
The Implementation of a Distributed Framework
to support ‘Follow Me’ Applications

Pete Steggles, Paul Webster, Andy Harter
The Olivetti and Oracle Research Laboratory,
24a Trumpington Street, Cambridge, England.

fpsteggles,pwebster,aharterg@orl.co.uk

Abstract
Follow me applications support user mobility by

adapting their behaviour to follow a user as he moves
around a building. In order to adapt sensibly to their
current environment, such applications need to know
about the location and status of people and computing
resources. This information needs to be readily acces-
sible and must be up-to-date and accurate. As such a
system involves human interaction, this presents some
real-time constraints.

This paper describes a framework for supporting
such applications. It is based around a 3-tier architec-
ture comprising a centralised database, a middle layer
of parallel servers and a collectionof distributedclients.
Some clients gather information from the environment,
and are long running. Other clients are mobile ap-
plications, which must respond rapidly to environmen-
tal changes. As all these applications are in daily use,
robustness and availability are key additional require-
ments.

The framework uses on-demand loading of CORBA
objects and is sufficiently flexible and scalable to be ap-
plied to a wide variety of other application areas.

The paper also describes some experiences of de-
ploying a substantial CORBA based system. In par-
ticular, it shows how a design evolves due to chang-
ing requirements and problems encountered, and illus-
trates the importance of being able to rapidly prototype
systems prior to deployment in order to adapt to these
changes and to explore alternative solutions.

Keywords: CORBA, Oracle, distributed comput-
ing, 3-tier architecture, mobility

1 Introduction

One of ORL’s primary research interests is support-
ing the mobile user in a home or office environ-

ment. The ultimate goal of this kind of work is to
allow users to move freely around a building with-
out undue degradation in the computing and com-
munications resources available to them. As the
user moves around the building his applications,
multimedia streams and telephone calls will all be
able to come with him, specialising themselves to
their current environment as they follow him.

Such mobile applications require rich informa-
tion about their environment, gathered from a range
of environmental sensors and resource monitors.
Typically they need to know about the location of
people and resources, and a range of machine prop-
erties such as input/output facilities, processing ca-
pability and network connectivity. Up to now this
information has been gathered and stored by ap-
plications using ad-hoc techniques. Though this
is temptingly easy to implement for small exam-
ples, it is hard to maintain and becomes increas-
ingly problematic as new kinds of sensor and re-
source are introduced.

The goal of ORL’s SPIRIT system [1] is to
gather information about the environment and
present it in a form suitable for mobile applica-
tions. Data is gathered from a range of sensor
sources, including the active badge system [2], a
fine-grained location system using ultrasound [3],
monitors of terminal activity, and monitors of CPU,
disk and network activity. These latter monitors run
on each machine at ORL and so represent multi-
ple data collection sources. The resulting data is
combined with static data about the building, peo-
ple and equipment, and is presented in an easily ac-
cessible form suitable for mobile applications.

This system must fulfil the following require-
ments:



� The precise mix of information required by
new mobile applications is hard to predict, so
it should be easy to extend both the data mod-
elled by the system and the queries supported.

� Mobile applications have long periods of in-
activity (while users are stationary) punctu-
ated by short periods of high activity (when
users move). So, while total query throughput
is quite low, individual queries must be per-
formed quickly.

� The data processed by the system ranges from
valuable, static data about people and re-
sources, through periodic machine status up-
dates, to ultrasound location data streams pro-
ducing tens of updates per second. This must
all be collated and presented to applications in
an easy-to-use framework.

� Applications must be able to run indefinitely,
even while the system undergoes continued
development work. Applications should not
be harmed if the machine(s) running the sys-
tem go down, for example while data is
backed up or the software is upgraded. Some
temporary loss of service is acceptable if ma-
chines go down.

� The system must scale up to hundreds of het-
erogeneous machines and mobile users. It
should be easy to write client applications; the
client-specific code required should be mini-
mal and collected data should be presented in
a comprehensible way.

This paper begins with a general overview of the
chosen architecture for the implemented system. It
then discusses the way in which CORBA has been
used to allow users and services to be distributed.
In particular, the mechanism for providing high re-
liability is presented. To support large numbers of
clients, some filtering of the data is required. The
different techniques adopted are discussed, along
with some preliminary figures. Finally, some expe-
riences in building the system and deploying it are
presented.

