
Integrating Multimedia Streams into a

Distributed Computing System

BJ Murphy

Computer Laboratory, University of Cambridge, UK

GE Mapp

Olivetti Research Laboratory, Cambridge, UK

Abstract

Continuous media, such as audio and video, are quickly becoming an
integral part of distributed computing environments. A shortcoming of
such environments is their lack of support for continuous flows of informa-
tion. What is missing is the notion of an on-going communication activity
with an associated quality of service.

This paper describes a model for integrating multimedia flows into a
distributed computing system. The model permits explicit bindings to be
established between type-checked stream interfaces. The stream binding
is represented in the computational model as a first-class object which
encapsulates configuration rules and QoS attributes. An operational in-
terface supplied by the binding object allows other objects within the
system to manage the binding, to renegotiate QoS parameters, to control
the flows across the binding, and to register interest in stream events such
as flow reports and communication errors. The in-band stream interface
is an abstract C++ wrapper around transport mechanisms that include
intra-host IPC and network transport protocols such as TCP and XTP.

A prototype implementation of this model is described using the Com-
mon Object Request Broker Architecture (CORBA). The implementation
environment comprises a local area ATM network with directly attached
multimedia peripherals and general purpose workstations.

Keywords: Continuous Media, Streams, CORBA, ODP.

1

1 INTRODUCTION

Continuous media, such as audio and video, are becoming an integral part of
distributed computing environments. This trend is being accelerated by the
adoption of the ”exploded workstation” model by various research groups [6, 14].
In this model, multimedia peripherals are attached directly to the network. Dis-
tributed computing techniques are required to provide the user with a coherent
view of networked resources.

Distributed systems are often modelled using an object-oriented approach.
An object encapsulates state and provides a well-defined interface to the rest
of the system. Objects interact by invoking operations on these interfaces. An
object-oriented computational model of a distributed system maps conveniently
onto an engineering implementation in which invocations are performed by Re-
mote Procedure Call (RPC).

A common shortcoming of such models is their failure to address continuous
flows of media such as audio and video. The problem is that the transfer of
continuous media cannot be adequately expressed in terms of invocation. What
is missing is the notion of an on-going communication activity with an associated
“quality of service” (QoS).

This paper describes a computational model for distributed systems in which
continuous media flows are established and controlled by “stream” binding ob-
jects. The term “binding” is used here in a very general sense to refer to a logical
communication channel between two or more objects which may include manip-
ulation of data on that channel. The basic notion of a stream is a uni-directional
flow of a series of messages of a pre-defined type. More complex abstractions can
be derived from the basic stream interface. Such “smart streams” can be used,
for example, to simplify the management of inter-related flows and to provide
“in-band” processing of stream data. The model presented here is briefly set in
context with other work in this field. An implementation of this model based on
the Common Object Request Broker Architecture (CORBA) [11] is presented.

2 COMPUTATIONAL MODEL

We refer to objects that handle multimedia flows as “devices”. Devices are fur-
ther sub-classed as either “sources”, “sinks” or “modules”. A source is a media
producer and is normally an abstraction of a media-generating hardware device
such as a camera or microphone. A sink is a media consumer and is normally an
abstraction of a media-rendering hardware device such as framebuffer or loud-
speaker. A module is a media processor that accepts incoming data, processes
that data in some way, and outputs the modified data. Devices are “virtual”
entities in the sense that there may be multiple logical devices per physical de-
vice. Devices interact via communication end-point interfaces called “ports”.
A device supplies an operational (RPC) control interface by which it may be

2

Figure 1a: Unicast Passive Stream Figure 1b: Multicast Passive Stream

Figure 1c: Active Stream: Video Pattern Recogniser Figure 1d: Active Stream: Audio Switch

Video Source Co−ordinate Sink

Source Sink

Stream
Unicast Multicast

Stream

Video −>
Co−ordinates

Threshold
Detector

Audio Source

Audio Sink

Control Interface
Device

Control Interface
Stream

Figure 1: Examples of Stream Bindings in the Computational Model

managed.
We refer to objects that establish and control multimedia flows as “stream”

binding objects. Figure 1 shows a number of possible stream bindings between
devices. In the simplest case, a stream represents a single (unicast) flow of data
from producer to consumer (Figure 1a). A more general type of stream is a
multicast flow from a single producer to multiple consumers (Figure 1b). Both
types of binding are characterised by the fact that no manipulation of the flow
is performed as the data moves from producer to consumer. We describe such
bindings as “passive” bindings.

