

The R2 Low-Power Messaging and Rendezvous Layer

Power efficient communications for Tetherless Computing
J.N. Weatherall,

Laboratory for Communications Engineering,
University of Cambridge Engineering Department, Trumpington Street, Cambridge, UK

Email: jnw22@cam.ac.uk

Recent advances in microprocessor and wireless technologies have created scope for a new class of device – the
tetherless computer. Tetherless computers encompass not only those devices traditionally regarded as computers
but also other electronic household devices. Tetherless computing may even extend, as will be illustrated, to
networking non-electronic home items. The R2-Layer provides a simple yet flexible low-power rendezvous and
messaging interface suitable for tetherless devices.

1 Introduction
Twenty years ago, your television set would have been
controlled by a set of knobs on its front panel and may
well have been supplied in a plastic wood-effect case.
Your radio would have generally been mono rather than
stereo and would require tuning manually. The volume
of their output would have been controlled by a variable
resistor knob labelled “volume” and connected directly
into part of the amplifier circuit. If you had a telephone
then it would have a dialling wheel.
Ten years ago, a television set would have been
supplied in any colour you wanted provided it was black
and would be operated by a small panel of buttons
linked to a simple microprocessor. The device would
still require manual tuning but be capable of scanning
the broadcast signal for available channels. Radios
would now be stereo for the most part and some would
be able to tune themselves automatically. They would
now be controlled by a set of buttons linked back to a
microprocessor, as would your telephone.
Five years ago, your television, video recorder, and hi-fi
systems would have each have had their own
microprocessor-based infrared remote controller. The
controllers would generally have a similar set of buttons
on them to the ones on the devices themselves, rather
than adding any extra functionality. When people asked
you for your telephone number, you might now have to
get them to specify whether they wanted your home,
office, or mobile number.
Two trends are apparent if one looks more closely at the
above observations. The first is that embedded
processing technology is becoming cheaper and at the
same time more powerful. The second is that, more
recently, wireless technologies have become cheaper
and more reliable and hence have become more
popular.

2 Motivating Applications
Given the trends described above, it seems reasonable
to expect that, within the next ten years or so, more and
more devices in the home will become both

microprocessor-controlled and network-aware. On the
surface it might well appear that the technology
transition required will be smooth and painless. The
following example situations illustrate why this is not
actually the case.

2.1 Multimedia Management
Increasingly popular in the home, multimedia allows
users to benefit from a wide variety of information
sources in a unified way. By splitting traditional media
equipment such as hi-fis, televisions and recording
equipment into their fundamental components, such as
speakers, visual displays and storage media, their
functionality can be distributed and recombined in more
useful ways.
Placing the fundamental components on a shared
network allows them to be combined flexibly but this
raises the issue of how to specify the connections to be
made. In addition, there are devices such as headsets
and user interfaces which should not be attached to a
wired network in order to avoid tethering the user to the
devices they are using.

2.2 Home Monitoring
In a home environment there are a wide variety of things
that are not traditionally networked, in most cases
because the cost of making them networked would far
outweigh the benefits.
A good example might be a home-owner’s house-plants.
Using the availability of cheap sensors capable of
interacting with other devices, a user can place moisture
and alkalinity sensors on all the plants in their home and
configure them to notify the user when the plants need
watering, or need their soil replacing.
The availability of cheap sensor technology makes it
possible for the user to be alerted to non-computer-
related problems that need their attention without
requiring them to continually monitor their home
themselves.

2.3 The Active Bicycle
In addition to the standard set of lights featured on most

bicycles, the Active Bicycle also features a range of
sensors and a small LCD display, all powered by either
long-life batteries or solar cells.
To augment the sensors commonly found on bicycles,
such as speedometers and odometers, the owner can
simply buy additional wireless sensors for factors such
as humidity, temperature, wind speed and pollution
level, and attach them to the bike.
The sensors all communicate back to the LCD panel to
display their status and the panel also allows the bike’s
lights to be manipulated easily from its position on the
handlebars.
When the cyclist approaches the bike, a device upon
their person, perhaps a ring, watch or pager,
communicates with the bike and arranges that pager
messages and travel warnings received by the cyclist’s
own devices appear on the bike’s display. The cyclist’s
devices may also log status information from the bike’s
sensors and report, for example, how fast the user
travelled or how polluted the route they chose was.

