
Voronoi seeded colour image segmentation

Abstract

The goal of the segmentation scheme presented is to combine edge and region information to

achieve a stable segmentation. The segmentation scheme presented is designed to operate on

general home and stock photographs, it returns a comprehensive region-based description of the

visual content of an image (including a distinction between smooth and textured regions and a

description of the internal properties of the later).

A colour edge detector is presented, where hue di�erence is weighted more heavily than

brightness di�erence. Seed points for region growing are derived from the colour edge image

as the peaks in the associated Voronoi image. Regions are grown using gates on pixel colour

relative to region central colour and region edge pixel colour. This permits regions to encompass

shading gradients. Image edges act as hard barriers during region growing. A discrete feature

based texture model is derived and then used to unify groups of smaller regions into extended

textured regions.

The segmentation scheme is designed to facilitate image retrieval and has been tested on a

corpus of over 40000 images and has been found to be robust.

Keywords: image segmentation, colour edge detection, textured region properties, region based

image retrieval.

1 Introduction
Image segmentation remains a problem. Qualitatively segmentation is the process of grouping

together pixels which are semantically linked. This paper takes the view that in order to achieve a

meaningful segmentation describable low level features must be extracted �rst and subsequently

linked together using a series of opportunistic grouping algorithms. At the lowest level the

only information available is local similarity. The driving motivation behind the propounded

segmentation scheme is then that edges can be found and homogeneous regions can be found and

then the two can be uni�ed to give a very convincing segmentation.

Existing segmentation schemes are largely either texture-based or edge-based and are designed

to operate on grey-scale images. Huttenlocher [6] uses a graph splitting approach with intensity

variation between neighbouring pixels providing weighting between nodes. Shi [16] demonstrates

a grouping mechanism based on normalised cuts but the proposed algorithm remains slow, re-

quiring the manipulation of large sparse matrices. It is also worth noting that the method given

in [16] takes account of a single relation type between pixels, essentially reducing the algorithm

to hierarchical colour clustering.



Other graph based approaches exist [8]. Texture based approaches include Puzicha [12] which

uses Gabor �lters to generate texture features together with a pairwise co-occurrence model, and

Forsyth [7] which distinguishes textured and un-textured areas and groups regions of repeated

structure.

Direct edge-based segmentation is also possible [4, 14, 13, 2], but it is di�cult to establish

correspondence between image edge features and object or region boundaries. Supporting infor-

mation from the areas between edges greatly improves the robustness of a segmentation.

The view is taken that all image boundaries are signi�cant and that the smallest scale of

detail present in the image should be available to the routines assembling a description of an

image. Small features explicitly exist and should not be immediately subsumed by over-crude

segmentation.

This paper is laid out as follows. A full three colour edge detector is presented (if applied to

a grey scale image it defaults to a Canny type edge detector). Seed points for region growing are

found as the peaks in the Voronoi image computed from the output of the colour edge detector.

Regions are grown using gates on pixel colour relative to region central colour and region edge

pixel colour. This permits regions to encompass shading gradients. Image edges act as hard

barriers. Example results of the segmentation scheme are given.

A texture model is also given. The model functions by �nding extended ridges, breaking the

extended ridge map into short discrete chunks, grouping these chunks according to colour and

orientation and then justifying these groups with the underlying Voronoi segmented regions.

A suggestion is made to use the Corel image library 1 as a standard test collection for comparing

segmentation algorithms.

2 Colour edge detection
In this model for colour edge detection change in brightness and change in colour are weighted

di�erently. If R(i; j), G(i; j), B(i; j) represent the red, green and blue values at a pixel then the

change in brightness I(i; j) in the i direction is given by,
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The weighted total change dT (dropping the indices (i; j) ) is

dT = dI2i + dI2j + 3:0dC

The choice of 3 as the weighting factor in favour of colour change over brightness change is

empirical but has been found to be e�ective. Local orientation (for use in the non-maximum



suppression step of the edge detection process) is de�ned to be in the direction of the maximum

colour gradient. dT is then the edge strength fed to the non-max suppression and hysteresis

edge-following steps (which follow Canny [4]). Figure 1 shows a coloor image and the output of

the colour edge detector. It was not found necessary or desirable to introduce a smoothing step

before taking the three pairs of directional derivatives.

Figure 1: Example colour image from the Corel stock image library.

Full three colour derivative of the image in �gure 1.

Edges derived using the three colour edge detector given above.

Voronoi image computed from the edge image to the left. Here the darker a pixel is the further

it is from an edge.

3 Voronoi based region segmentation
3.1 Seed point generation

A Voronoi image is generated from the edge image. The intensity at each pixel in a Voronoi

image is the distance to the closest edge. The peaks in the Voronoi image are then used as seed

points for region growing. Figrue 1 shows the edge map derived from the colour edge detection

process and the corresponding Voronoi image.



3.2 Smooth region growing

Regions are grown out from seed points. Unassigned pixels on the boundary of a growing region

are assigned membership in that region if the di�erence in colour between the candidate and

boundary member pixel is less than one threshold and the di�erence in colour between the

candidate and the mean colour of the region is less than a second larger threshold. If a pixel is

accepted into a region the mean colour of the region is then updated. Addition of a pixel to a

region leads to additional candidate boundary pixels, these are added to the end of a candidate

boundary pixel queue. Edges recovered from the image act as hard barriers through which regions

are not allowed to grow.

Figure 2 shows the initial regions grown from a set of Voronoi seeds: black areas are either

edges or have not yet been assigned region membership. A competitive morphological step is

applied to absorb unassigned pixels into their best matching neighbouring region. Figure ??

shows the resulting segmentation after this morphological clean up steps have been applied to

grow regions out to edges.