An additional class of binding involves the processing of data between pro-
ducer and consumer. For example, Figure 1c depicts a stream binding object
that performs pattern recognition on an incoming video stream and generates
an outgoing stream of co-ordinates that represents the position of, say, a hand
or a face. Figure 1d represents a stream binding object that selects one of a
number of audio streams depending on input volume level. We refer to such
bindings as “active” bindings. An active binding is the composition of two or
more passive bindings separated by one or more processing modules such as

3

pattern recognisers or threshold detectors. Where possible, we wish to insu-
late application writers from the complexity of constructing and configuring the
internals of such composite bindings by providing a “repository” of commonly
used active bindings.

An additional style of composition is one in which multiple parallel flows
need to be co-ordinated, often because there are synchronisation constraints
between them. The classic example is the maintenance of lip synchronisation
when the audio and video flows each have their own network connection and
are handled by separate end-point devices. We collectively refer to the various
styles of active binding and the various styles of binding composition as “smart
streams”.

The stream binding object provides an operational (RPC) stream control
interface to the rest of the system. The purposes of this interface are:

• to manage the binding (eg delete the binding, add members to a multicast
binding)

• to manage QoS parameters (eg to permit dynamic QoS re-negotiation)

• to control the flow of data (eg start, stop, pause)

• to register callbacks for binding-related events (eg QoS degradation events,
multicast member change events)

A stream control interface is typed in terms of the configuration of the bind-
ing (eg unicast or multicast), the processing, if any, performed by the binding
(eg mixing or level detection), and the nature of the flows involved (eg audio or
video).

The stream control interface encapsulates the underlying signalling mecha-
nism that is used to manage the binding. This mechanism may be based on the
conventional end-to-end exchange of signalling messages (such as that defined
by the ATM Forum for the management of ATM virtual connections [1]) or on
other techniques such as the use of CORBA to provide direct control of network
components [9].

Associated with the basic stream interface is a set of QoS attributes that
governs the flow. These attributes include:

• bandwidth (average, peak, burst interval, tolerance)

• delay (maximum, tolerance)

• jitter (maximum, tolerance)

• reliability (reliable or unreliable in terms of error-free delivery)

• cost (maximum, tolerance)

4

Application

Stream
Object

Device
Source

Data

Sink
Device

Sink
Port

Source
Port

Port Events

Stream Control
Interface

Source Device
Control Interface

Sink Device
Control Interface

Port Control

Port Control Interface

Transport Interface

Figure 2: The Engineering Model of a Unicast Stream

The stream binding object provides QoS mapping functions between type-
specific QoS specifications (such as video frame-rate, image pixel-depth) and
transport-specific QoS parameters (such as delay and bandwidth). A smart
stream needs to map application-specific notions of QoS to transport-specific
QoS parameters for each passive binding and to processing-specific QoS param-
eters for each module. For example, a smart stream that converts audio to text
may need to map a parameter such as “word spotting accuracy” onto underly-
ing communication and processing resource requirements. In order to manage
end-to-end QoS [2], the application, or some higher-level QoS manager, needs
to co-ordinate operations at the stream interface and at the end-point device
interfaces.

3 ENGINEERING MODEL

Operational interfaces defined in the computational model are specified using
CORBA Interface Description Language (IDL). All control interactions are (im-
plicitly) accomplished using CORBA RPC communications. Data transfer, on
the other hand, is achieved using Inter-Process Communication (IPC) mech-
anisms better suited to the transfer of continuous media and for which QoS
control can be provided. This is discussed further below.