3 Related Work
3.1 HAN, HAVi and Jini
The Home Area Network[HAN99] project aims to unify
access to home devices by attaching them to a home-
area ATM network. Doing so allows individual
multimedia streams to be routed flexibly around the
home in order to support, for example, roaming music
or videoconferencing applications.
The HAVi[HAVi98] architecture is a standard designed
to allow devices connected to an IEEE Std. 1394 “High
Performance Serial Bus” network to interact in a
uniform way. Its design is tailored to allow
interoperation of home audio and video devices,
building on several established standards including Java
bytecodes.
The Jini[Jini99] project also uses Java bytecodes to
provide extensibility of the system software. Like HAN
and HAVi, it too relies on the presence of a shared
home network.
All of these projects support the application of
multimedia management well, as might be expected.
However, the need for each networked device to be
wired to the others and the associated power and
processing requirements make them unsuitable for home
monitoring or for ad hoc applications such as the
bicycle.

3.2 X10 and Jini
The X10[X10] home control architecture avoids the
need for extensive network wiring in the home by
piggy-backing control signals on the existing mains
power wiring. The result is a low-bandwidth home
network ideal for remote and automated control of
powered devices.

3.3 BlueTooth
BlueTooth[Blue99] networks consist of clusters of

cooperating devices communicating over a shared radio
channel. The radio reaches only a few metres and is
accessed using spread-spectrum techniques, allowing
bandwidths sufficient to support several audio streams.
BlueTooth networks could therefore be used in all three
applications, owing to their wireless ad hoc nature. The
power requirements of BlueTooth make it unsuitable for
tasks involving devices will not be recharged regularly.

3.4 PEN
AT&T Labs’ Prototype Embedded Network (PEN –
previously Piconet)[Pico97] project uses short-range,
low-bandwidth, low-power radio to transmit small
amounts of control and state change information
between devices.
Although the system has inherently low power
requirements, making it a suitable target platform for all
three applications, it still requires too much power for
embedded sensor applications if left continually active.
This limitation can be overcome using suitable power
management schemes to shutdown the radio hardware
when not required.
A key decision in the design of the system was to use
peer-to-peer communications, with no base-stations or
“master” devices. As a consequence, the power
tradeoffs to be made differ from those found in many
existing cellular networks.

4 R2-Layer Modes of Operation
Two types of interaction may be identified from the
example applications described previously. Certain
system components will naturally operate using
unsolicited transmissions, initiated and controlled by the
sender. Other components will more closely fit a
solicited model, in which one device broadcasts data in
a well-known way and it is up to receivers to control
receipt of the data, as and when they require it.
In order to exploit both techniques and thus obtain the
best possible combination of flexibility and power
saving, the R2 Low-Power Messaging Layer was
designed.
The R2-Layer forms a generic but flexible low-power
radio interface on top of which application-specific
protocols may be constructed. Fundamental to the
design of the R2-Layer is the notion of there being two
basic modes of operation for ad hoc communication
systems;

4.1 Transmitter-Managed Mode
Traditional ad-hoc, low-power communication layers
such as the PEN R-Layer [RLayer2000] tend to be
transmitter-managed. This means that responsibility
for ensuring rendezvous between two devices to
exchange data lies with the device wishing to transmit
rather than the target device.
Using the R-Layer, for example, devices wishing to
receive data transmit a broadcast beacon packet at
regular intervals, which transmitting devices listen for to
establish when to send data to the receiver. In this way

the emphasis is very much on the party wishing to send
data taking responsibility for coordinating the data
transfer.
While a transmitter-managed system works well for
RPC-style interactions, it is less suitable for interactions
involving monitoring of state. In a transmitter-managed
environment each sensor, for example, must be aware of
each and every device to which it must send state-
change updates. In order for a sensor to be aware of
interested devices each device receiving sensor data
must previously have sent a request to the sensor to
register itself. Sensors must therefore accept incoming
radio requests and receivers must beacon so that sensors
know when to transmit data to them. As more receivers
are added the computational, radio bandwidth and
power loads on the sensor increase.
Figure 1 presents an example of transmitter-managed
operation.

