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Recent advances in microprocessor and wireless technologies have created scope for a new class of device – the 
tetherless computer.  Tetherless computers encompass not only those devices traditionally regarded as computers 
but also other electronic household devices.  Tetherless computing may even extend, as will be illustrated, to 
networking non-electronic home items.  The R2-Layer provides a simple yet flexible low-power rendezvous and 
messaging interface suitable for tetherless devices. 

1 Introduction 
Twenty years ago, your television set would have been 
controlled by a set of knobs on its front panel and may 
well have been supplied in a plastic wood-effect case.  
Your radio would have generally been mono rather than 
stereo and would require tuning manually.  The volume 
of their output would have been controlled by a variable 
resistor knob labelled “volume” and connected directly 
into part of the amplifier circuit.  If you had a telephone 
then it would have a dialling wheel. 
Ten years ago, a television set would have been 
supplied in any colour you wanted provided it was black 
and would be operated by a small panel of buttons 
linked to a simple microprocessor.  The device would 
still require manual tuning but be capable of scanning 
the broadcast signal for available channels.  Radios 
would now be stereo for the most part and some would 
be able to tune themselves automatically.  They would 
now be controlled by a set of buttons linked back to a 
microprocessor, as would your telephone. 
Five years ago, your television, video recorder, and hi-fi 
systems would have each have had their own 
microprocessor-based infrared remote controller.  The 
controllers would generally have a similar set of buttons 
on them to the ones on the devices themselves, rather 
than adding any extra functionality.  When people asked 
you for your telephone number, you might now have to 
get them to specify whether they wanted your home, 
office, or mobile number. 
Two trends are apparent if one looks more closely at the 
above observations.  The first is that embedded 
processing technology is becoming cheaper and at the 
same time more powerful.  The second is that, more 
recently, wireless technologies have become cheaper 
and more reliable and hence have become more 
popular. 

2 Motivating Applications 
Given the trends described above, it seems reasonable 
to expect that, within the next ten years or so, more and 
more devices in the home will become both 

microprocessor-controlled and network-aware.  On the 
surface it might well appear that the technology 
transition required will be smooth and painless.  The 
following example situations illustrate why this is not 
actually  the case. 

2.1 Multimedia Management 
Increasingly popular in the home, multimedia allows 
users to benefit from a wide variety of information 
sources in a unified way.  By splitting traditional media 
equipment such as hi-fis, televisions and recording 
equipment into their fundamental components, such as 
speakers, visual displays and storage media, their 
functionality can be distributed and recombined in more 
useful ways. 
Placing the fundamental components on a shared 
network allows them to be combined flexibly but this 
raises the issue of how to specify the connections to be 
made.  In addition, there are devices such as headsets 
and user interfaces which should not be attached to a 
wired network in order to avoid tethering the user to the 
devices they are using. 

2.2 Home Monitoring 
In a home environment there are a wide variety of things 
that are not traditionally networked, in most cases 
because the cost of making them networked would far 
outweigh the benefits. 
A good example might be a home-owner’s house-plants.  
Using the availability of cheap sensors capable of 
interacting with other devices, a user can place moisture 
and alkalinity sensors on all the plants in their home and 
configure them to notify the user when the plants need 
watering, or need their soil replacing. 
The availability of cheap sensor technology makes it 
possible for the user to be alerted to non-computer-
related problems that need their attention without 
requiring them to continually monitor their home 
themselves. 

2.3 The Active Bicycle 
In addition to the standard set of lights featured on most 



 

  

bicycles, the Active Bicycle also features a range of 
sensors and a small LCD display, all powered by either 
long-life batteries or solar cells. 
To augment the sensors commonly found on bicycles, 
such as speedometers and odometers, the owner can 
simply buy additional wireless sensors for factors such 
as humidity, temperature, wind speed and pollution 
level, and attach them to the bike. 
The sensors all communicate back to the LCD panel to 
display their status and the panel also allows the bike’s 
lights to be manipulated easily from its position on the 
handlebars. 
When the cyclist approaches the bike, a device upon 
their person, perhaps a ring, watch or pager, 
communicates with the bike and arranges that pager 
messages and travel warnings received by the cyclist’s 
own devices appear on the bike’s display.  The cyclist’s 
devices may also log status information from the bike’s 
sensors and report, for example, how fast the user 
travelled or how polluted the route they chose was. 