5

Application

Stream
Object

Device
Source

Stream
Object

Stream
Object
Smart

Device
SinkProcessing

Module

Data Data

Figure 3: The Engineering Model of a Simple Smart Stream Comprising a Single
Processing Module

Figure 2 shows the engineering of a unicast stream binding. There is a
one-to-one mapping between (virtual) devices in the computational model and
CORBA objects in the engineering model. Communication end-points (ports)
which are opaque in the computational model become visible in the engineering
model. A port offers two interfaces to the rest of the system: a local (ie non-
IDL) “transport” interface for data transfer and an IDL port control interface.
The port is typed in terms of the nature of the messages supported by the flow
(eg audio samples, video frames) and the direction (ie in or out) of the flow.

The stream object abstracts over the collection of ports that are involved in
the underlying stream data flow. There is a one-to-one mapping between passive
bindings in the computational model and stream objects in the engineering
model. Smart streams, on the other hand, are engineered as hierarchies of
stream objects and processing modules (see Figure 3). The stream (or “super-
stream”) object dispatches control operations invoked on the stream control
interface to the various ports (or “sub-streams” and modules) that are involved
in the stream data flow. The stream object may arrange for the insertion of
presentation-level transformation objects between ports in order to solve format
and coding incompatibilities.

6

4 RELATIONSHIP TO OTHER ARCHITEC-
TURES

A number of architectures have recognised that communication requirements
and programming paradigms for continuous media are different to those for
control interactions. The ISO Open Distributed Processing Reference Model
(ODP-RM) [8] defines a “stream interface” to compliment the conventional
semantics of an operational interface. The “signature” of a stream interface
defines the set of flows supported at that interface, and, for each flow, the role
of the interface (producer or consumer). Furthermore, an “environment”, which
may include QoS requirements, is associated with a computational interface and
is used to influence explicit bindings between these interfaces. The ODP phi-
losophy on streams has been adopted by the Telecommunications Information
Networking Architecture Consortium (TINA-C) [5].

Much of the thinking behind the ODP-RM has been derived from work on
the Advanced Network Systems Architecture (ANSA) [12]. The original ANSA
architecture did not address the requirements of multimedia. A number of
enhancements were suggested to redress this deficiency: researchers from the
University of Lancaster proposed a set of “multimedia base services” within
the context of the existing computational model [4] while Nicolaou suggested
changes to the computational model itself [10]. The current ANSA Phase III
Distributed Interactive Multimedia Architecture (DIMMA) project is pursuing
the latter approach as well as addressing the problems of interworking between
various engineering implementations.

A consortium of computer vendors has proposed the Multimedia Systems
Services (MSS) architecture [7] in response to a call for technology from the In-
teractive Multimedia Association (IMA). The CORBA-based MSS architecture
defines a standard set of services that can be used by multimedia application
developers in a heterogeneous distributed computing environment. CORBA
is also the basis for a proposal from the COMET group at the University of
Columbia for a global binding architecture that integrates network and end-
system resources [9].

Our architecture has more in common with the MSS and Lancaster ap-
proaches than with the ODP-related approaches. Both the MSS and Lancaster
models have the concept of a “stream” (called a “VirtualConnection” in the
MSS model) which provides an interface to the underlying communication chan-
nel (which may be unicast or multicast) and permits dynamic control of that
channel. The ODP-related models recognise the need for an explicit binding
between a pair of compatible computational interfaces, each with an associated
set of statically defined QoS attributes, but they do not provide a mechanism for
dynamic QoS changes to that binding. A multi-party binding is modelled either
as a “compound” binding in which a “binding object” sits in the data path and
maintains “primitive” bindings to each endpoint or as a static multicast binding

7

with no interface for making dynamic changes to group membership.
We differ from the MSS and Lancaster models to the extent that we believe

that the stream object should be typed and should encapsulate type-specific
QoS mapping functions. Furthermore, we believe that, to some degree, commu-
nication endpoints (which we call “ports”) should be statically typed in order
to detect gross configuration errors (such as an attempt to connect a video
source to an audio sink) at compile time instead of at bind time. We are cur-
rently contemplating the degree to which ports (rather than messages) can be
typed without restricting scope for polymorphic processing modules, without
eliminating the possibility for in-band stream annotations, and without pushing
technology dependencies into the typing system.