Fig 1. Transmitter-Managed Communication

App A R2-LayerTime App B

2.

3.

4.

5.

1.

Radio listening

Radio transmitting

IPC message

Radio message
1. Application A queues a message with the R2-Layer, to be

transmitted to application B.
2. The sending device powers up until a beacon is received

from the target device.
3. The sending device transmits the data to coincide with the

receiver’s listen window.
4. No further data is queued so the transmitter remains

inactive.
5. A queues more data to be sent to B. The R2-Layer

transmits the data in the next available listen window.

4.2 Receiver-Managed Mode
Systems involving a large amount of monitoring of the
state of distributed devices may be better suited to a
receiver-managed mode of operation.
In this mode the sensors embed their state information
into each beacon packet they transmit. Actuator devices
such as lamps, which wish to monitor a light sensor, for
example, are responsible for ensuring they power up
their radio at suitable intervals to catch the sensor’s
beacons.
To support sensor applications in which state is
consistent for prolonged periods but may change at a
moment’s notice, optional transmission slots provide a

way for sensors to both conserve power and deliver fast
response times.
Figure 2 illustrates the operation of a receiver-managed
scheme.

Fig 2. Receiver-Managed Communication

6.

App A R2-LayerTime App B

2.

3.

4.

5.

1.

Radio listening

Radio transmitting

IPC message

Radio message

1. Application B informs the R2-Layer that it wishes to

receive beacons from application A.
2. A’s R2-Layer beacons on its behalf. B’s R2-Layer catches

the beacon and passes it to B.
3. B listens for A’s optional transmission slot but A has no

new data to transmit and does not use the slot.
4. A passes a new beacon payload to the R2-Layer.
5. The R2-Layer transmits the new payload to B in an

optional transmission slot, between beacons.
6. The R2-Layer transmits the normal beacon packet.

The sensor no longer needs to accept registrations of
interest, nor keep a table of interested parties, nor send
the same data multiple times. Because the protocol now
requires no incoming messages to be dealt with by
sensors, they can be simplified considerably by
completely removing the reception side of their
implementation.
A receiver-managed system thus provides far better
computational, bandwidth and power scalability to large
numbers of receiving devices. The primary
disadvantage of this approach is that there is now no
way to detect transmission failure to the receivers, since
multicast packets have no acknowledgement
mechanism1.

5 R2-Layer Structure
The prototype R2-Layer implementation has been built
on the PEN platform. The PEN platform features a
variable amount of SRAM and Flash-RAM, a 16-bit
CPU and some extremely primitive radio hardware, in
its most basic form. The R2-Layer is designed,

1It is assumed that sensor devices will generally be too

primitive to support reliable multicast algorithms.
Such devices may even be incapable of receiving
acknowledge packets.

however, to be suitable for use with other shared-access
media, such as infrared.
In order to support the widest possible variety of PEN
devices, the R2-Layer implementation is divided up into
a set of small modules, so that each device need only
include the R2-Layer code necessary to its operation.
Each R2-Layer module provides APIs serving a
different aspect of the protocol's functionality. The
modules are factories for the relevant component
classes, allowing multiple higher-level protocols to co-
exist over the R2-Layer on a single device, as shown in
Figure 3.

