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Abstract

For the last decade, the research in CSCW
(Computer Supported Cooperative Work) has been
focusing on synchronous collaboration, which requires
the participants involved in common tasks to remotely
share computer display workspaces simultaneously
without leaving their workplaces. However, to support
truly global cooperative work, asynchronous
collaboration is equally prominent, in order to
accommodate the participants who may not be available
for the synchronous CSCW session. These participating
individuals, whether working synchronously or
asynchronously, may be mobile and may have to connect
to and disconnect from the session repeatedly with
ubiquitous systems. In this research paper, we describe a
framework for asynchronous as well as synchronous
collaboration. The framework provides facilities to
transfer the screen images or frame buffers of the on-
going CSCW session to remote users, allowing the
available participants to share the view and the control of
the session simultaneously, and to record the screen
images or frame buffers for the absent participants to
retrieve and playback the session at a later stage, with
VCR-like control (i.e. fast forward, rewind, play and
stop). The frame buffers are transferred and recorded in
units of rectangles containing pixel values of the screen
images. These rectangles are platform independent and
can be dynamically directed to and displayed by
heterogeneous systems such as X Windows or Windows
NT, or by Web browser such as Netscape.

1. Introduction

In the computer supported cooperative working
environment, people can work closely with each other
even when they are geographically separated. To support

synchronous collaboration at a distance, numerous CSCW
applications (or real-time groupware [1]) exist to assist the
remote sharing of workspace (i.e. computer display
surfaces) between participating individuals involved in
common tasks. These tools usually provide a joint viewing
of the workspace in the What-You-See-Is-What-I-See
(WYSIWIS) mode and the teleoperation for the
participants to interact with the joint view. The Shared
Whiteboard Tools and the Shared Application Tools
described in [2] are examples of such applications.

The Shared Whiteboard Tools (SWTs) allow multiple
remote participants to see the same window displayed on
their computer screens to emulate a physical whiteboard
conference. Each participant may mark up the whiteboard
by using simple drawing tools, or may enter text, or may
place background images on the board.

The Shared Applications Tools (SATs) result from an
extension of the SWT. They allow multiple participants to
share the view as well as the control of any interactive
application. Windows of any shared application can be
displayed on the computer screens of all the participants,
although the shared application itself runs on one platform
only. SATs are generally based on the X-Windows
protocol, and run over the Internet Protocol. Examples
include SharedX from Hewlett-Packard [3], and X
Teleconferencing and Viewing (XTV) from the University
of North Carolina at Chapel Hill and Old Dominion
University [4].

Although the above tools which are designed for
synchronous collaboration can be enhanced to
accommodate late-comers of a CSCW conference [5],
they don’t, in general, offer support for participants who
are temporally separated. World-wide specialists may
reside in countries of different time-zones, hence may not
be able to join a conference which requires simultaneous



participation from all individuals; part-time contractors
colocated at the same company may be required to work
different shifts on a system maintenance project, therefore
don’t interact with each other directly. A separate
category of applications, known as the non-real-time
groupware [1], have been developed to meet the
requirement of people-to-people communication in an
asynchronous mode. These applications, including
electronic mail (or document exchange) and asynchronous
computer conferencing (via topical lists, bulletin boards,
etc.), whether in the form of monomedia or multimedia,
are mainly messaging applications which provide
minimum support for sharing, as compared with the
existing real-time groupware for synchronous
collaboration. As the participants who are absent from a
synchronous CSCW session join the sharing of the remote
workspace when they become available, they not only
need to obtain the current state of the session, but also
need to review the operations performed during their
absence. For the last decade, the research in CSCW has
been focusing on synchronous collaboration, but a
significant portion of collaborative activities in the real
world occur in an asynchronous manner. In the context of
workspace and application sharing, synchronous and
asynchronous collaboration are closely related, because
the review of the synchronous session can provide visual
cues for asynchronous collaboration which in turn
provides temporally separated participants with the
knowledge and the experience to catch up with and
reengage in the synchronous session. Therefore the two
collaboration modes should be integrated, rather than
directed into two separate research streams.

In this research paper, we describe a framework
supporting asynchronous as well as synchronous
collaboration. The framework provides facilities to
acquire and store the on-going CSCW session in units of
screen image (or frame buffer) rectangles and transfers
these rectangles containing pixel values to all the
participants currently signed in, offering them a joint
viewing of their shared workspace. On the other hand, the
framework also accepts the user interaction events (e.g.
key press, mouse button click, etc.) from the real-time
conferees and forwards the events to the remote session,
offering support for teleoperations from multiple
distributed users. For late-comers, partially real-time and
non-real-time participants, the framework admits them to
the session as soon as they become available, by
delivering them the up-to-date screen images reflecting
the current state of the shared workspace and allows them
to retrieve and playback the session they have missed,
with VCR-like control (i.e. fast forward, rewind, play and
stop). The distributed users can access the remote session
through our framework with heterogeneous systems such

as X Windows and Windows NT, or with their Web
browser such as Netscape. The mobile users can connect
to and disconnect from the session repeatedly through our
framework from different endpoints.