In common with the MSS and Lancaster models, the data transfer interface
(which we call the “transport” interface) is not specified in a computational
language such as CORBA IDL and the data transfer mechanisms (such as those
based on network protocols) fall outside the scope of the computational model.
For architectural consistency, we endorse efforts to add a stream interface to the
computational model and a QoS specification to each computational interface.
For pragmatic reasons, we are stepping outside the computational model for
the transfer of continuous media although we are making control of these flows
possible via CORBA IDL interfaces.

5 IMPLEMENTATION

A prototype implementation of parts of the engineering model has been per-
formed. The environment in which we are working comprises a local ATM
network to which a variety of multimedia peripherals (eg “video bricks”, “audio
bricks”, “video tiles”) and general purpose workstations are attached. Each
multimedia peripheral is directly attached to the network resulting in a highly
distributed architecture. The ATM network includes both wired and wireless
segments; the impact of mobility on streams is of great interest to us.

The general purpose workstations (running Windows NT and various flavours
of UNIX) and the multimedia peripherals (running an in-house microkernel
called ATMos) all support an implementation of CORBA: the vendor platforms
run Orbix from IONA Technologies and the ATMos machines run an in-house
Orbix-compatible ORB called omniORB. All platforms support the TCP/IP
protocol stack over ATM/AAL5. In addition, the UNIX and ATMos platforms
support an implementation of XTP [3] over IP/AAL5 and ”native” AAL5. We
regard XTP as more suitable for the transfer of continuous media than conven-
tional transport protocols such as TCP primarily because it can be configured to
provide a variety of transport services. XTP supports byte-stream or message-
oriented transfer semantics, optional error detection and correction, timer-based
rate control in conjunction with window-based flow control, and reliable multi-
cast in the local area.

8

In our streams implementation, every node runs one or more object “facto-
ries” (ie processes that can dynamically create CORBA objects). On ATMos,
these are configured as CORBA “persistent” servers; on other platforms, facto-
ries may be launched dynamically by a daemon process. In order to establish
a stream channel, the application asks a (typically local) factory to create a
stream object of the specified type and with a specified set of QoS attributes.
At present, we only support passive stream bindings involving primitive flow
types (audio and video) with no QoS support other than the choice of transport
protocol. The application then asks the factories on the source and sink nodes
to create devices of the appropriate type. For example, an application may ask
the source factory to create a “Camera” device and the sink factory to create an
“XVideoWindow” device. The resulting object references allow the application
to control the devices. For example, a Camera object might support a variety of
picture sizes and frame rates. Note that operations that affect all devices within
a given node, for example panning or zooming a camera on a video brick, are
part of the node-specific factory interface rather than the virtual device inter-
face. That is, the device interface encapsulates the resources of a node that may
be controlled independently of other devices within the node.

The device object reference allows the application to obtain (or create) a
port of an appropriate “polarity” (ie in or out). The application may then
invoke operations on the stream control interface to “attach” a source port and
one or more sink ports to the stream. The type of the stream object determines
the permitted configuration of sources and sinks. When an appropriate number
of ports have been attached, the stream may be instructed to create a stream
channel between the group of ports. The mechanism by which this is achieved is
entirely outside CORBA. At present, the stream channel uses either the XTP or
TCP transport protocols depending on the QoS attributes of the stream. The
intention is that different transport protocols can be inserted without impacting
applications.

The port transport interface is implemented as a C++ abstract class that
provides a generic data transfer interface to device programmers. As such, it is
similar in spirit to Washington University’s ACE wrappers [13].

The port control interface is an IDL interface that, in addition to QoS
control, provides a generic binding capability based on an abstract represen-
tation of a transport interface address. Transport interfaces are bound to-
gether by port control operations, invoked by the stream object, of the form
port1->import(port2->export()).

6 FUTURE WORK

Work is required to add QoS support to the implementation. In particular, the
semantics of and mechanisms for QoS renegotiation need to be understood. For
example, signalling services for connection-oriented network technologies such

9

as ATM may not permit in-call QoS renegotiation. This may require the stream
object to tear down and re-establish a transport connection during the lifetime
of the stream. Furthermore, end-to-end QoS guarantees imply the need for
management of end-system resources such as memory and CPU cycles as well
as communication resources such as bandwidth.

