nodes that spend much of

their time asleep
• provides a mechanism for node discovery
• allows nodes to vary their power usage depending upon

their application
V. ROUTING LAYER

The PEN Routing and Relay layer has been specifically
designed to route data between nodes in a power-managed network.
Logically this layer is above the Rendezvous layer, but in practice its
implementation is closely integrated with that of the Rendezvous
layer.

The lack of fixed infrastructure in PEN complicates the task of
routing by requiring each host in the network to act as a relay. The
low power requirement adds a further constraint to the routing

5

6

7

8

9

10

0 2 4 6 8 10 12 14
Battery life (Days)

B
at

te
ry

 V
ol

ta
ge

 (V
ol

ts
)

10 second beacon interval
5 second beacon interval
2 second beacon interval

Fig. 5. Battery life for various beacon intervals

problem, as the algorithm must be energy efficient. Existing routing
algorithms do not perform well in this respect as most of them have
not considered the energy of hosts in the network as a resource
constraint. They assume that nodes can be powered on continuously
and all nodes within range of a source will always receive its
transmissions. These assumptions do not hold in a power-managed
network like PEN as nodes are powered down for the majority of
their duty cycle in order to conserve energy. In fact, it can further be
said that broadcasts are not viable in such a power-managed network
because of their high energy cost.

The Routing protocol allows nodes to communicate with
neighbours more than one radio hop away without placing a
significant overhead on the energy resources of the network. Most
importantly, the Routing algorithm allows nodes to continue
operating in a low power mode. Furthermore, the per-hop routing
delay is comparable to the Rendezvous layer synchronization delay
between nodes.

In addition to data delivery, the PEN Routing layer consists of
two further functions: route discovery and route maintenance.
Routes are discovered on demand as this makes a more efficient use
of the energy in nodes since they do not have to expend energy
discovering and maintaining routes they may never use. The penalty
paid for this approach is a greater delivery delay when a node does
not have a route to a destination as it must first perform the route
discovery. Route maintenance also takes an on demand approach.
A route is detected as broken because a node tried to use it and
failed, and only then are other nodes notified or the route fixed.

Nodes may be mobile, but one major assumption is that they do
not move very frequently or with a great speed. In a large network
this is liable to be the case. Node mobility degrades the
performance of any routing algorithm as routes are broken more
frequently and have to be reconfigured, but it does not add any extra
complexity to the routing problem: route maintenance is still
required to handle cases where the network topology does change,
but more importantly - because of the unpredictable nature of radio
as a communication medium - it must be able to reconfigure a route
in the case where intermediate relays experience so much radio
channel interference that they are unable to function.

When any transmission using the Rendezvous layer is made, a
far larger amount of energy is expended in synchronizing with the
receiving node than in transmitting the data PDU. This implies that
the PDUs periodically used to synchronize nodes should be used to
exchange as much routing information as possible. The functions of
the different Rendezvous layer PDUs, pleas, offers and beacons,
have been described in the previous section and the routing
algorithm uses these to carry different types of routing information.

A. Route discovery

Route discovery begins with a node requesting a route to a
particular destination that is not available in the routing table. Each
node maintains a list of destinations that it requires a route to and
includes this list (or as much of it as possible) into every plea PDU it
transmits. On receiving such a plea, a neighbouring peer will check
every route requested and reply with an offer PDU containing any of
the routes it has available. For any route it does not have, it will add
the destination to its own list of routes to discover. The routing table
stored at each node contains an entry for every destination that it has
discovered a route to, consisting of a destination address, the address
of the next hop node along the route to the destination, a routing
metric and a destination-originated sequence number. Currently, the
hop count to the destination is used as the routing metric but other
measures could be used. The sequence numbers are used to ensure
the loop freedom of the routing algorithm. Although this routing
algorithm is designed to discover routes on demand, it is
advantageous to cache routes once they have been discovered in
order to avoid spending extra energy and time re-discovering them.
There is always a danger that a node may use a stale route, but
considering the amount of time and energy expended in discovering

a new route it is more desirable to rely on route maintenance to
detect and fix broken routes.