2. The RFB protocol

Our framework is based on the RFB (Remote Frame
Buffer) protocol developed at the Olivetti and Oracle
Research Laboratory (ORL) [6, 7]. This is a client/server
protocol for remote access to the Graphical User Interface
(GUI) of windowing systems. The remote endpoint where
the GUI is displayed and where the user interacts with the
GUI is called the RFB client and the endpoint where the
GUI is generated or where the frame buffer originates is
the RFB server. The protocol defines the mechanism to
transfer screen images or frame buffers from the server to
the client. These screen images or frame buffers are
transferred in units of rectangles containing pixel values
and are therefore independent of the underlying operating
and windowing systems such as Unix/X-Windows,
Windows 95/NT, etc.. The protocol also allows the
remote users to interact with the windowing system and
applications by transferring the user input events (e.g. key
press, mouse button click) from the client to the server.

The RFB client is stateless, allowing users to connect
to and disconnect from the RFB server repeatedly from
totally different endpoints with the state of the GUI
preserved in the server. With the RFB protocol, we can
dynamically transfer the entire computer desktop with its
state and configuration (exactly the same as when it was
last accessed) to a remote endpoint to achieve mobility.

The RFB client is thin. By the word “thin”, we mean
that the client requires minimum human resources to
develop and minimum hardware resources to run. The
client can be implemented in Java (including Java
applications and Java applets) or in other programming
languages such as C/C++, as the RFB protocol is language
independent. The client can run on the widest range of
hardware or Java-capable web browser. It fits into the
general trend for thin-client architectures[14].

The basic data unit of the RFB protocol is a
rectangle. The rectangle is a graphical element which can
be specified by its width, height, the x and y coordinates
of the upper-left corner, and its pixel values. Instead of
sending the screen images frame after frame like sending
videos, the RFB server is intelligent enough to only send
the rectangles within the frame buffer that have been
changed since the last transfer, in other words, it sends
frame buffer updates rather than the whole frame buffers.
A frame buffer update usually affects only a small area of



the frame buffer and may result in a sequence of
rectangles being sent.

The RFB protocol is very similar to the T.128
(formerly known as T.SHARE) application sharing
protocol used in NetMeeting [10]. Although T.128 itself
is platform independent, NetMeeting only supports the
sharing of Windows applications.

3. Framework functionality and architecture

Our framework seamlessly intercepts and manipulates
the message streams between the RFB client and the RFB
server with the following features:

• No changes are needed to the existing RFB client or
server. To the client, the framework acts as a proxy
server and to the server, it acts as a proxy client.

• The framework does not address security, however,
the RFB server is password protected and the RFB
clients have to send passwords for authentication
before being connected. The passwords are routed
through the framework in their encrypted forms.

• Our framework is a scalable infrastructure which can
be plugged into client/server architectures to convert
them to multi-client/multi-server for the purpose of
collaboration. Here, we are using the RFB as an
example, where we have converted the client/server
into a multi-client/single-server architecture. These
multiple clients receive exactly the same messages
from the server at run time.

3.1 Framework functionality

We now explain the functionality provided by our
framework in the two collaboration modes: the
synchronous and the asynchronous modes.

In the synchronous mode, the framework turns the
RFB client/server into a client/proxy/server architecture.
By placing such a framework (i.e. the proxy) between the
client and the server, we are able to merge all the
messages from the multiple clients and forward these
messages to the server as if they were from a single client;
while on the other hand, we multicast the messages from
the server to each client. In other words, we enable the
synchronous RFB clients (also known as the Viewers, see
Figure 1) to share the RFB server simultaneously,
expanding a one-to-one client/server into a many-to-one
multi-client/server communication channel, where each
client receives exactly the same messages from the server
(therefore shares exactly the same view) as the others
participating in the collaborative session. However,

different Viewers may experience different communica-
tion delays, especially when some Viewers are local and
some are remote to the RFB server. Under these
circumstances, an additional telephone line or audio
channel will be helpful to coordinate user interactions.
Since all the messages flow through the framework, they
can be stored or recorded for future retrieval by late
comers and absent participants.

Figure 1. Viewer running as Java applet

Figure 2. Reviewer running as
        Java application

In the asynchronous mode, our asynchronous RFB
client (also known as the Reviewer, see Figure 2) retrieves
the messages stored by the framework to playback the
recorded session. It allows the user to interact with the
recorded media with VCR-like control (i.e. play, stop, fast
forward and rewind). Our recorded messages are time-
stamped, therefore can be played back at the same rate as
they were recorded.

