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Abstract

This paper introduces a simple, distributed, location service, suitable for
deployment on a wide variety of heterogeneous platforms and which is scal-
able to cope with location forwarding on a global scale. Also described are
two existing applications of this service, one in particular being a wireless-
via-wired routing service for mobile devices, suitable for deployment both
in-building and over a wide area.

1 Introduction

Recent work in distributed computing has focused on the problems of mobility
both of software components of systems and of the devices on which they operate.

There are desirable features of conventional distributed middleware architec-
tures such as CORBA[12] which we would like to be able to integrate seamlessly
with the more stringent requirements of mobile systems.

One of the primary difficulties in such integration is that of location, both of
distributed services and of mobile devices by clients. Common approaches to
device location, for example IP Routing[5] and DNS[10], require that the name of
a machine reflects its physical location to some degree.

Similarly, distributed architectures built on IP and DNS usually require that
programs exporting services not migrate between devices, if clients are to be able
to access those services. Mobile services will therefore be considered as equiva-
lent as regards location to mobile devices for the purposes of this report.
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2 Existing Mobile Location Schemes—Pure vs Im-
pure Names

The issue of transparent location is tackled by a number of different schemes,
which can be divided, for the most part, into three general categories;

1. Schemes such as the Globe Object Model’s[7] location service, that use
pure names[11] which convey no information to the client as to how the
corresponding entity should be located. These systems are seldom as scal-
able as we might like, since most implementations require that some central
node is aware of every object in existence.

2. Schemes such as Mobile-IP[4] and the CORBA LifeCycle [13] service, that
use impure or composite names, most often comprising a home agent loca-
tion and a key. These systems can fail when the home agent is unavailable
for some reason and can suffer from performance degradation when the mo-
bile entity is far away from its home.

3. Hybrid schemes such as ALICE[3], in which the mobile entity’s home is ef-
fectively mobile itself and the composite name of the entity is transparently
munged to reflect its current home, older names of the entity being forward-
ed to it’s current location transparently. This approach is more efficient than
1 and more manageable than 2 but suffers similar robustness problems to
the latter. It is also unclear as to how long these surrogate homes should
hold forwarding information for.

3 The Predator Model of the World

The Predator system assumes a world of roaming mobile devices with intermittent
connectivity, via contact-points, to a backbone of static, wired network infrastruc-
ture.

Mobile services can be modelled in the same way, since their contact-points
are effectively the devices on which they operate (which may in themselves be
mobile).

The core of the Predator system is its location service, on which the Predator
IIOP-Forwarding service and PicoNet[1] Routing service are built as applications.
For convenience, this is constructed as a CORBA service and deals only with
CORBA Object references. In order to track other mobile entities, such as mobile
devices, a wrapper layer must be constructed to abstract the mobile devices into
CORBA objects, which can then be registered with the Predator Location service
on their behalf.
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CORBA was chosen as the base middleware for Predator because of its platfor-
m and language interoperability and its popularity as an open standard for compo-
nent software operation. In choosing CORBA, very little restriction was placed on
how wrapper layers must be constructed for mobile entities. Although in principle
the same techniques could be applied to, for example, a Java RMI environment, it
was felt that this might prejudice the system by polluting it with platform-specific
optimisations.

4 The Predator Location service

The Predator Location service (from here on referred to as the Location service) is
run on all machines wishing to export or import mobile objects. Location service
nodes are arranged in a simple, hierarchical tree structure representing the global
domain, with similar, hierarchically structured trees representing the sub-domains
implemented as distributed objects over the global or base tree.

4.1 Search Tree Structure

Each node of the Location service has a concept of a parent node, which it may
query for locations of devices which cannot be found locally, and may be aware
of its peers and/or its ancestors in order to allow for failure recovery features.

Nodes in the base tree are grouped according to physical locality. For example,
all the Location service nodes running on the PCs in a room may be grouped under
a single parent node which represents that room. The parent nodes for each room
will then in turn be grouped under a node responsible for the building containing
those rooms and so on.

Figure 1 shows a simple search tree structure that might be used to handle
mobile devices in a small building.

4.2 Sub-trees as Distributed Objects

In the Globe object model, the top-level entities are known as distributed objects.
A distributed object consists of multiple implementation objects running in

separate address spaces on a number of machines and communicating with each
other via the network in order to behave as a single entity.

Distributed objects expand and contract as implementation objects are added
and removed. How the objects cooperate to achieve the desired behaviour is up to
the objects themselves and may be tailored to the specific task.