As described above, non-continuously powered nodes mainly
use the beaconing mechanism to synchronize. Beacon PDUs are
therefore used to carry two types of routing information: routes that
the node needs and routes that it has available. On receiving a
beacon PDU containing route requests, a node sends a gratuitous
offer containing any of those routes that it has in its routing table.
This extra offer is the only protocol exchange that is not due to the
normal operation of the Rendezvous layer. As it does not know
what route its neighbours may need, the node may include its whole
routing table in the beacon PDU, space permitting, or choose a
certain number of entries to advertise cyclically. On receiving an
offer or a beacon PDU, a node updates its routing table with new
entries, or with better ones as long as the sequence number of the
new route is higher than that of the one being replaced.

B. Route maintenance

The route maintenance procedure must be able to detect a
broken route and either attempt to route around the breakage or
inform other nodes trying to route through it that the route is no
longer valid. Detecting a broken link is a difficult task because
nodes are powered down for most of the time and the failure of a
node to respond could mean that it has powered down or that it has
moved or that the radio channel is busy. A node must be able to
detect reliably that a neighbour has moved out of its transmission
range with as few false positives as possible because each time a
broken link is detected the route maintenance procedure is invoked
at one or more nodes. This is a waste of energy if the route is not
broken and may result in a worse route being used (assuming the
network has previously converged on optimal routes). While a node
has its receiver powered on, it will receive a number of MAC layer
PDUs not addressed to it that would normally be discarded.
However they contain one important piece of information: namely
that the node that sent them was within transmission range at that
time. Using this information each node’s Routing layer maintains a
list of all its neighbours along with the time that it last received a
transmission from them and this table is used in determining
whether a given neighbour has moved out of range.

A failure to transmit data using the Rendezvous layer indicates
that either a route could not be found or the next hop node did not
synchronize with this one (either due to radio interference or node
migration). The table of neighbours can be used to give some
indication of whether that neighbour has moved. If the elapsed time
since the last transmission is greater than some pre-defined interval,
then it is assumed that the neighbour has moved. If the node
assumes that its neighbour has not moved, then the transmission
must have failed because the two nodes failed to synchronize, most
likely due to radio interference. The PDU is then given another
chance at transmission but this time using the ‘best effort’ facility.
This allows a PDU to be retried without exerting any overhead on
the node’s energy resources and in fact the only extra energy that the
node consumes is in transmitting the PDU. Therefore if the
assumption that the neighbour has not moved away is correct, the
PDU is given another chance at transmission. The penalty paid is in
an increase in the route reconfiguration delay due to the node having
a second transmission attempt; however this is justified by the aim
to minimise energy consumption rather than routing delay.

If a particular route is found to be broken, the source of the
failed PDU must be notified. The routing PDU is marked as being
an error and returned along a route to its source if such a route is
available. If at some point an error PDU fails to be transmitted, it is
discarded. This is a rather drastic approach to route maintenance as
the source of a route may not be notified for some time that the route
is broken and may continue sending PDUs along it. However, the
route maintenance procedure should not be a big overhead on the
energy resources of the relay nodes as the emphasis is on low power
consumption and only a best effort service to the data PDUs.

Furthermore, as the PDU has just used the route, up to the broken
link, and as the topology is assumed to vary slowly, it is very likely
that that portion of the route is still intact, so this failure scenario is
not likely to occur often.

C. Results

The results presented in this section have been obtained using a
simulation of a PEN network that has been calibrated using
empirical measurements. The reason for presenting simulation
results is that each of the curves on the graph represents
approximately 500 hours of simulation time. In order to produce
more accurate results and because random network topologies are
used each point in the curves is averaged over twenty simulation
runs.

Fig. 6 shows the average energy consumption, i.e. the average
amount of time spent powered on, per node in a network of ten
nodes. The network is assumed to have a static topology and
therefore the probability of a link is used to define the binomial
probability of any two nodes in the network being able to directly
communicate with each other. A probability of one corresponds to a
fully connected network where all nodes can communicate directly
with each other and as the probability is decreased the network
becomes increasingly more partitioned. The graph shows that the
routing protocol does not present a considerable power consumption
overhead, but to the contrary using routing actually results in lower
power consumption for the nodes in the majority of cases. The
simulation is set up so that a network topology of 10 nodes is
initialised at the start of each simulation run. The beacon interval
for all nodes in the network is defined to be 10 seconds and the
mean time between datagram arrivals at each node is also set at 10
seconds. All datagrams are transmitted using the TX_SPECIFIC
primitive and for this purpose a node address from the network is
chosen at random, all node addresses being equally likely, and the
source node attempts to transmit its datagram to that destination.