3.2 Framework architecture



Our framework consists of a Server Agent which
communicates with the RFB Server, a number of Client
Agents, each corresponding to an RFB Client, and a
Cooperation Manager which monitors and coordinates the
agent activities (see Figure 3).

Figure 3. Framework of Server Agent, Client
                Agent and Cooperation Manager
                (in synchronous mode)
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• Server Agent (SA)

 The SA acts as a proxy client to the RFB Server via a
socket connection. The SA reads messages from the
RFB Server and forwards them to the Cooperation
Manager for routing, and delivers the messages
forwarded by the Cooperation Manager to the RFB
Server. The messages flowing between the SA and
the RFB Server comply with the RFB protocol.

 
• Client Agent (CA)

 The CA acts as a proxy server to the RFB Client via a
socket connection. The CA reads messages from the
RFB Client and forwards them to the Cooperation
Manager for routing, and delivers the messages
forwarded by the Cooperation Manager to the RFB
Client. And again, the messages flowing between the
CA and the RFB Client comply with the RFB
protocol.

 
• Cooperation Manager (CM)

The CM is mainly responsible for two tasks: routing
and recording. It routes the messages from the Server
Agent to the Client Agent and vice versa, and records
the messages that change the state of the remote
frame buffer. It constructs an Agent Table where all
the agents in touch with the CM are registered and a
Route Table which specifies the messaging route
from the source agent to the destination agent. As in
the scenario illustrated by Figure 3, the Agent Table
contains one Server Agent and two Client Agents,
and the Route Table specifies that messages from the

Server Agent will be routed to the two Client Agents
and vice versa.

The recorded messages are stored in a log file in the
same sequence in which the CM routes these messages.
Like all other files, the log file can be transferred across
the network by means of, for example, the File Transfer
Protocol (FTP). The Reviewer (i.e. the asynchronous RFB
client) can then open this log file to playback the recorded
collaborative session. The message processing performed
in the Reviewer is similar to that performed in the Viewer
(i.e. the synchronous RFB client) except that the Reviewer
reads the messages from the log file while the Viewer
reads from the socket.

4. Experiments

Our basic data elements of transmission and
recording are frame buffer rectangles. You might ask
“ isn’t that going to consume a lot of bandwidth and
storage capacity?”. The answer is “yes”, but we are
willing to trade off bandwidth and storage capacity for a
thin client architecture for the following reasons:

• We are promised with more bandwidth and storage
capacity in the future. Paul Taylor reported that the
telecommunication groups are investing huge sums in
upgrading the Internet backbone infrastructure with
fast transmission technologies such as ATM
(Asynchronous Transfer Mode), Frame Relay and
packet over Synchronous Optical Network (IP Sonet)
[12] and Tom Foremski reported that over the last ten
years, hard drive technology has been showing
tremendous increases in performance and in storage
capacity and will continue that way at least for
several more years [13].

• Our experiments have shown that, with the built-in
intelligence of the RFB server (which only sends
frame buffer updates rather than whole frame buffers)
and the various encoding schemes for the pixel data
[7], the consumption of bandwidth and storage
capacity is not as much as we think. Typically, to
launch a Netscape Web browser to retrieve the home
page of WETICE’98 from the session as shown in
Figure 1 will cause approximately 0.5 Megabytes to
be transmitted and recorded. (One side effect of
placing the framework between the RFB client/server
is that we are now able to generate auditing reports on
messages flowing between the client and the server.)

• The performance of our system is quite acceptable.
The RFB clients implemented in C appear to be as
fast as an X display. The Java clients are slower, but
will improve when the gap between the speed of Java



and the speed of native languages such as C/C++
closes. The original design of the framework is for
the Server Agent, the Client Agent and the
Cooperation Manager to be distributed objects among
our LAN (Local Area Network) with Java RMI
(Remote Method Invocation) [15] as the
communication mechanism. However, our
experiments show that the resulting framework has
slowed down the work session significantly due to the
transmission of multimedia streams (i.e. frame buffer
rectangles) between distributed objects. Hence, we
have now incorporated all the objects (the agents and
the managers) within one process to reduce network
traffic and the performance has been enhanced to an
acceptable level.

• The advantages of a thin client architecture are
described in the next section, where our approach is
compared with other related work.

5. Related work

Fluckiger defined CSCW as the field concerned with
the design of computer-based systems to support and
improve the work of user groups engaged in common
tasks and the understanding of the effects of using such
systems [2]. It is a field which has been studied since the
early 1980s by a large number of research individuals and
organisations. Most of the research is focused on
synchronous collaboration.