3 Related Work 
3.1 HAN, HAVi and Jini 
The Home Area Network[HAN99] project aims to unify 
access to home devices by attaching them to a home-
area ATM network.  Doing so allows individual 
multimedia streams to be routed flexibly around the 
home in order to support, for example, roaming music 
or videoconferencing applications. 
The HAVi[HAVi98] architecture is a standard designed 
to allow devices connected to an IEEE Std. 1394 “High 
Performance Serial Bus” network to interact in a 
uniform way.  Its design is tailored to allow 
interoperation of home audio and video devices, 
building on several established standards including Java 
bytecodes. 
The Jini[Jini99] project also uses Java bytecodes to 
provide extensibility of the system software.  Like HAN 
and HAVi, it too relies on the presence of a shared 
home network. 
All of these projects support the application of 
multimedia management well, as might be expected.  
However, the need for each networked device to be 
wired to the others and the associated power and 
processing requirements make them unsuitable for home 
monitoring or for ad hoc applications such as the 
bicycle. 

3.2 X10 and Jini 
The X10[X10] home control architecture avoids the 
need for extensive network wiring in the home by 
piggy-backing control signals on the existing mains 
power wiring.  The result is a low-bandwidth home 
network ideal for remote and automated control of 
powered devices. 

3.3 BlueTooth 
BlueTooth[Blue99] networks consist of clusters of 

cooperating devices communicating over a shared radio 
channel.  The radio reaches only a few metres and is 
accessed using spread-spectrum techniques, allowing 
bandwidths sufficient to support several audio streams.  
BlueTooth networks could therefore be used in all three 
applications, owing to their wireless ad hoc nature.  The 
power requirements of BlueTooth make it unsuitable for 
tasks involving devices will not be recharged regularly. 

3.4 PEN 
AT&T Labs’ Prototype Embedded Network (PEN – 
previously Piconet)[Pico97] project uses short-range, 
low-bandwidth, low-power radio to transmit small 
amounts of control and state change information 
between devices. 
Although the system has inherently low power 
requirements, making it a suitable target platform for all 
three applications, it still requires too much power for 
embedded sensor applications if left continually active.  
This limitation can be overcome using suitable power 
management schemes to shutdown the radio hardware 
when not required. 
A key decision in the design of the system was to use 
peer-to-peer communications, with no base-stations or 
“master” devices.  As a consequence, the power 
tradeoffs to be made differ from those found in many 
existing cellular networks. 

4 R2-Layer Modes of Operation 
Two types of interaction may be identified from the 
example applications described previously.  Certain 
system components will naturally operate using 
unsolicited transmissions, initiated and controlled by the 
sender.  Other components will more closely fit a 
solicited model, in which one device broadcasts data in 
a well-known way and it is up to receivers to control 
receipt of the data, as and when they require it. 
In order to exploit both techniques and thus obtain the 
best possible combination of flexibility and power 
saving, the R2 Low-Power Messaging Layer was 
designed. 
The R2-Layer forms a generic but flexible low-power 
radio interface on top of which application-specific 
protocols may be constructed.  Fundamental to the 
design of the R2-Layer is the notion of there being two 
basic modes of operation for ad hoc communication 
systems; 

4.1 Transmitter-Managed Mode 
Traditional ad-hoc, low-power communication layers 
such as the PEN R-Layer [RLayer2000] tend to be 
transmitter-managed.  This means that responsibility 
for ensuring rendezvous between two devices to 
exchange data lies with the device wishing to transmit 
rather than the target device. 
Using the R-Layer, for example, devices wishing to 
receive data transmit a broadcast beacon packet at 
regular intervals, which transmitting devices listen for to 
establish when to send data to the receiver.  In this way 



 

  

the emphasis is very much on the party wishing to send 
data taking responsibility for coordinating the data 
transfer. 
While a transmitter-managed system works well for 
RPC-style interactions, it is less suitable for interactions 
involving monitoring of state.  In a transmitter-managed 
environment each sensor, for example, must be aware of 
each and every device to which it must send state-
change updates.  In order for a sensor to be aware of 
interested devices each device receiving sensor data 
must previously have sent a request to the sensor to 
register itself.  Sensors must therefore accept incoming 
radio requests and receivers must beacon so that sensors 
know when to transmit data to them.  As more receivers 
are added the computational, radio bandwidth and 
power loads on the sensor increase. 
Figure 1 presents an example of transmitter-managed 
operation. 