Fig 3. An Example R2-Layer System Structure

The modules’ APIs are kept as concise as possible, to
avoid creating artificial dependencies between unrelated
code fragments. For example, the lowest level radio
power management, transmission and reception APIs
are separated into three distinct modules – R2POWER,
R2TX and R2RX. Although the R2TX and R2RX
modules cannot operate without the presence of the
R2POWER module, which is required to power the
radio hardware in order for communication to take
place, its functionality doesn’t intrinsically belong to
either of the R2TX or R2RX modules and bundling it
with either one of them would limit the flexibility of the
system.

5.1 Receiver-Managed Modules
Three modules are directly involved in dealing with
receiver-managed communication.
The R2TX module is the most fundamental module
required by simple transmitter devices. It is responsible
for powering the radio hardware up at user-specified
intervals and transmitting broadcast beacon packets.
R2TX objects include methods to alter the beacon
interval and to allow user-specified data to be attached
to the beacon packets. The R2TX module depends
upon the R2POWER module and the Operating
System’s radio interface.
Clients wishing to use the optional-transmission slots of
the R2-Layer protocol create both an R2INFORM and
an R2TX object, each with their own interval defined.
When the beacon payload is to be changed, the new
payload is passed to the R2INFORM object, which
passes it down to the R2TX module and also queues it
to be sent in the next optional-transmission slot. If the
payload doesn’t change then only the normal beacon
packets will ever be sent.
Receivers create an instance of the R2WATCH module
and specify the addresses of other devices they wish to
receive beacons from. The R2WATCH module will

then attempt to power the radio only when beacons from
“watched” devices are expected, in much the same way
as a FLEX [FLEX99] pager must synchronise with the
base-station to catch pager notifications at regular
intervals.
The client may control whether or not the R2WATCH
module also watches for optional-transmission packets.

5.2 Transmitter-Managed Modules
Two modules are involved in transmitter-managed
communication.
The R2RECEIVE module is used by the receiving
device to control power management of the radio. The
client creates R2TX and R2RECEIVE objects and
specifies an interval to each. The R2RECEIVE instance
will advertise “listen windows” at the desired intervals,
via the R2TX object’s beacons. It will power up the
radio hardware to satisfy these advertisements but will
not actually accept incoming data. Instead, clients
register themselves directly with the R2RX module and
receive incoming packets from that.
The power management and packet unmarshalling tasks
are kept completely distinct, as shown in figure 4.
The transmitting device uses R2SEND objects to
transmit packets to other devices. The R2SEND
module requests access to incoming beacon packets via
the R2RX module and uses the R2POWER module to
power up the hardware. Once a beacon is received from
the target device, the R2SEND module forwards the
queued data packet and powers the radio hardware
down again.

 Fig 4. Separation of Data and Power Control Paths

Radio Driver

R2RX R2POWER

Applications

R2WATCH R2SNOOP

5.3 Other Modules
In addition to those described above, modules are
provided to perform other services such as ad hoc
device discovery.
A client wishing to be notified when new devices arrive
creates an instance of the R2SNOOP module, as shown
in figure 4. This module powers the radio up and down
in such a way as to ensure that at least one beacon from
each local device will be heard within a specified
interval. The client must also register with the R2RX
module in order to actually receive the incoming
beacons.

6 R2-Layer Performance
6.1 The Light Sensor and The Lamp
Any wireless solution to the tetherless computing

RadioOS

Applications

RPC

R2-Layer

Events etc

problem must be extremely low-power and capable of
operating for prolonged periods on a set of betteries or,
better still, using parasitic power, perhaps from solar
cells.
To illustrate an environment in which the R2-Layer may
out-perform similar transmitter-managed
communication schemes, the Light-Sensor and Lamp
example was constructed.
In this example, a simple light sensor is attached to a
wireless device, which takes readings from the sensor
and makes them available over the wireless channel to
nearby lamps, so that they can switch on when it gets
dark.
The following sections evaluate the relative
performance characteristics of the three tested
implementations. All values are approximate and based
on short-term observed behaviour. Effects such as long-
term power cell deterioration, for example, are not taken
into account.