Our aim is to integrate synchronous and
asynchronous collaboration. First of all, let’s take a look
at how other systems integrate these two collaboration
modes. Multi-user shared editors such as the GROVE
(GRoup Outline Viewing Editor) [1] are collaboration-
aware tools, i.e. they are aware that a multi-user
collaboration is taking place. Although they are designed
to support simultaneous multi-user interactions, they also,
to some extent, support asynchronous collaboration
extending over a longer period. For example, the shared
editors can store the result of editing for further use.
Participants of a work session can enter and leave at any
time. When they enter or re-enter a session, they receive
an up-to-date document. However, they cannot replay the
user actions that result in the current document without
affecting the other users editing the same document. In
other words, these tools don’t support reviewing of a work
session. Our framework can enable the sharing of an
editor, e.g. the vi editor, which itself is not collaboration-
aware. By recording the editing, we can replay and review
the session independently from the other users, as if we
are playing back a video clip. Before this project, we
designed a talk tool in [8] to facilitate communication
between humans through time by storing the conversation

as ordered entries in a Tuple Space, and allow the
participants to track down how the conversation (in term
of text messages) is carried out during their absence.
However, like the shared editors, the talk tool is designed
for a specific task (in this case, for Internet messaging),
therefore it doesn’t support the sharing of ordinary
collaboration-unaware applications in general.

To achieve our aim, we have made use of three
technologies. The first is to separate the user interface
from the application logic for mobile display, this is done
by the use of the RFB protocol; the second is to place a
proxy between the client/server architecture to intercept,
record, redirect, merge and multicast the message streams
between the clients and the servers, this is done by the use
of our framework; the last is to extend collaboration to a
global scale, this is done by the use of the Java and World
Wide Web technology.

Let’s first look at the other protocols which also
separate the user interface from the application logic. The
X protocol is an obvious candidate. The X Window
System allows window applications or clients to access
the display only through the X server, which is a separate
process that arbitrates resource conflicts and provides
display, keyboard, and mouse services to all clients
accessing the display. Built on the X protocol, the Remote
Shared Workspaces (RSW) system described in [9] is a
layer of software to convert single-user applications into
tools for use by a group of distributed users during a real-
time collaborative session. By extending the RSW system
which is restricted to support the sharing of textual
applications only (e.g. the vi editor), the X
Teleconferencing and Viewing (XTV) is a system for
sharing X Window applications synchronously among a
group of distributed users at workstations running X and
interconnected by the Internet [4]. Like the RSW and the
XTV, most of the Shared Application Tools are based on
the X protocol, so why do we use the RFB protocol
instead? We find the stateless and the ubiquitous nature of
the RFB clients appealing.

The XTV accommodates late-comers by protocol
filtering and archival which records the minimal
information necessary to generate an exact replica of the
shared applications’ interface on the late-comer’s display
[5], while in our system, with the stateless property of the
RFB clients, we can automatically accommodate late-
comers and mobile users (who connect to and disconnect
from the work session repeatedly) without any
requirement for storing messages related with the state of
the work session. When users join or re-join the session,
they receive an up-to-date frame buffer shared by all
participants. Unlike the X protocol, the RFB protocol



messages contain rectangles of pixel values with no
semantics. Once recorded to persistent storage, these
messages can be rewound and replayed as many times as
required. Hence, a consulting or teaching session can be
recorded and archived for future reference.

Although X can support a spectrum of hardware
displays ranging from small monochrome units to
advanced graphics systems, it requires the display
platform to run a program called the X server. Hence,
XTV can only work under the X Window System
environment. The RFB protocol is independent of the
underlying windowing system, as frame buffers can be
transferred across heterogeneous platforms. Hence, the
RFB clients are ubiquitous and can collaborate on various
computing systems (e.g. between X Window and
Windows-NT platforms).

Let’s now look at the other systems that also place
proxies between the client/server architecture to re-route
the message streams between the clients and the servers.
The XTV uses a proxy to multicast and merge the
messages between the shared X applications and the X
displays of the participants for synchronous collaboration
[4]. ORL’s Teleporting system uses a proxy to redirect the
messages between the X applications and the different X
displays for mobile computing [11]. Our framework
serves similar purposes. While re-routing the messages
between the RFB client and the RFB server to support
synchronous and mobile collaboration, we also record the
messages for later playback, thus supporting asynchronous
collaboration in a natural way.

Finally, the introduction of the World Wide Web
(WWW) and Java technology into CSCW has enabled
global collaboration on Internet. For example, CoReview
uses XTV to share Mosaic to facilitate creation and
review of proposals by spatially separated group members
[16]. Our system extends to the World Wide Web in two
dimensions. Firstly, our clients can share a Web browser
like sharing any other ordinary application. Secondly, our
clients can be downloaded dynamically through Internet
and run as Java applets in a Web browser.
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