CMOS Workstations and Servers—How Far Can
Evolution and Innovation Take Us?

by

Maurice V. Wilkes
Olivetti and Oracle Research Laboratory
Cambridge, UK

In 1980 we had minicomputers and mainframes. These had once been quite
distinct, but super-minicomputers were coming in and were beginning to chal-
lenge mainframes. All computers intended for serious work were based on bipolar
technology. CMOS processors existed and were considered fine for personal com-
puters, but no good for “real” computers.

There were then very few people who appreciated the potential of CMOS. To do
so, one needed to believe in the scaling rules. This was not hard if one knew
what they were, since they were grounded in the laws of physics. However, it was
also necessary to believe in the ability of the semiconductor process industry to
achieve very high densities. This was harder, since VLSI had seemed very slow
in coming and it might be equally slow in developing. In the event, things went
like a bomb. Stories abounded of serious problems ahead, but the industry rode
right over them.

Architectural innovation was also in the air. John Cocke had done pioneering
work at IBM, and Patterson and Ditzel had brought it out into the open in a
paper published in 1980. In this paper, they introduced the term Reduced In-
struction Set Computer (RISC). Once stated, RISC principles were clear enough.
Instruction sets had become too complex and needed simplifying. Perhaps, as the
originator of microprogramming, I was partly to blame, for microprogramming
had gone to designers’ heads.

RISC principles were a godsend to the designers of powerful CMOS processors,
since RISC processors were twice as fast as processors with complex instruction
sets, they were half the size, and they took half the time to design. It was not
long before workstations based on CMOS processors with RISC instruction sets
came to out-perform even the largest minicomputers. A powerful operating sys-
tem, namely UNIX, was ready to hand. UNIX had already achieved widespread
popularity on minicomputers and it was written in C. All that was needed to
turn a RISC workstation into a useful computing tool was a C compiler. For a
brief glorious moment, the instruction set of the processor did not matter. As a
result, a variety of RISC processors were able to achieve a share in the market.

This was all innovation. However, it was not long before personal computers
based on the x86 instruction set had evolved to the point at which their perfor-
mance approached that of RISC workstations. Innovation had provided a spur



for evolution.

Parallelism not a Panacea

It has always been obvious that one day we would reach a limit to the speed of
hardware. Long before this point was in sight people began to discuss what we
would do when we reached it. Everyone said that parallelism was the answer. We
would only need to switch to multiprocessor systems and the movement towards
higher and higher speeds would continue as before. They pointed to the success
of optimizing compilers for uniprocessors and said that it was only a matter of
time before compilers capable of optimizing programs to run efficiently on multi-
processor systems were developed. In retrospect, this appears as a naive attitude.
Optimizing for a multiprocessor system can well involve major restructuring of
the program and even changes to the algorithms used. These things are difficult
enough for a human being and well beyond what can be expected from a compiler
in the foreseeable future.

The climate of opinion is very different now. Much work has been done on the
use of parallel systems and the difficulties are more fully appreciated. Computer
specialists have come to understand that some applications lend themselves well
to parallelism, while others are extremely resistant to it. In the past, one could
be a computer expert without knowing very much about application areas. This
is not true where parallel applications are concerned. Designers need all the
feedback they can get from people who actually use parallel systems.

Speed versus Throughput

Computers of today normally operate in one of two roles. There are single-user
computers—typified by a workstation on a user’s desk—and servers. Servers are
centrally located and offer a wide variety of services to all comers. These range
from filing systems and databases to time-sharing systems.

By its nature, a server handles a large number of individual tasks presented
by its clients. These tasks may contend for access to bulk storage, but other-
wise they run quite independently of one another. For this reason, servers lend
themselves very well to implementation on multiprocessor systems. Frequently
these are symmetric multiprocessor systems with coherent caches and 16 or more
processors. Use of a multiprocessor system does not enable a server to process
individual tasks more rapidly than a single processor could do, but it does en-
able many more tasks to be completed within a given time. This is achieved by
keeping all parts of the system fully loaded. In other words, the parallelism gives
increased throughput, not increased speed.

High throughput is exactly what is needed in a server. On the other hand, an
individual user with his own workstation is primarily interested in the speed at
which his own application runs. Multiprocessor workstations are available, but



experience with them has shown that only rarely can an individual user who
writes his own programs speed up his work significantly by making use of the
parallelism they offer. This is largely because the labor of casting a problem
into parallel form and debugging the program is too great. The situation is
entirely different if he can use ready written and debugged packages available
from a software vendor and take advantage of work done by the vendors software
team. For example, multi-threaded 3D graphics packages run vary well on a
multiprocessor workstation.