6.2 Prototype #1: Reference
Implementation

The first implementation was primarily intended to
demonstrate that the PEN hardware platform and
operating system functioned correctly.
Sensors keep a table of interested lamps, to which
updates must be sent. Lamps register using a custom,
RPC-like protocol.
Both devices keep their radio hardware powered at all
times, requiring approximately 30mA of current.
In order to respond to incoming packets in a timely
fashion, the CPU must also remain powered at all times,
draining a further 30mA. While the CPU is operating it
will be accessing off-chip memory, incurring a further
penalty of 25mA.
With a steady drain of around 80mA, a single 9V cell
will power lamp or sensor for 18 hours on average.

6.3 Prototype #2: Power Management
The second prototype aimed to demonstrate the
effectiveness of the “Rendezvous Layer” or “R-Layer”,
a power-aware messaging layer for PEN. This
prototype uses the same protocol & design as the
original prototype, but running over the R-Layer power
management software.
To obtain usable response times, the lamps were set to
beacon every 2s, to receive updates, and the sensors
every 10s, to receive registrations. Each beacon
consists of transmit and receive phases and takes around
50ms. At all other times, the radio, CPU and main
memory are powered down and the device drains only
60µA. Figures 5 & 6 illustrate the resulting
performance.
Every time the light level changes, the sensor will need
to power up for anywhere between 50ms and 2000ms,
in order to transmit a reading to the client lamp. As
more clients are added, the average time required to
send the message to all clients tends towards the

2000ms limit.
Because readings are marshalled and then queued for up
to 2000ms before being transmitted, they may be
correspondingly “stale” upon receipt.
Fig 5. Sensor performance - static & variable light

Sensor performance Static Variable

Live time (ms) 50 -

Interval (ms) 10000 -

Average Current (mA) 0.5 80

Lifetime (days) ~150 0.75

 Fig 6. Lamp performance
Lamp performance

Live time (ms) 50

Interval (ms) 2000

Average Current (mA) 2

6.4 Prototype #3 – Event Distribution
The third implementation uses the R2-Layer’s receiver-
managed mode to both simplify the sensor device and
improve the system’s power consumption (Figures 7 &
8).
Sensors beacon for 20ms every 10s and have optional
transmission slots every 2s. Each beacon contains the
current light level reading. Because the sensors beacon
but do not need to listen for registration messages, they
need only power up for around 20ms for each beacon.
Fig 7. Sensor performance - static & variable light

Sensor performance Static Variable

Live time (ms) 20 20

Interval (ms) 10000 2000

Average Current (mA) 0.22 0.86

Lifetime (days) ~365 ~100

 Fig 8. Lamp performance
Lamp performance

Live time (ms) 30

Interval (ms) 2000

Average Current (mA) 1.2

Similarly, lamps now power up to receive readings
every 2s but are not required to transmit beacons,
reducing the required “live” time to only 30ms.
If the light level is changing rapidly then the sensors
will transmit in every optional-transmission slot. If
more lamps watch the same sensor, no extra load is
added and no extra bandwidth is required.
The sensor can now be implemented on a tiny PIC and
operated from a solar cell. The readings received by
lamps are no longer “stale” as in prototype #2.

For complex devices, state changes could still be
propagated using the original RPC scheme, if required.
The benefits to simple devices gained in using beacons
to convey state changes offset the small degree of extra
complexity required in the client devices, and the
difference in implementations can be made transparent
to applications through appropriate abstractions if
necessary.