Using the Predator Location service, mobile objects are accessed via a logical
hierarchical naming scheme. The key difference between Predator and DNS-style
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Figure 1: A Hierarchical Tree Structure for a Small Building

systems is that this logical hierarchy is in no way tied down to the physical hier-
archy of the system.

Instead, the Predator service is implemented as several layers of search trees,
one for each domain in the hierarchical namespace. At the base layer, there is a
single tree to represent the global domain. At the next layer up, the search trees
implement different sub-domains, which may represent different tasks running
on the system. For example, there may be trees implementing “Paging”, “IIOP-
Forwarding” and “Email” domains. Tree nodes implementing these domains will
exist at any particular point in the network if and only if mobile objects belonging
to them exist at that point.

Figure 2 shows example physical and logical layouts of a backbone network
and some mobile objects. Figure 3 shows the structure of the search tree corre-
sponding to the “Paging” domain, overlayed on the physical network layout.

The “Paging” domain can be considered as a distributed object, since it is
made up of a number of distributed nodes working to provide a single, unified
function—that of locating objects used for the task of “Paging”. The “Email” do-
main can be considered, similarly, as a distributed object, even though it is only
implemented in one place. The root domain is special in that it exists everywhere
and its structure reflects the underlying geographical structure of the wired net-
work.

4.3 Using the Predator Location Service

4.3.1 Locating a Mobile Object

When a client wishes to locate an object using the Location service, it passes the
appropriate hierarchical name to the base Location service on the local machine.
For convenience, our implementation runs on a well-known port number and uses
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Figure 2: Physical and Logical Layouts of an Example Network

a well-known CORBA object key.
The base Location service will attempt to resolve the first part of the name

(if the desired name was “Paging/Andy”, for example, the first part would be
“Paging”) in the global domain, either locally or by querying its parent node. If
the attempt fails then an exception will be thrown to indicate that no object exists
with the desired name.

If the attempt to resolve the first part of the name succeeds then the returned
Location service node (which could be anywhere in the world) is queried to re-
solve the next part of the name. This continues until the entire name has been
resolved, at which point the desired object will have been found.

Figure 4 shows an example search in which client object (1) attempts to locate
mobile object “Paging/Duncan”. The “Paging” domain is implemented as a tree of
co-operating nodes—those labelled P1, P2 and P3 in the diagram. Once a client
can see any node which is part of the “Paging” domain, it can then locate any
object that belongs to that domain, simply by searching the domain’s tree in the
same way as it would search the global tree.

� The client (1) asks the Location service at node “R1” to find the object
“Paging/Duncan” (2).
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/P
ag

in
g/

A
nd

y

/P
ag

in
g/

Ja
m

es

/P
ag

in
g/

D
un

ca
n

2

R2 P2

R3

1

R1

P1

P3

Figure 4: An Example Search of a Layered Search Tree

6



� Node “R1” first tries to locate the nearest node in the “Paging” domain.

– “R1” cannot see any nodes in the “Paging” domain locally, so it falls
back to its parent, “R2”.

– “R2” has been told by “R3” that it knows of a node in the “Paging”
domain, so “R2” forwards the request to “R3”.

– “R3” can now return a reference to “P1”, direct to node “R1”. Note
that “P1” is not the base of the “Paging” domain’s tree but the node
in that tree that is closest to “R1”. This helps us avoid long-distance
searches throughout a tree when the desired mobile object is actually
local to us.

� Node “R1” now asks “P1” to find the object called “Duncan” in the “Pag-
ing” domain. A similar search is then performed of the “Paging” domain to
that performed on the global domain, returning “P3” as the current location
of the object called “Duncan”.

� The resulting object reference is returned to the client and may be used until
it fails for some reason, at which point the client can fall back to another
search for the name “Paging/Duncan”. Caching schemes can help reduce
the search path on subsequent attempts to relocate an object that has moved.

4.3.2 Registering a Mobile Object

Registering an object with the Location service under a particular name follows
the same basic pattern to locating an object. The primary difference is that nodes
of all the required domain trees will be created local to the object being registered,
if they don’t already exist there.

For example, consider the case in which a new object is to be registered under
the name “Email/Andy”, as in Figure 5a;

� The new object (1) calls down to its local Location service node and asks
the Location service to register it as “Email/Andy”.

� The Location service performs a normal search, to locate the nearest node
in the “Email” domain and finds node “E1” [5b].