Parallel programming tends to flourish in large organizations, especially those de-
voted to particular scientific subject areas, where the investment of effort needed
to develop parallel programs can be afforded. In such organizations, large parallel
computer systems are commonly operated as a common facility and shared by a
variety of application teams all working in the same general area.

Sometimes the computers are symmetric multiprocessors, similar to those used in
servers. However, they are often very large systems with hundreds or even thou-
sands of processors in which the high-speed memory is distributed between clus-
ters of processors. These are referred to as non-uniform memory access (NUMA)
computers. Some of them are fully equal in scale and cost to the large main-
frames of an earlier period. How much longer such very large shared systems will
continue to be purchased remains to be seen.

The Speed of Parallel Systems

A problem with all parallel systems is how to assess the speeding up that paral-
lelism gives. It is easy to compare the time taken for a solution using all available
processors with the time on the same system with all processors but one dis-
abled. However, one should really compare the time taken on the parallel system
with the time taken on an advanced workstation based on a processor identical
to those used in the parallel system. Such a workstation will be faster than the
multiprocessor system working with only one processor since its memory circuits
will be optimized for a single processor and there will be no switch, crossbar or
otherwise, to get in the way.

Faster workstations are coming on the market all the time and, compared with
them, large parallel systems will show up less well as time goes on, unless the
owners of the latter can can upgrade them. It is not easy to do this for both
technical and economic reasons. I would expect that, as a large shared multipro-
cessor system ages, users who were very satisfied with it when it was new will
desert it in favor of an advanced workstation of their own. I would be interested
in evidence, if any is available, that this is actually happening.

Instruction Level Parallelism

Advances in the effective speed of CMOS uniprocessors have been obtained partly



by shrinkage and partly by increasing the degree of instruction level parallelism
within the processor. This kind of parallelism is entirely invisible to the program-
mer and is thus quite different from the parallelism offered by multiprocessor
systems.

The development of instruction level parallelism started with pipelining. a now
long-established technique by which several instructions are in passage through
the processor at any given time, each in a different stage of execution. In a simple
pipelined computer the instructions are executed in the order in which they are
written.

Modern superscalar processors are capable of executing instructions in parallel
and even out of order when that is legitimate. In early designs, the instructions
to be executed in parallel had to be identified by the compiler. In later designs,
wired-in algorithms enable the compiler’s efforts to be supplemented by decisions
taken at run-time.

Now designs are pushing towards even more internal parallelism. They provide
multiple floating-point units and even multiple integer pipelines. However, all
the integer pipelines must share the same register file.

Processors vary in how many instructions they can dispatch in the same cycle and
the number is increasing. The present state of the art allows four. Unfortunately,
the nature of the program does not always allow advantage to be taken of even
this degree of potential parallelism, and the average speeding up may be nearer
two than four.

There are other ways of improving performance. Branch prediction gives im-
proved processor performance by reducing the number of occasions on which the
pipeline is disrupted as a result of a jump in the flow of control. I have been im-
pressed by the remarkable degree of success that has been achieved with systems
of branch prediction. Along with branch prediction goes speculative execution,
whereby the processor can continue in the direction of the predicted branch be-
fore the outcome of the branch is known. Speculative execution puts an extra
strain on the memory access system—already a factor limiting performance—
since memory cycles must be devoted to non-taken branches. For this reason,
there are limits to the extent to which speculative execution can be taken,

It is becoming much harder to think of architectural devices that will lead to
improved performance and it seems likely that we are running out of ideas. How-
ever, there remains one device—the use of predicated instructions—that has not
yet been put to large scale test.

Predicated Instructions

Predicated instructions are not in themselves new, but work carried out in re-
cent years at the Center for High Performance Computing, University of Illinois,



under the leadership of Wen-mei Hwu, has focused attention on their potential
in microprocessor design and has advanced the art of writing compilers capable
of exploiting it. This followed earlier work by Bob Rau and his colleagues at
Cyndrome and at Hewlett Packard Laboratories.

A succinct account of the use of predicated instructions will be found in a paper
by Hwu which appeared in the January 1998 issue of Computer. In the system
he describes, each instruction contains bits which point to an entry in a register
file which contains the value—true or false—of a predicate. This register file is
separate from the main register file. Values in it can be set by the program.

A predicated instruction goes through the execution unit in the ordinary way.
However, unless the predicate value is set to true the instruction is cut short and
prevented from altering the state of the machine. Such an instruction is said to
be disabled; otherwise the instruction is enabled.

Predicated instructions make it possible to compile if then else and similar state-
ments without using jump instructions, thus avoiding the disruption of the pipeline
that these entail. Instructions for both branches are included in the same basic
block; at run time instructions for the taken branch are enabled and those for
the non-taken branch are disabled. The disabled instructions take time to pass
through the pipeline, but if the branch is a short one, that time is less that the
time that would be lost if the pipeline were disrupted. The decision when to use
predicated instructions instead of branches must be taken by the compiler. This
raises non-trivial and critical issues for the compiler writer.