Fig 1. Transmitter-Managed Communication 
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1. Application A queues a message with the R2-Layer, to be 

transmitted to application B. 
2. The sending device powers up until a beacon is received 

from the target device. 
3. The sending device transmits the data to coincide with the 

receiver’s listen window. 
4. No further data is queued so the transmitter remains 

inactive. 
5. A queues more data to be sent to B.  The R2-Layer 

transmits the data in the next available listen window. 

4.2 Receiver-Managed Mode 
Systems involving a large amount of monitoring of the 
state of distributed devices may be better suited to a 
receiver-managed mode of operation. 
In this mode the sensors embed their state information 
into each beacon packet they transmit.  Actuator devices 
such as lamps, which wish to monitor a light sensor, for 
example, are responsible for ensuring they power up 
their radio at suitable intervals to catch the sensor’s 
beacons. 
To support sensor applications in which state is 
consistent for prolonged periods but may change at a 
moment’s notice, optional transmission slots provide a 

way for sensors to both conserve power and deliver fast 
response times. 
Figure 2 illustrates the operation of a receiver-managed 
scheme. 

Fig 2. Receiver-Managed Communication 
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1. Application B informs the R2-Layer  that it wishes to 

receive beacons from application A. 
2. A’s R2-Layer beacons on its behalf.  B’s R2-Layer catches 

the beacon and passes it to B. 
3. B listens for A’s optional transmission slot but A has no 

new data to transmit and does not use the slot. 
4. A passes a new beacon payload to the R2-Layer. 
5. The R2-Layer transmits the new payload to B in an 

optional transmission slot, between beacons. 
6. The R2-Layer  transmits the normal beacon packet. 

The sensor no longer needs to accept registrations of 
interest, nor keep a table of interested parties, nor send 
the same data multiple times.  Because the protocol now 
requires no incoming messages to be dealt with by 
sensors, they can be simplified considerably by 
completely removing the reception side of their 
implementation. 
A receiver-managed system thus provides far better 
computational, bandwidth and power scalability to large 
numbers of receiving devices.  The primary 
disadvantage of this approach is that there is now no 
way to detect transmission failure to the receivers, since 
multicast packets have no acknowledgement 
mechanism1. 

5 R2-Layer Structure 
The prototype R2-Layer implementation has been built 
on the PEN platform.  The PEN platform features a 
variable amount of SRAM and Flash-RAM, a 16-bit 
CPU and some extremely primitive radio hardware, in 
its most basic form.  The R2-Layer is designed, 

                                                           
1It is assumed that sensor devices will generally be too 

primitive to support reliable multicast algorithms.  
Such devices may even be incapable of receiving 
acknowledge packets. 



 

  

however, to be suitable for use with other shared-access 
media, such as infrared. 
In order to support the widest possible variety of PEN 
devices, the R2-Layer implementation is divided up into 
a set of small modules, so that each device need only 
include the R2-Layer code necessary to its operation. 
Each R2-Layer module provides APIs serving a 
different aspect of the protocol's functionality.  The 
modules are factories for the relevant component 
classes, allowing multiple higher-level protocols to co-
exist over the R2-Layer on a single device, as shown in 
Figure 3. 

Fig 3. An Example R2-Layer System Structure 

The modules’ APIs are kept as concise as possible, to 
avoid creating artificial dependencies between unrelated 
code fragments.  For example, the lowest level radio 
power management, transmission and reception APIs 
are separated into three distinct modules – R2POWER, 
R2TX and R2RX.  Although the R2TX and R2RX 
modules cannot operate without the presence of the 
R2POWER module, which is required to power the 
radio hardware in order for communication to take 
place, its functionality doesn’t intrinsically belong to 
either of the R2TX or R2RX modules and bundling it 
with either one of them would limit the flexibility of the 
system. 

5.1 Receiver-Managed Modules 
Three modules are directly involved in dealing with 
receiver-managed communication. 
The R2TX module is the most fundamental module 
required by simple transmitter devices.  It is responsible 
for powering the radio hardware up at user-specified 
intervals and transmitting broadcast beacon packets.  
R2TX objects include methods to alter the beacon 
interval and to allow user-specified data to be attached 
to the beacon packets.  The R2TX module depends 
upon the R2POWER module and the Operating 
System’s radio interface. 
Clients wishing to use the optional-transmission slots of 
the R2-Layer protocol create both an R2INFORM and 
an R2TX object, each with their own interval defined.  
When the beacon payload is to be changed, the new 
payload is passed to the R2INFORM object, which 
passes it down to the R2TX module and also queues it 
to be sent in the next optional-transmission slot.  If the 
payload doesn’t change then only the normal beacon 
packets will ever be sent. 
Receivers create an instance of the R2WATCH module 
and specify the addresses of other devices they wish to 
receive beacons from.  The R2WATCH module will 

then attempt to power the radio only when beacons from 
“watched” devices are expected, in much the same way 
as a FLEX [FLEX99] pager must synchronise with the 
base-station to catch pager notifications at regular 
intervals. 
The client may control whether or not the R2WATCH 
module also watches for optional-transmission packets. 