7 Protocol Mapping
The primary motivation behind the development of the
R2-Layer was the desire to support high-level
distributed computing abstractions such as RPC and
Distributed Events in an efficient manner, suitable for
embedded devices.
By augmenting an RPC Interface Definition Language
such as that of OMG’s CORBA[OMG] suitably, we can
allow application programmers to convey implicit
semantic information in interfaces, through the use of
alternative abstractions such as Distributed Events. The
presentation layer can then use this extra information to
decide how to best use the available communications
schemes. Because this avoids having the application
access lower level system components directly, the
layered structure of a conventional network stack as
described by the OSI reference model is not violated.
For example, consider a simple OMG IDL interface
such as:
interface VerySimpleSensor {

readonly attribute Units Value;

};

Given this interface, an IDL compiler for a simple
embedded target device could produce code which
would embed the sensor’s Value in beacon packets,
allowing nearby devices to retrieve the value using
receiver-managed interaction and thus reduce the load
on the sensor.
Such a technique could be used to allow the components
of the Active Bicycle, described previously, to
communicate with each other and to be accessed by
standard ORBs on palm- or lap-top computers as if they
were fully equipped objects.
Conventional mappings of similar interfaces would
require the sensor device to accept incoming RPC
requests and to respond to each query individually,
hence suffering from the limitations of low-power RPC
previously described.

8 Summary
In this paper we have described the notion of Tetherless
Computing and have illustrated it with several example
applications. The difficulties involved in implementing
these applications efficiently using existing technologies
have motivated the design of a new low-power
communications layer, upon which a wide variety of
conventional distributed computation abstractions may
be built.
The resulting protocol allows even resource poor,

power-starved and computationally limited devices to
interact on a peer-to-peer basis with more standard
computer hardware.
By using suitable mappings of standard abstractions
over this low-power transport, applications can tailor
the transport’s behaviour to their requirements without
the programmer having to perform menial power
management, rendezvous and marshalling tasks directly.
Not only does this simplify life for the programmer but
it reduces the scope for mistakes at low levels of an
embedded system and increases the likelihood that
disparate devices will be able to communicate, even if
only at a basic level.

9 Acknowledgements
The author wishes to thanks Andy Hopper2 and Sai-Lai
Lo3 for their time in supervising this work, and the PEN
project group at AT&T Labs Cambridge for their
support. Thanks also to Scott Mitchell for his proof-
reading skills.

10 References
[Blue99] - “Specification of the BlueTooth System –

CORE”, from www.bluetooth.com, 1999
[FLEX] - “FLEX White Papers”, from

http://www.motorola.com/MIMS/MSPG/CTSD/wh
ite_papers/flex_white_paper.html, 1997

[HAN99] – “Home Area Networks”, from
http://www.cl.cam.ac.uk/Research/SRG/netos/han,
1999

[HAVi98] – “HAVi V1.0 Specification”, from
http://www.havi.org, 1998

[Jini99] – “Jini Architecture Specification”, from
http://www.sun.com/jini/specs, 1999

[Pico97] – “Piconet – Embedded Mobile Networking”,
F.Bennett, D.Clarke, J.B.Evans, A.Hopper, A.Jones
and D.Leask, IEEE Personal Communications, Vol.
4, No. 5. pp 8-15. October 1997

[OMG] – “CORBA Specification”, from
http://www.omg.org, 1999

[RLayer2000] – “Low Power Rendezvous in Embedded
Wireless Networks”, T.Todd, F.Bennett and
A.Jones, to be published in proceedings of
MobiHOC 2000.

 [X10] – “X-10 Transmission Theory”, from
http://www.x10.com/technology1.htm, 1998

2 Laboratory for Communications Engineering,

Cambridge University Engineering Department.
3 AT&T Labs Cambridge, Cambridge, UK.

	Introduction
	Motivating Applications
	Multimedia Management
	Home Monitoring
	The Active Bicycle

	Related Work
	HAN, HAVi and Jini
	X10 and Jini
	BlueTooth
	PEN

	R2-Layer Modes of Operation
	Transmitter-Managed Mode
	Receiver-Managed Mode

	R2-Layer Structure
	Receiver-Managed Modules
	Transmitter-Managed Modules
	Other Modules

	R2-Layer Performance
	The Light Sensor and The Lamp
	Prototype #1: Reference Implementation
	Prototype #2: Power Management
	Prototype #3 – Event Distribution

	Protocol Mapping
	Summary
	Acknowledgements
	References