As can be seen below, despite the extra information transmitted
by the Routing layer, on average, it results in lower power
consumption at each node. This is most pronounced for the more
sparsely connected network topologies. These results can be
explained by considering the operation of the Rendezvous layer:
when a Rendezvous transmission is made, the node is kept powered
on until it either synchronizes with the intended destination or the
datagram times out. For a sparsely connected network the intended
destination will not be within one radio hop of the source node and
so it will remain powered on for the full timeout period before it
decided that this datagram could not be transmitted. In the presence
of the Routing layer however, the node will attempt to discover a
route to the destination and if one is found it will have been stored

by the node and will be used for all datagrams to that destination.
On average, the synchronization with a neighbour takes less than a
beacon interval and so the node can transmit its datagram and power
down. As the network becomes more reliably connected, the power
saved by using the Routing layer is reduced, and for a fully
connected network the Rendezvous layer consumes less power than
the Routing layer. This is because, in this case, all nodes are able to
communicate with any node in the network through just one radio
hop and a routing function is unnecessary. The routing function
uses energy to discover routes and this is unnecessary since all
nodes can communicate directly. However, this overhead is
relatively small because the Routing layer uses Rendezvous layer
beacon, plea and offer SDUs to transport its routing information,
which require no explicit and expensive synchronization.

The Routing layer service achieves low power operation by
accessing details of lower layers that might otherwise have been
unavailable. The first is the use of Rendezvous layer protocol
primitives (Beacon, Plea and Offer) to exchange routing
information. The second involves the use of information gathered at
the MAC layer to make the routing protocol more robust. In
summary the Routing layer provides power efficient relay service.

VI. TRANSPORT LAYER

Higher up the stack, the Transport protocol provides a data
integrity service that enables reliable end-to-end transmission of
application-specific Transport Service Data Units (SDUs) over the
inherently unreliable radio channel.

The Transport protocol is designed to operate on a homogeneous
network where the endpoints are PEN or PEN-like devices, and are
addressed using a combination of MAC address and Transport Port
number. To reduce energy consumption the protocol adopts a two,
rather than three, phase approach. It uses a two-way handshake to
set up a temporary connection between the transmitter or sending
end of the connection, and the recipient or receiving end. Setting up
the connection involves the transmitter sending a single packet
connection request to the recipient specifying the desired Transport
Port. The recipient will respond with a confirmation indicating that
it is ready to receive data on that port. The data transfer phase can
then proceed, with the protocol performing the required
segmentation and reassembly functions. In particular, the transport
service data unit is segmented into a number of transport datagram
PDUs, which are then transmitted block by block. The Maximum
Transfer Unit (MTU) size is fixed; since heterogeneous networks are
not involved, there is no need to consider refragmentation of PDUs
as they go from a subnetwork with a greater MTU size to one with a
smaller one, i.e. the MTU size does not need to be negotiated. At
the receiving end, transport PDUs are reassembled into a transport
SDU that is then passed to the receiving application.

Since the radio channel is prone to errors, and PDUs can be lost
or duplicated, it is important that the Transport protocol ensures that
the SDU is received intact at the recipient end. To achieve this, each
transport PDU is assigned a unique sequence number; the sequence
number is incremented after the transmission of the PDU. At the
destination, the sequence numbers are used to identify and suppress
duplicates. The recipient also maintains a bitmap of the sequence
numbers of PDUs it has received so far; it periodically sends the
transmitter an acknowledgement containing the sequence number of
the first PDU being acknowledged along with a delivery bitmap
indicating the receipt status of the next N PDUs where N is the size
of the bitmap. When the transmitter receives an acknowledgement,
it examines the bitmap, discards any undiscarded PDU that was
successfully received, and retransmits any unsuccessful ones. The
Transport protocol ensures that an SDU is delivered only once to its
destination by associating a unique connection identifier with the
temporary connection created when an SDU is first transmitted;
when a recipient receives a subsequent SDU with the same
connection identifier, it assumes that it is a duplicate and discards it.

The acknowledgement need not be sent in response to every
PDU, and can be relatively infrequent (helping to reduce power use),

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

45

50

55

60

65

70

Probability (p) of a link between any two nodes

En
er

gy
 C

on
su

m
ed

 (%
)

Rendezvous layer only
Routing layer

Fig. 6. Energy impact of the Routing layer

but a transmitter is not allowed to have more than a certain number
(window size) of outstanding PDUs at a time. At the start of the
data transfer, the allowed window size is initialised to a fixed value.
Each time the transmitter transmits a PDU, the window size is
decremented by one. Once the window size becomes zero, the
transmitter is not allowed to transmit any more Transport PDUs until
it receives the necessary information from the recipient that it can
increase its window again. Such a mechanism provides a basic form
of flow control and liveness control indication on a per connection
basis.