It appears that the use of predicated instructions have the potentiaal of exposing
more instruction level parallelism than even the most advanced super-scaler ar-
chitectures are capable of handling. If full advantage is to be taken of predicated
instructions, means of increasing this parallelism must be sought. I return to this
below.

Predicated instructions are longer than regular instructions, because of the bits
needed to address the predicate file. In consequence, it is no longer possible for
each instruction to be contained in 32 bits. The consequences of this are not
easily evaluated and may be serious. The balance between instruction length
and word length has always been a crucial, if somewhat mysterious, factor in
determining the efficiency of an architecture.

The obvious way to increase the parallelism available in the processor is to provide
more floating-point execution units and more integer pipelines. Since the latter
must all make use of the same set of registers, the designer may feel pressure to
increase the number of registers in the register file beyond the usual 32. Doing
this increases the length of an instruction, but one can argue that this creates
no additional problem since predicated instructions already need more bits than
regular instructions. However, the additional electrical loading on the circuits



may force a reduction in clock rate and thus prove counter-productive.

The last point is a general point. As processors become more complex, there
is a danger that the increased complexity will defeat its own ends by forcing a
reduction in the clock rate. However, it must be said that the implementers of
modern chips have been surprisingly successful in keeping the clock rate up in
spite of increasing complexity, and the danger is perhaps not as great as it was
formerly.

Merced

You will expect me to say something about Merced, which sets out to exploit,
among other things, the potential of predicated instructions. Merced is an Intel
project and is stated to be the first implementation of a new instruction set
architecture—IA-64—that Intel have developed jointly with Hewlett Packard.
There is an air of mystery associated with Merced and, while this adds some
spice, it makes it hard to comment fairly.

Intel have made at least one attempt to introduce a processor with a RISC
instruction set and suitable for use in a workstation. I am thinking of the i860
processor developed around 1990. This design had good architectural features and
received a first class implementation by Intel’s process engineers. Unfortunately,
it also had features that rendered it unattractive to designers of workstations
and, as a result, it never found a place in that market.

With Merced, Intel’s aim appears to be to implement a processor based on the
[A-64 instruction set which will outperform RISC processors currently on the
market; at the same time it will run x86 code and PA-RISC code at competitive
speed. At first sight it might be thought that, as far as achieving good TA-64
performance is concerned, the Merced group have shot themselves in the foot at
the outset by requiring this backward compatibility. Not enough information has
been made public about how they propose to achieve it for useful comment to be
made.

It is certainly true that the Merced chip will be a large and complex one. No
doubt Intel are betting on this not mattering, since the transistor density will
be much higher on chips of the future than on the chips of today. They had
originally hoped to bring out an implementation with 0.18 micron technology
ahead of competing RISC machines, but delays have occurred and it seems that
this will no longer be possible.

It was a bold course to take work on predicated instructions straight from the
research phase and aim to produce a competitive product, without waiting for the
implementation of an experimental prototype. However, this necessarily leaves
the project team somewhat exposed. They are in the unenviable position of
having both hardware and software projects that must meet their deadlines.



I would expect that only those users interested in the highest level of performance
will be attracted to Merced and its successors. Others will be happy with simpler
chips that accept x86 code only. My impression is that the Merced team would
be satisfied if they achieved a speed gain of even 30% compared with the best
current workstations and mightily pleased if it were more.

Development of x86 chips will not stand still. We may expect to see advances
made in their internal architecture not only by Intel’s competitors, but also by
Intel itself. Intel has huge resources available and no doubt has other irons in the
fire apart from Merced.

To say more, one would need to know more about where Intel places Merced from
the market point of view and how much their business plan has been affected by
the unforeseen delays that have occurred. On the longer term, it is fair to say
that even if predicated instructions prove the great success that their enthusiasts
predict—something that is not to be taken for granted—the 1A-64 instruction set
will face most of the problems and challenges that any new instruction set must
face. It is difficult to believe that all processors of the future will use predicated
instructions.

The Semiconductor Outlook

The shrinkage of CMOS has long proceeded in accordance with Moore’s Law.
This originated in an accurate prediction of the rate at which shrinkage would
take place that Gordon Moore made in 1965 with a time period of some ten years
in mind. A similar rate of shrinkage has since been maintained as a result of
industrial consensus.

A great surprise has been the way in which optical lithography has met the
demands made on it as feature sizes have been progressively reduced. This has
been achieved by using light of shorter and shorter wavelength, and developing
lenses of large aperture weighing as much as 1500 lbs.