Figure 2: Initial regions grown from Voronoi seeds with tight membership gates on new pixel

colour. Secondly the gates of pixel colour are relaxed and regions grown out to images edges.

Thirdly edges are competitively morphed into adjacent regions and similar colour regions are

merged.

Adjacent regions of similar colour are then merged and edges competitivelymerged into regions.



Figure 2 shows the coloured version of the �nal segmentation.
3.3 Voronoi segmentation results

Assessing segmentation results is problematic. For all but trivially simple examples (e.g. simu-

lated blocks world) ground truth is not available. There is no accepted metric to compare one

segmentation scheme with another and there is no public domain set of segmented images which

may be used to provide a qualitative bench mark. The divide between small regions and texture

remains almost entirely subjective.

The nearest thing available to a reference set of images is the Corel Stock Photo Library

number 1. Figures 3 to 7 show pairs of images and their Voronoi segmented versions. These

images are taken from the free sampler CD from the above collection. Segmented versions of all

120 images from this CD (at size 512 by 768 pixels) can be found at [3].

Subjectively, the Voronoi segmentation results on the Corel images look quite convincing in

terms of capturing the essential features of the images in a relatively compact form.

Figure 3: Image 009 from Corel's free sampler CD and its corresponding Voronoi segmentation.

Figure 4: Image 010 from Corel's free sampler CD and its corresponding Voronoi segmentation.

The above Voronoi based segmentation scheme performs well on images with large smooth

regions. Heavily textured regions tend to be fragmented. The following discrete feature based



Figure 5: Image 020 from Corel's free sampler CD and its corresponding segmentation.

Figure 6: Image 040 from Corel's free sampler CD and its corresponding segmentation.

texture model provides a robust means of unifying fragmented regions into larger textured re-

gions.

4 A discrete feature based texture model
The debate in the computer vision community over what comprises texture remains unsettled.

The texton model [10] of texture perception was abandoned due to practical di�culties in de�ning

and �nding satisfactory low-level features. Probabilistic representations of local appearance have

been tried [5, 18, 15], however such approaches are typically slow and su�er from only being able

to model limited scope of interaction (either spatial extent or range of �lter response). It could

be argued that the nature of the interaction of between texture elements changes through the

range of scale over which a texture is visible making multi scale approaches attractive [11, 17].

The texture model used in this paper functions as follows. Extended connected ridges are

found (�gure 8). A pixel is de�ned to be a ridge pixel if the magnitude of the second derivative

operator applied to a grey-scale version of the original image exceeds a threshold. The ridge

network is then broken up into compact 30 pixel groups or features. Figure 8 shows an image

and its ridge network broken up into small discrete compact texture features. The orientation of

each feature is computed from its second moment (about its center of mass). The colour of the



Figure 7: Image 095 from Corel's free sampler CD and its corresponding segmentation.

feature is computed from its footprint in the original image, and it connectivity to neighbouring

features noted.

Net-like structures may be recovered from images as a by product of the texture model (�g-

ure 9). The topology of connected ridge maps is analysed for holes (singly connected enclosed

regions of not ridge), if a ridge map has more than �ve holes is is deemed to be a net.

Oriented texture features are clustered using a greedy, sequential, agglomerative clustering

algorithm. The set of pairwise distances between proximate features is computed. The distance

between a pair of features is in this case the Euclidean distance between their RGB colours. The

list of pairwise distances is ordered by increasing distance. Each pairwise relation is used in turn

either to start a texture cluster center (here referred to as a clique, or to add a feature to a clique

or to amalgamate two existing cliques. The result of this clustering process is shown in �gure 10.

Cliques of features are then justi�ed with the underlying Voronoi region segmentation. If the

total footprint of texture features in a region exceeds a �xed percentage of the area of that region

then the region is assigned membership in the corresponding dominant clique. This gives a set of

regions found to be textured (as opposed to being smooth) and a set of texture features associated

with each group of regions sharing a common dominant texture. Figure 10 shows a Voronoi

segmented image its texture feature cliques and the recovered textured regions.

Internal texture structure of a textured region can then be described by an orientation his-

togram the features and a Pairwise Geometric Histogram (PGH) [1, 9] of relative orientation

verses mutual separation. Contractions of the PGH are possible and desirable for image descrip-

tion for retrieval tasks but discussion of these is beyond the scope of this paper. The colour of a

textured region then has two components, the mean colour of the texture features and the mean

colour of the rest of the region.

The segmentation scheme has been applied to all 40000 images from Corel image library 1 and

2. Anecdotally the segmentation results look very good.

5 A note on comparing segmentations
It would be desirable if segmentation schemes could be compared is some more realistic way

than eyeballing chosen examples given in a paper. This requires agreement on a large corpus

of test images. A case could be made for using the (royalty free) Corel image library 1. 16 bit



Figure 8: Image 030 from Corel's free sampler CD and its ridge map broken into discrete texture

features.

Sun raster �les would seem a reasonable choice for representing region maps. Inevitably debate

will exist on where the divide between low level feature and textured region should be draw

and an arbitrary human operator decision may be necessary to provide an initial segmentation

benchmark.

6 Conclusions
This paper presents a robust and competent segmentation scheme designed to operate on

generic photographs. The segmentation scheme returns smooth and textured regions together

with colour descriptors and internal texture structure descriptors. The segmentation scheme has

been applied to a test corpus comprising 40000 images from Corel image library 1 and 2. The

segmentation results look very good although this statement cannot currently be quantitatively

justi�ed.
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Figure 9: Image 042 from Corel's free sampler CD, its ridge map broken into discrete texture

features and the connected net structures extracted from the ridge map.
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Figure 10: Image 076 from Corel's free sampler CD, its ridge map broken into discrete texture

features, cliques of clustered texture features, Voronoi segmented version and recovered textured

regions.