A transmitter with a pending data transaction has a single
outstanding timer associated with it. If the transmitter has just
started a transmission and a request for connection has been sent to
the intended recipient, the timer is set to the expected response time
of the recipient. In case of a timeout, the request is retransmitted
and a new timer is set; there are a fixed number of retransmission
attempts before the connection request is aborted. Once the
connection is set up and data transfer is in progress, a timer is set for
every block of PDUs that is sent out. Expiry of the timer indicates
that the recipient has not sent back an acknowledgement PDU with a
delivery bitmap. When this happens, the transmitter sends out an
explicit request for an acknowledgement, setting a new timer for the
acknowledgement to come back. If the transmitter fails to receive
an acknowledgement even after sending out a number of requests for
ACKs, it aborts the connection. If an acknowledgement is received
that indicates no new receptions, the transmitter retransmits all the
PDUs that have been sent, but have not yet been acknowledged;
there are a maximum number of such retransmission attempts before
the connection is aborted.

Similarly a recipient with a pending data transfer has one
outstanding timer. The timer is set as soon as the recipient has sent
back a response to a connection request from the transmitter.
Subsequently, the timer is reset each time a new Transport PDU is
received. If the timer expires, meaning that a PDU has not been
received for some time, the recipient sends back an ACK bitmap to
the transmitter indicating that it is still expecting more PDUs. The
ACK bitmap specifies the last block of PDUs the recipient has
received, so the transmitter knows which PDUs need to be sent
again.

As soon as a recipient receives the last PDU for a connection, it
sends back an ACK to the transmitter and closes its end of the
connection. On receiving that last ACK, the transmitter terminates
its side of the connection. There is no explicit ‘closing’ of a
Transport connection, thus avoiding the use of extra protocol
primitives.

The Transport protocol integrates with the low power underlying
protocols and uses their power saving features. Using the layer
below, the Transport service is advertised by a particular application
protocol identifier (APID), and an associated beacon interval.
Typically the Transport beacon interval is chosen to be large so that
beacons are not transmitted too frequently; this ensures that the

channel is not hogged by Transport beacons and reduces power
consumption. When a transmitter opens a Transport connection on a
given Transport Port, it sends out a connection request on the
Transport APID. A recipient that is listening on that Transport Port
accepts the incoming connection request and uses the Transport
APID to send back a reply. For the data transfer phase, the
Transport protocol opens a transient APID with a smaller beacon
interval. Using that APID, Transport PDUs are then transmitted as
quickly as possible, minimising the latency of the connection. Once
all the PDUs have been sent, the transient APID is closed, and the
Transport protocol reverts back to its normal beaconing mode.

In summary the Transport layer:
• provides a connectionless service that has, in effect, no

maximum SDU size
• provides guaranteed exactly once delivery
• uses lazy acknowledgements and windowing to reduce the

power used by ACKs
• avoids explicit three-phase connection operation in order to

eliminate extra protocol primitives
VII. RELATED WORK

The design of low power architectures and protocols has been
the subject of a lot of recent research work. Stemm et al. [10] have
observed that a significant fraction of a wireless node’s power is
consumed by its wireless interface cards, and have investigated
methods of reducing the power consumption of network interfaces,
with emphasis on hand-held devices.

Various energy efficient protocols have been proposed at the
MAC level. In [4], an energy efficient method for broadcasting data
through indexing is proposed where a base station computes a
transmission schedule and broadcasts it to mobiles. The mobiles are
then able to stay in standby mode and conserve energy until it is
their time to transmit. Various reservation and scheduling
algorithms have also been proposed for wireless ATM networks.
Scheduled access is generally good for low power consumption
since the number of collisions are reduced and key components of
the wireless interface hardware can be powered down based on the
knowledge of the location of surrounding nodes and their
transmission schedules. In their comparison of various MAC
protocols [9], Sivalingam et al. conclude that contention usually
results in high energy consumption while reservation and scheduling
methods perform better in a low-power environment.