5.2 Transmitter-Managed Modules 
Two modules are involved in transmitter-managed 
communication. 
The R2RECEIVE module is used by the receiving 
device to control power management of the radio.  The 
client creates R2TX and R2RECEIVE objects and 
specifies an interval to each.  The R2RECEIVE instance 
will advertise “listen windows” at the desired intervals, 
via the R2TX object’s beacons.  It will power up the 
radio hardware to satisfy these advertisements but will 
not actually accept incoming data.  Instead, clients 
register themselves directly with the R2RX module and 
receive incoming packets from that. 
The power management and packet unmarshalling tasks 
are kept completely distinct, as shown in figure 4. 
The transmitting device uses R2SEND objects to 
transmit packets to other devices.  The R2SEND 
module requests access to incoming beacon packets via 
the R2RX module and uses the R2POWER module to 
power up the hardware.  Once a beacon is received from 
the target device, the R2SEND module forwards the 
queued data packet and powers the radio hardware 
down again. 

 Fig 4. Separation of Data and Power Control Paths 
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5.3 Other Modules 
In addition to those described above, modules are 
provided to perform other services such as ad hoc 
device discovery. 
A client wishing to be notified when new devices arrive 
creates an instance of the R2SNOOP module, as shown 
in figure 4.  This module powers the radio up and down 
in such a way as to ensure that at least one beacon from 
each local device will be heard within a specified 
interval.  The client must also register with the R2RX 
module in order to actually receive the incoming 
beacons. 

6 R2-Layer Performance 
6.1 The Light Sensor and The Lamp 
Any wireless solution to the tetherless computing 
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problem must be extremely low-power and capable of 
operating for prolonged periods on a set of betteries or, 
better still, using parasitic power, perhaps from solar 
cells. 
To illustrate an environment in which the R2-Layer may 
out-perform similar transmitter-managed 
communication schemes, the Light-Sensor and Lamp 
example was constructed. 
In this example, a simple light sensor is attached to a 
wireless device, which takes readings from the sensor 
and makes them available over the wireless channel to 
nearby lamps, so that they can switch on when it gets 
dark. 
The following sections evaluate the relative 
performance characteristics of the three tested 
implementations.  All values are approximate and based 
on short-term observed behaviour.  Effects such as long-
term power cell deterioration, for example, are not taken 
into account. 

6.2 Prototype #1: Reference 
Implementation 

The first implementation was primarily intended to 
demonstrate that the PEN hardware platform and 
operating system functioned correctly. 
Sensors keep a table of interested lamps, to which 
updates must be sent.  Lamps register using a custom, 
RPC-like protocol. 
Both devices keep their radio hardware powered at all 
times, requiring approximately 30mA of current. 
In order to respond to incoming packets in a timely 
fashion, the CPU must also remain powered at all times, 
draining a further 30mA.  While the CPU is operating it 
will be accessing off-chip memory, incurring a further 
penalty of 25mA. 
With a steady drain of around 80mA, a single 9V cell 
will power lamp or sensor for 18 hours on average. 

6.3 Prototype #2: Power Management 
The second prototype aimed to demonstrate the 
effectiveness of the “Rendezvous Layer” or “R-Layer”, 
a power-aware messaging layer for PEN.  This 
prototype uses the same protocol & design as the 
original prototype, but running over the R-Layer power 
management software. 
To obtain usable response times, the lamps were set to 
beacon every 2s, to receive updates, and the sensors 
every 10s, to receive registrations.  Each beacon 
consists of transmit and receive phases and takes around 
50ms.  At all other times, the radio, CPU and main 
memory are powered down and the device drains only 
60µA.  Figures 5 & 6 illustrate the resulting 
performance. 
Every time the light level changes, the sensor will need 
to power up for anywhere between 50ms and 2000ms, 
in order to transmit a reading to the client lamp.  As 
more clients are added, the average time required to 
send the message to all clients tends towards the 