� If the nearest node is not local then a new “Email” domain node is created
locally and linked to the existing one.

� If there are no existing “Email” domain nodes then one is created locally.

� The object is now registered with the local “Email” domain node, “E2”,
under the name “Andy” [5c].
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Figure 5: An Example Registration of a Mobile Object

5 Location service implementation

The present implementation of the Location service is a minimal one, with the
following limitations: 8



1. Automatic failure recovery and configuration of nodes in the base tree is not
currently implemented since, on the prototype’s current scale, such features
are neither required nor easily tested.

2. All key names are currently flat. For example, the hierarchical name “Pi-
coNet/ORL/64” is implemented as the flat, munged name “pNET00000064”.
Work is in progress to implement hierarchical keys and to automate redis-
tribution of domain trees.

3. No security is currently available. Some way of limiting who is allowed to
bind particular names is required, in order to avoid namespace clashes and
denial-of-service attacks, for example. Use of the CORBA Security Service
may go some way towards providing this security.

6 The Predator IOR-Forwarding service

The Predator IOR-Forwarding service, allows applications to generate global ob-
ject references and to pass these to clients in place of the actual object references
involved.

When a CORBA service wishes to export a mobile object, it calls into the
Forwarding service local to it and requests that the object’s reference be bound
to a global object reference in the Location service. The service can then pass
the global object reference to client applications, in place of the object’s real ref-
erence. An instance of the Forwarding service must be running on all client and
server machines in this model, although it is possible to get round this requirement
to support legacy systems at the cost of scalability.

Migration of an implementation to a new site becomes straightforward using
the Forwarding service, since the new implementation can be created, initialised
and bound to the underlying Location service and the old instance, if required, can
simply be torn down. Clients using compliant ORB implementations will detect
the failure of the original object and automatically revert to using the global IOR,
thus implicitly accessing the Location service to obtain the new instance’s IOR.
The client process can remain completely unaware that anything has changed.

7 The Predator PicoNet Routing service

7.1 PicoNet

PicoNet is a lightweight, low-power wireless communications system for embed-
ded and mobile devices. The low-power requirement, needed in order to allow
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PicoNet to be embedded in even the tiniest devices and therefore be truly ubiq-
uitous, imposes consequent bandwidth and latency penalties on the system. As
a result, PicoNet is a technology aimed primarily at low-bandwidth control and
negotiation situations, rather than mass data transfer situations as are catered for
by systems such as BlueTooth[2] and HomeRF[8].

In its current incarnation, PicoNet allows short range point-to-point commu-
nication between devices. While this is ideal for many location-sensitive tasks, it
restricts the available applications somewhat—if the recipient of a message is not
within about 5 metres of the sender then the message cannot be sent.

7.2 The PicoNet Routing Architecture (RLink)

The Predator PicoNet Routing architecture (RLink) assumes a backbone of wired
machines (in our case desktop PCs), with a PicoNet gateway node attached to at
least one machine in each room, or more if the room is particularly large. The
mobile PicoNet nodes then traverse this backbone as they are carried around by
their owners and, while they are still able to communicate directly with each other
over short distances without requiring any backbone infrastructure, they can usu-
ally fall back to routing via the wired network if the device they wish to contact is
not locally available.

Location of PicoNet nodes in this system is, once again, performed by the
Predator Location service. It is used to retrieve the IOR of a CORBA object
which is willing to act as a gateway to the desired node. If the node has moved
away by the time the message is passed to a gateway by a client then the gateway
will try to re-locate the client and pass the message on to the new gateway. This
avoids repeated traversal of the search tree, since the receiving node is unlikely to
have moved very far from the original gateway.

Several assumptions are necessary in the implementation of this scheme;

� Firstly, it is assumed that only messages with a specific destination address
should be routed through the wired network. The PicoNet system also al-
lows broadcast requests for services to be made but in general such requests
implicitly expect that only local instances of the desired service will re-
spond.

� Secondly, it as assumed that all messages with a specific destination address
may be routed through the wired network.

One useful result of these two assumptions is that although a PicoNet device
can make a plea for any nearby instance of a desired service, it may continue to
refer to that service instance specifically, by its address, until the transaction is
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complete, whereupon it may fall back to requesting any local instance again. This
session-based mode of operation allows transactions to continue to completion
even when the nodes involved are no longer co-located, provided they are both
near a Routing gateway.

7.3 Experiences Using RLink

The RLink wireless-through-wired router has been used as the basis for several
prototype applications. Two simple examples are discussed briefly below.