Mangione [7] proposes a power-efficient MAC protocol for use
within one cell for communication between a base station and its
mobiles. In this protocol, the base station periodically sends a
beacon followed by a mini-slot containing the ID of nodes that have
a page waiting for them. Such nodes stay awake to receive their
messages while the other nodes power themselves off.

Zorzi [13] proposes transmission channel probing to overcome
the problem of unnecessary MAC retransmissions when the radio
channel quality is impaired. The idea is to send a short low-power
probe packet to check the channel quality; if the probe is
successfully sent, indicating that the channel quality is good, MAC
retransmissions are scheduled. As a result, energy is not wasted for
retransmission when the channel is impaired although energy is used
to transmit the probes. At the software level, data compression
techniques are considered useful for conserving power as they
reduce the required transmission time. This is however at the
expense of the additional CPU cycles for performing the
compression which on smaller, embedded systems can itself make
for significant power drain.

An application-level control approach is proposed in [6]. In this
solution, the mobile host decides when to suspend and resume the
communication device. Hence the mobile host acts as the master
while the base station is the slave. Whenever the mobile host is
asleep, the base station has to buffer any data sent to the mobile
host. When the mobile host wakes up, it queries the base station to
receive its data. Since the base station has no way of restarting

Routing Layer SDU

Transport Layer fragment Datagram

Connection Id
Sequence No.

Transport Port

Transport Port

Delivery bitmap

Routing
Layer PDU

Tran

Connection Id

Sequence No.
Data ACK

Connection
Request

Connection
ACK

Fig. 7. Transport layer PDU format

communication if it has run out of buffer space, it is up to the mobile
host to understand the base station's communication patterns so that
there is no buffer overflow at the base station. Essentially the
suspend/resume cycles have to be matched to the communication
patterns between the mobile host and the base station.

IEEE 802.11 [3] defines wireless MAC and PHY layers
intended for a range of applications, including mobile stations. The
PHY layer specifies a frequency-hopping spread spectrum system at
2.4GHz. This provides a considerably higher data rate and superior
resilience to interference than that offered by the existing PEN
Physical layer, but is also inherently more power hungry. The MAC
specification defines behaviour for an IBSS3 formed in an ad hoc
fashion, with stations collaborating to define a framing structure to
which all stations in the IBSS synchronize. This scheme treats all
stations as equals, so there is no designated master station. This
ensures that no station suffers the burden of managing the entire
group, but also requires that all stations exhibit the same behaviour
and level of activity regardless of their intended application. Also,
only stations within an IBSS can communicate and the 802.11
procedures for association and authentication are very unsuited to
supporting the PEN model of high mobility and short transactions.

Bluetooth [2] was initially conceived as a cable replacement
architecture, with a range of 10m and sufficient bandwidth to carry a
real-time voice channel. It has since evolved from that into an
architecture for creating personal ad hoc networks, and has had a
higher power mode added giving a range of around 100m.
Originally envisaged as having a unit cost of below $5 and ‘low’
power usage, products have been delayed in reaching the
marketplace due to difficulties in achieving these requirements.

Other emerging wireless communication standards have also
tackled the power saving issue. The HiperLAN is the European
Telecommunications (ETSI) RES 10, with an operational frequency
band of 5.2 GHz. Since HiperLAN offers a higher bit rate (over 20
Mb/s) compared to 2 Mb/s for IEEE 802.11, receiving data is more
expensive as it requires equalisation (an equaliser being the most
expensive part of the receiver in terms of power consumption). The
solution is to divide the packet into a low-bit-rate part for control
information and a high-bit rate part for data. The MAC evaluates
the control information and, if the packet is addressed to the node,
the equaliser is turned on and the packet is received at the higher
data rate. This ensures that no energy is wasted on receiving packets
that are not destined for a node. In HiperLAN, there is also the
notion of high-power supporter nodes (p-supporter) and nodes that
aim to save power (p-saver). Basically there is a contract between a
p-supporter and a p-saver. The p-saver is only active during
prearranged intervals, and the p-supporter has to queue all packets
destined for a p-saver and schedule their transmission during the
active intervals of the p-saver.

From this survey of existing power efficient protocols, it can be
seen that most existing protocols assume some kind of infrastructure
network where there is a base-station or an elected node that co-
ordinates the action of the other nodes and helps them to control
their power consumption. In the embedded environment considered
here, it cannot be assumed that such a node would be available; the
PEN algorithms are therefore asynchronous in nature, each node
decides by itself when to power on or off. This approach is more
flexible since each node can control its own power usage
independently and can operate in a truly ad hoc fashion.