2000ms limit. 
Because readings are marshalled and then queued for up 
to 2000ms before being transmitted, they may be 
correspondingly “stale” upon receipt. 
Fig 5. Sensor performance - static & variable light 

Sensor performance Static Variable 

Live time (ms) 50 - 

Interval (ms) 10000 - 

Average Current (mA) 0.5 80 

Lifetime (days) ~150 0.75 

 Fig 6. Lamp performance 
Lamp performance  

Live time (ms) 50 

Interval (ms) 2000 

Average Current (mA) 2 

6.4  Prototype #3 – Event Distribution 
The third implementation uses the R2-Layer’s receiver-
managed mode to both simplify the sensor device and 
improve the system’s power consumption (Figures 7 & 
8). 
Sensors beacon for 20ms every 10s and have optional 
transmission slots every 2s.  Each beacon contains the 
current light level reading.  Because the sensors beacon 
but do not need to listen for registration messages, they 
need only power up for around 20ms for each beacon. 
Fig 7. Sensor performance - static & variable light 

Sensor performance Static Variable 

Live time (ms) 20 20 

Interval (ms) 10000 2000 

Average Current (mA) 0.22 0.86 

Lifetime (days) ~365 ~100 

 Fig 8. Lamp performance 
Lamp performance  

Live time (ms) 30 

Interval (ms) 2000 

Average Current (mA) 1.2 

Similarly, lamps now power up to receive readings 
every 2s but are not required to transmit beacons, 
reducing the required “live” time to only 30ms. 
If the light level is changing rapidly then the sensors 
will transmit in every optional-transmission slot.  If 
more lamps watch the same sensor, no extra load is 
added and no extra bandwidth is required. 
The sensor can now be implemented on a tiny PIC and 
operated from a solar cell.  The readings received by 
lamps are no longer “stale” as in prototype #2. 



 

  

For complex devices, state changes could still be 
propagated using the original RPC scheme, if required.  
The benefits to simple devices gained in using beacons 
to convey state changes offset the small degree of extra 
complexity required in the client devices, and the 
difference in implementations can be made transparent 
to applications through appropriate abstractions if 
necessary. 

7 Protocol Mapping 
The primary motivation behind the development of the 
R2-Layer was the desire to support high-level 
distributed computing abstractions such as RPC and 
Distributed Events in an efficient manner, suitable for 
embedded devices. 
By augmenting an RPC Interface Definition Language 
such as that of OMG’s CORBA[OMG] suitably, we can 
allow application programmers to convey implicit 
semantic information in interfaces, through the use of 
alternative abstractions such as Distributed Events.  The 
presentation layer can then use this extra information to 
decide how to best use the available communications 
schemes.  Because this avoids having the application 
access lower level system components directly, the 
layered structure of a conventional network stack as 
described by the OSI reference model is not violated. 
For example, consider a simple OMG IDL interface 
such as: 
interface VerySimpleSensor {

readonly attribute Units Value;

};

Given this interface, an IDL compiler for a simple 
embedded target device could produce code which 
would embed the sensor’s Value in beacon packets, 
allowing nearby devices to retrieve the value using 
receiver-managed interaction and thus reduce the load 
on the sensor. 
Such a technique could be used to allow the components 
of the Active Bicycle, described previously, to 
communicate with each other and to be accessed by 
standard ORBs on palm- or lap-top computers as if they 
were fully equipped objects. 
Conventional mappings of similar interfaces would 
require the sensor device to accept incoming RPC 
requests and to respond to each query individually, 
hence suffering from the limitations of low-power RPC 
previously described. 

8 Summary 
In this paper we have described the notion of Tetherless 
Computing and have illustrated it with several example 
applications.  The difficulties involved in implementing 
these applications efficiently using existing technologies 
have motivated the design of a new low-power 
communications layer, upon which a wide variety of 
conventional distributed computation abstractions may 
be built. 
The resulting protocol allows even resource poor, 

power-starved and computationally limited devices to 
interact on a peer-to-peer basis with more standard 
computer hardware. 
By using suitable mappings of standard abstractions 
over this low-power transport, applications can tailor 
the transport’s behaviour to their requirements without 
the programmer having to perform menial power 
management, rendezvous and marshalling tasks directly.  
Not only does this simplify life for the programmer but 
it reduces the scope for mistakes at low levels of an 
embedded system and increases the likelihood that 
disparate devices will be able to communicate, even if 
only at a basic level. 
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