Additional work is required to support the concept of smart streams. We
are particularly interested in those streams that perform on-the-fly transforma-
tions of media flows. Experience from previous projects [14] has suggested that
streams should be allowed to flow through multiple, perhaps tens, of modules
between source and sink. The above architecture makes the tacit assumption
that most communication between devices is across a network. In the case of
“stream pipes”, this will not be true. What is needed are efficient ways of passing
multimedia data between devices within an address space and between address
spaces but within a single host (for which no presentation-layer conversions are
required). To this end, we are investigating buffer representations, buffer edit-
ing primitives, and IPC mechanisms that minimise copying and unnecessary
processing.

7 CONCLUSIONS

Just as we regard best-effort operating systems as inadequate for multimedia,
so we regard best effort communication mechanisms as inadequate for contin-
uous media. The implication is that interfaces are required to allow explicit
manipulation of processing and communication resources. Furthermore, since
applications that deal with multimedia are typically long-lived, we think it nec-
essary to be able to control these resources dynamically (ie during the lifetime
of the application). We believe that our stream control interface gives us a
“handle” on the underlying communication resource. Furthermore, the stream
control interface abstracts away from details of the signalling mechanism while
the transport interface abstracts away from details of the data transfer mech-
anism; this gives us flexibility in the implementation of these mechanisms. We
await implementation and operational experience before being able to assess the
benefits of our architecture.

References

[1] ATM Forum, ATM User-Network Interface Specification, Version 3.0, Pren-
tice Hall, Englewood Cliffs, New Jersey, 1993.

[2] A Campbell, G Coulson, D Hutchison, “A Quality of Service Architecture”,
ACM SIGCOMM, Computer Communications Review, June 1994.

10

[3] G Chesson, “XTP/PE Design Considerations”, Proceedings of 13th Con-
ference on Local Computer Networks, October 1988.

[4] G Coulson, GS Blair, N Davies, N Williams, “Extensions to ANSA for
multimedia computing”, Computer Networks and ISDN Systems, No 25,
1992.

[5] A Van Halteren, P Leydekkers, H Korte, “Specification and Realisation of
Stream Interfaces for the TINA-DPE”, Proceedings of TINA’95 Conference,
Melbourne, Australia, February 1995.

[6] H Houh, J Adam, M Ismert, C Lindblad, and DL Tennenhouse, “The
VuNet Desk Area Network: Architecture, Implementation, and Experi-
ence”, IEEE Journal of Selected Areas in Communications, Vol 13, No 4,
May 1995.

[7] HP, IBM and Sun, Multimedia System Services, a response to the Multi-
media System Services Request for Technology from the Interactive Multi-
media Association, June 1993.

[8] International Standards Organisation, Basic Reference Model of Open Dis-
tributed Processing, Part 3: Architecture, ITU/T X.903-ISO 107046-3,
February 1995.

[9] AA Lazar, S Bhonsle, KS Lim, “A Binding Architecture for Multimedia
Networks”, Proceedings of the Multimedia Transport and Teleservices, Vi-
enna, Austria, November 14-15, 1994.

[10] C Nicolaou, “An Architecture for Real-Time Multimedia Communication
Systems”, IEEE Journal of Selected Areas in Communications, Vol 8, No
3, April 1990.

[11] Object Management Group, Common Object Request Broker Architec-
ture and Specification, OMG document 91-12-1, available electronically via
http://www.omg.org, 1991.

[12] O Rees, The ANSA Computational Model, APM document APM.1001.01,
available electronically via http://www.ansa.co.uk/ANSA, January 1994.

[13] D Schmidt, T Harrison, E Al-Shaer, “Object-Oriented Components
for High-speed Network Programming”, USENIX Conference on Object-
Oriented Technologies, Monterey, CA, June 1995.

[14] S Wray, T Glauert, A Hopper, “The Medusa Applications Environment”,
Proceedings of International Conference on Multimedia Computing and
Systems, Boston, MA, USA, May 1994.

11