VIII. CONCLUSIONS

In this paper an energy efficient MAC protocol was first
proposed that saves power by minimising the likelihood of collision
and reducing the number of packet retransmissions. Above that, a
Rendezvous protocol was designed that enables PEN nodes to
remain asleep for much of their duty cycle and switch on their
transceiver only when it is required. An optional Routing protocol
uses routing information opportunistically gleaned during lower

3 Independent Basic Service Set

layer protocol exchanges and provides a power saving even when
used in a relatively well-connected network. A Transport protocol
has been built on top of these protocols and provides energy
efficient transfer of arbitrarily sized SDUs on an end-to-end basis.

No protocol described is without some mechanism incorporated
to reduce power consumption, and there is a strong requirement for
applications to be power-aware. This underlines one of the main
conclusions of the project – that low power must be considered
throughout an embedded system’s design. To summarize the
experience gained in the construction of the PEN communications
infrastructure the following, although sometimes obvious, were each
found to have a role in reducing power consumption.

Turn everything off: The majority of power saving simply
comes from the availability of hardware that allows the selective
powering down of different system elements and the use of software
that monitors the use of each hardware element so as to power down
the ones that are not required.

Use simple hardware: There are a number of requirements that
protocols can make of hardware, such as timer precision, complex
modulation techniques, frequency hopping etc. that, when omitted,
permit lower power solutions.

Eliminate radio reception requirements: It is sometimes
assumed that transmission is more expensive in terms of power than
reception. In the area of low power, low range radio, reception is
likely to be at least as expensive as transmission (and is likely to
have greater expense in hardware more advanced than that used in
the PEN project). Identifying reception as an expensive activity can
have a significant impact on protocol and system design.

Schedule Rendezvous times: Protocols that establish periods of
availability enable periods of radio dumbness and radio silence to be
implemented relatively low down in a protocol stack. In lightly
loaded nodes such periods can allow power to be removed from the
rest of the system.

Consider re-using events from underlying protocol layers:
Although it may break the ideals of ‘information hiding’ it seems
that making information, that might otherwise be discarded,
available to higher protocol layers can often save power. In terms of
the design of a protocol stack this may involve the explicit
promotion of details, initially thought to be specific to a protocol, to
aspects of their layer service.

Examples from the PEN protocol stack include: the use of the
end-of-reception event (no matter for whom the reception was
intended) as a ‘free’ synchronization hint; the accumulation of
neighbourhood information available from redundant receptions in
the MAC protocol (which is used in the Routing protocol to provide
a liveness hint); and the use of the protocol primitives used to
exchange beacons in the Rendezvous protocol to exchange routing
information.

Provide a relaying service: In a radio environment with no
global synchronization nodes have to expend a significant amount of
energy in synchronizing with communication partners. Relaying
through ubiquitous neighbours decreases the amount of time, and
thus energy, necessary before communication can occur. If the
overhead in operating the relaying protocol is small our
measurements show that the overall power consumption in the
network (as opposed to per-node power consumption) is also lower.

Provide and use cheap low-quality options: If it is simple to
provide ‘low priority’ communication primitives more cheaply (in
terms of their power use) than ‘normal’ primitives, consider
providing them. Some protocol elements may require only a ‘least
effort’ delivery service: so as to carry a hint to peers that can be
safely ignored (by the recipients) with a small performance penalty,
for example.

Acknowledge streamed data infrequently: When protocol data
units are expected back-to-back, generating an acknowledgement for
each of them uses power unnecessarily. A windowing protocol
involving ‘lazy’ acknowledgements will save power.

Avoid contention: When competing for unique access to a
shared channel, determining the level of contention for the channel
and delaying transmission for as long as that level is high can save
transmission power. The alternative mechanism of relying only on
acknowledgements and retransmission wastes power on discarded
transmissions although it may provide lower latency.

Use channel availability hints: The ‘hidden terminal’ problem
[11] means that no radio event can be guaranteed to be shared by all
those sharing the communications medium so protocols must be
designed without an absolute requirement for synchronization via
radio signals. However, the probability that most of its users do
observe the same events can be used in protocols to provide hints of
channel availability.