Use is now being made of light with a wavelength of 248 nanometers.* This
works well for feature sizes of 0.25 micron. At a meeting held in March 1997 at
the Cavendish Laboratory to mark the centennial of the electron, Gordon Moore
said that it might be just possible to reach feature sizes of 0.18 micron with this
wavelength, although he expected that a wavelength of 193 nanometers would
have come into use by then. He added that the engineers concerned anticipated
that, by using light of the latter wavelength and all the optical tricks that they
could think of—including phase masks—they would be able to get down to a
feature size of 0.13 micron. Note that it is possible to reach feature sizes smaller
than the wavelength of the light used.

*It is customary to express wavelengths of light in nanometers and feature sizes in microns.
A micron is the same as a micrometer, so that there are 1000 nanometers in a micron.



Beyond 0.13 micron innovation will be called for. It is not possible simply to
use light of a shorter wavelength, since by the time a short enough wavelength
has been reached, all known materials are opaque and lenses cannot therefore
be made. If we move further—into the X-ray part of the spectrum—materials
become transparent again, but the focusing of X-rays to make images is not
possible. In spite of this, there is no reason in principle why X-rays should not
be used for making chips, and the industry has put much effort into developing
a practical system. However, Moore said that there were severe difficulties with
the mask structures needed, and that many people, including himself, doubted
whether the use of conventional X-rays would be economically viable.

Attention is now being turned to light of wavlength around 130 nanameters, which
is on the border between ultraviolet and X-rays, as those terms are conventionally
understood. Light of this wavelength can be called either soft X-rays or extreme
ultraviolet; Moore remarked that the latter term is now preferred since X-rays
have acquired a bad name. At 130 nanometers, it is just possible to form images,
but by reflection instead of by refraction. The precision called for is frightening;
the figuring of the surfaces, including the masks, has to be better than that of
the Hubble telescope. In spite of the difficulties, this approach seemed to Moore
to offer the best chance of success.

It remains to be seen what will happen. At present, shrinkage is going at a great
rate, but we may well see a slowing down when the forced change to a new form
of lithography takes place. In any case, we will not then be far from the point—
the CMOS end-point—at which there will no longer be sufficient electrons for
further shrinkage to give improved performance. This will be the end of the road
for CMOS as we know it. We may expect to reach it with feature sizes of 0.1 or
0.05 micron.

There is no obvious follow-on for CMOS. Semiconductor structures, in which the
presence or absence of a single electron makes the difference between a 0 and a 1,
are being studied and progress is being made. However, these structures are still
at the stage at which they are of interest primarily to physicists and it is hard to
see practical devices emerging before 20 years. But experiment is pushing ahead
of current theory and, as time goes on, there may well be surprises.

Subtle Changes in the Underlying Climate of Opinion

We are in the middle of many exciting developments. Nevertheless, I have a strong
feeling that subtle changes are going on in the underlying climate of opinion.

It was the development in the late 1980s of effective benchmarks that made it
possible to make comparative measurements of processor performance. Up to
that time computers had been sold on the performance of the whole system,
with much importance being attached to the quality of vendor support. No
one enquired very much about how the various vendors’ processors compared,



and their differing instruction sets tended to be judged like pet dogs for their
appearance and pretty points, not like racehorses for their speed.

Benchmarking came just as the increasing power of computers had made it pos-
sible to evaluate processor architectures without actually building the hardware.
As a result, people began to attach importance to relatively small differences in
the speed of processors. A factor of two was regarded as enormous. I think that
the market will become less sensitive to differences in processor speeds of this
order.

One trend may turn into a major concern. The penalty for cache misses is be-
coming greater as the gap in speed between cache and main memory gets wider.
On a 500 Mhz Alpha workstation, a cache miss now costs 128 cycles, from miss
to usage. The effect is especially felt with problems whose working sets do not
fit into secondary cache. Users are beginning to find the performance of super-
scalar workstations disappointing on such problems. To make matters worse,
more problems with large working sets are being tackled as users become more
ambitious. With such problems, a cache can actually get in the way. The Cray 1
had no cache for that very good reason. It is perhaps because performance now
depends to an increasing extent on the problem area that the market is beginning
to emphasize clock rate as much as benchmarks when comparing processors.

I feel that the widening of the gap by a factor of four—which can be seen coming—
will radically disturb the assumptions on which we work. Unless something can
be done about the memory gap, we may have to revise our present attitudes fun-
damentally. At least, one can foresee severe headaches for workstation designers
and also for benchmark designers.

A change that we would all like to see would be for more attention to be paid to
the efficiency and user friendliness of the system software.

Acknowledgments

I would like to express my thanks to the following colleagues and friends who
kindly read an early draft of this paper in whole or in part, and made help-
ful comments: Peter Robinson, Ruby Lee, Wen-mei Hwu, Don Gaubatz, Keith
Diefendorf, and Lance Berc.