7.3.1 Active Door Badges

For some years the AT&T Labs in Cambridge have had an infrastructure of sen-
sors for the Active Badge system[15]. Various automated applications have been
constructed using this technology such as Teleporting[14] but the major use re-
mains simply that of finding out where people are so that they can be contacted.

In particular, users visiting a coworker’s office will often find that that person is
busy or absent and in the latter case they will resort to the Active Badge system to
find them. In the former case, it would be desirable for there to be some indication
on the door into a worker’s room that they are busy, and perhaps some way for
people to register the fact that they would like to talk to them when they’re done.

To this end some PicoNet devices with small LCD displays and a few buttons
have been constructed and used as door signs. In normal operation, such signs will
display static information on the room and its usual occupants, and the display
hardware is optimised power-wise for this case. However, since the door signs
have access to RLink gateways local to them, when one of their buttons is pressed
they can fetch current location data for the usual occupants of the room and display
it, avoiding the need for the visitor to go to a PC terminal to find the person they
wish to visit.

Similarly, it is possible to send pieces of text to be displayed on a door sign in
addition to the other information, providing for indications such as “This Room is
Busy” or “Wet Paint”, for example.

In this case, wireless PicoNet devices were able to transparently access wired
backbone services without regard for the location of either party, through use of
the Predator and RLink services.

7.3.2 Generic Remote Controller

As part of a demo for a separate project, a CORBA-based mobile streaming ar-
chitecture was built in our lab. Among other control methods experimented with,
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a door sign PicoNet node was reprogrammed to instead support a simple audio-
player interface, with Play, Pause, Stop, Fast Forward and Rewind buttons.

In addition to supporting the control operations normally associated with an
infra-red remote, the PicoNet controller was also capable of retrieving information
from the audio player, such as the name of the track currently being played.

For the purposes of our demo, the audio player had actually been a standard
PC with an archive of MPEG files stored on it. Because we used the RLink ar-
chitecture to connect the two, users could roam between rooms and continue to
control their audio player from the new location, seamlessly.

In addition, the controller could, without modification, control a real CD play-
er or similar device, provided the device had a PicoNet node attached and was
exporting a simple audio-player interface. Control of such a device could either
be local or transparently remote, via the RLink service. This feature was espe-
cially important, since in using the Predator and RLink services to provide access
between remote devices and to backbone services, we hadn’t sacrificed the ability
to operate in an ad-hoc manner.

8 Conclusion

The Predator Location Service aims to tackle the shortcomings of pure-name,
impure-name and current hybrid-name approaches to addressing large numbers
of highly mobile objects or devices over a static, wired network infrastructure. It
improves on these approaches in the following ways:

� By partitioning the overwhelmingly large global search domain into more
manageable logical domains we avoid the scalability issues associated with
flat name space systems such as the Globe Object Model.

� By allowing logical domains to themselves be mobile we avoid imposing
artificial constraints on the mobility of objects while at the same time pro-
viding a means to optimise the search space for related objects. This gives
clear advantages over schemes such as DNS, by allowing the topography of
the search tree to alter to match the requirements of its clients.

� By the use of two orthogonal trees–the hierarchical logical namespace and
the hierarchical physical search space–we allow searches to be optimised to
avoid traversing large distances unnecessarily when locating nearby nodes.
In addition to supporting far greater scalability, this approach avoids the
problems often associated with impure-name and hybrid-name schemes. In
particular, there is no single point of failure as in home-agent systems like
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Mobile-IP, nor is there a need to maintain forwarding addresses for mobile
objects indefinitely as in systems such as ALICE.

� By constructing the search trees for sub-domains as we do, we avoid some
of the worse pathological cases possible with a more general tree structured
architecture. While pathological cases still exist, they are rare and intro-
duce only minimal extra cost into the system. In general the locality heuris-
tic inherent in the Predator system is appropriate for the target application
domains we are interested in.

The transparent IIOP forwarding features of Predator may be applied to dis-
tributed systems such as DAWS[6] to simplify the tasks of component migration
and failure recovery. This service’s co-existence with the RLink routing service
illustrates the generic nature of the Predator service. The Predator service could
equally well be used to enhance the mobility capabilities of other architectures
such as Jini[9].

Some work using the Predator service as a basis for enhancing the useful-
ness of a wireless ad-hoc technology in an office environment has been briefly
described. Research continues into aspects of interoperation between PicoNet de-
vices, in particular for purposes of control, both of backbone services and of local
devices.
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