Keep protocols simple: Protocols are commonly connectionless
(single phase: data transfer) or ‘soft state’ (two phase: including
explicit connection establishment) or connection orientated (three
phase: including explicit connection release). Additional protocol
elements supporting more phases, particularly those involved only in
maintaining the shared knowledge that a connection is in place,
represent additional power use: not only in their transmission and
reception; but also, because their regular occurrence may prevent a
node from powering down.

Modular implementation: System size, when it becomes large,
may dictate the use of additional power-consuming hardware
resources (such as external memory). Software extent and
complexity may also require a greater level of activity in the
hardware base (for example, coming out of low-power modes more
frequently, or accessing relatively ‘power-hungry’ memory). It is
important, therefore, that the software incorporated into an
embedded application can be tailored to match the application’s
requirements closely (such as removing unnecessary protocols or
operating system services). This can most conveniently be achieved
by constructing the system from largely independent software
modules that can be assembled into any particular build as required.

Despite the current limitations of our hardware, our empirical
measurements show that these principles have enabled us to extend
the battery life of PEN nodes significantly.

Further work is required to evaluate the effect that purpose built,
more integrated, hardware would have on power consumption both
through a higher quality radio transceiver and through more efficient
components. For example, higher bandwidth or faster processors –
although they might require additional power – may enable a node’s
workload to be dispatched more quickly and thus enable it to power
down sooner. Also the current Rendezvous layer does not take
advantage of the predictable nature of other nodes’ availability when
scheduling transmissions – modified protocol implementations that
do are currently under investigation.

IX. REFERENCES

[1] Bennett F, Clarke D, Evans J B, Hopper A, Jones A, Leask D, “Piconet –
Embedded Mobile Networking”, IEEE Personal Communications, vol.
4, no. 5, October 1997, pp. 8-15.

[2] Bluetooth Specification Volume 1, Bluetooth Consortium, July 1999
[3] Institute of Electrical and Electronics Engineers Std. 802 and

International Organization for Standardization, Std. ISO/IEC 8802
“Information Technology – Telecommunications and Information
Exchange – Local and Metropolitan Area Networks – Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications.

[4] Imilienski T, Vishwanathan S, Badrinath, “Energy efficient indexing on
air”, Proceedings SIGMOD, May 1994.

[5] International Organization for Standardization, ISO 7498-1, “Information
processing systems – Open Systems Interconnection – Basic Reference
Model”, October 1984

[6] Kravets R, Krishnan P, “Application-Driven Power Management for
Mobile Communication”, Proceedings of 4th International Conference
on Mobile Computing and Networking MOBICOM98.

[7] Mangione-Smith W, Chang P S, “A Low Power Medium Access Control
Protocol for Multimedia Systems”, Proceedings of 3rd International
Workshop on Mobile Multimedia Communications, September 25-27,
1996.

[8] Schlatter Ellis C, “The Case for Higher-Level Power Management”, Hot
Topics in Operating Systems VII, 1998, Institute of Electrical and
Electronics Engineers.

[9] Sivalingam K M, Srivastava M B, Agrawal P, “Low Power Link and
Access Protocols for Wireless Multimedia Networks”, Proceedings of
IEEE Vehicular Technology Conference VTC97, May 4-7 1997.

[10] Stemm M, Gauthier P, Harada D, “Reducing Power Consumption of
Network Interfaces in Hand-held Devices”, Proceedings of 3rd
International Workshop on Mobile Multimedia Communications,
September 25-27, 1996.

[11] Tobagi F A, Kleinrock L, “Packet switching in radio channels: Part II –
the hidden terminal problem in carrier sense multiple-access modes and
busy-tone solutions”, IEEE Transaction on Communications, vol. 23,
no. 12, pp. 1417-1433, 1975

[12] Todd T D, Bennett F and Jones A, "Low Power Rendezvous in
Embedded Wireless Networks", Proceedings of 1st International
Workshop on Mobile Ad Hoc Networking & Computing, MobiHOC,
August 11, 2000

[13] Zorzi M, Rao R R, “Energy Management in Wireless Communications”,
Proceedings of 6th WINLAB workshop, New Brunswick, NJ, March
1997.

	The Design and Implementation of a Low Power Ad Hoc Protocol Stack
	Introduction
	Physical layer
	MAC layer
	Rendezvous layer
	Beacons
	Discovery and Description
	Application specified QOS
	Transmission Modes
	Pleas and Offers
	Results

	Routing layer
	Route discovery
	Route maintenance
	Results

	Transport layer
	Related Work
	Conclusions
	References