Figure 1: System overview

2 System Overview

The chosen solution was a three-tier architecture
as shown in Figure 1. The bottom layer uses the
Oracle 7 RDBMS to provide information persis-
tence. The middle tier features a set of distributed
CORBA objects corresponding to real objects in
the environment. The top tier of CORBA clients
represents the sensor systems feeding the database
as well as the mobile applications utilising the
stored information. This architecture provides per-
sistence and the ability to make arbitrary queries
on the database, yet also includes support for a fast
data path that bypasses the bottom tier.

Oracle 7 is a relational database but includes
the key features needed to build an object-oriented
layer over it. These features include table cluster-
ing and stored procedures written in PL/SQL [4]. A
simple object oriented modelling language was de-
signed along with a code generation utility known
as Ouija [5]. This automatically generates the Ora-
cle, CORBA IDL and C++ code necessary to create
a remotely-accessible object model on the database
from a textual description of the data model. The
code generation process is illustrated in Figure 2.

Effectively, Ouija provides an object modelling
language plus a CORBA mapping for PL/SQL.
Objects are represented on the server by sets of
database rows; objects’ operations are represented
by packages of PL/SQL operations. Each object
may have a counterpart in the middle tier which
acts as a proxy, receiving CORBA calls and for-



Figure 2: Ouija code generation

warding them to an appropriate PL/SQL operation
using Oracle’s proprietary API [6]. The Oracle
DDL for the object model, the PL/SQL package
signatures and the middle tier proxy servers are all
generated automatically. The basic CORBA ob-
jects generated by Ouija have no state apart from a
unique object identifier. They can be extended us-
ing any combination of C++ inheritance, for exam-
ple to implement object caching strategies, or by
using IDL inheritance, to provide facilities irrele-
vant to the database.

3 Architecture

3.1 On-demand Loading

Inside the database a persistent object is referred to
by a unique identifier. This is made up of a combi-
nation of a type code, identifying the objects most
derived type, and a unique instance number. This
identifier is a primary key for the database table(s)
containing the data representing that object.

When a persistent object is made available ex-
ternally using CORBA, a special object reference
is manufactured for it. A standard CORBA refer-
ence has the following main components:

1. the repository ID of the most derived type

2. a key uniquely identifying the object within
the ORB

3. a networking component; for IIOP this is
made up of the IP address and port number on
which the ORB is listening

The object reference manufactured for a persis-
tent object sets these components to these values:

1. the repository ID of the persistent object’s
most derived type (as defined by its type code)

2. the persistent object’s unique instance num-
ber, as used within the database

3. a well known IP address and port number for
a special object loader process which provides
the object loading mechanism

Consider Figure 3. When a proxy server starts
up it creates a factory for each of the object types
which it implements. These factories are registered
with the object loader, which maintains a mapping
from the type code to the appropriate factory.

Any method which returns an object reference
will return a manufactured object reference (1).



Figure 3: On-demand object loading

When a method is first invoked on one of these
references (2), it would normally cause an OB-
JECT NOT EXIST exception in the ORB of the
loader as the reference is for a non-existent ob-
ject. The object loader uses our own ORB, om-
niORB2 [7], that has been specially enhanced so
that any invalid object keys can be passed to a
user-defined handler. This routine decodes the key
into its type code and instance number components.
The type code is used to identify the proxy factory
handling the class of objects, which is then sent
a load request that includes the unique object in-
stance number (3).

The CORBA object corresponding to the identi-
fier is looked up in the address space of the proxy
and a new object is created if none is found. The
resulting object reference is returned to the loader
which sends this new object back to the client
(4) using a GIOP LOCATION FORWARD mes-
sage [8]. On receipt of this message, the client’s
ORB transparently retries the operation with the
new address it has been forwarded (5). In addi-
tion, if at any time the forwarded reference should
become invalid, the client’s ORB transparently re-
sorts back to the original object reference. This
causes the object to be reloaded.

Objects within the database are therefore only
allocated an object implementation in one of the
proxies if and when they are first used. This allows
the system to support potentially large numbers of
objects without committing resources in advance.
The proxy is simply a cache of persistent objects;
any state which is to be made persistent must be
stored within the database. This is because the ob-
ject may be unloaded from the proxy at any time.

The object loader may appear to be a bottle-
neck. This is not the case, even though all ob-
ject references need to be sent to it upon creation.
Once the object is created, no further access to the
loader is required. In the resource monitoring sys-
tem the majority of the object references are peri-
odically re-used for database updates by extremely
long running clients; the number of object method
invocations that use the object loader therefore rep-
resent a negligible percentage.

Providing this on-demand loading is the key for
achieving the goals set down in the system require-
ments.

3.2 Robustness

Consider what happens when a proxy crashes. The
object reference of the previously loaded object is
invalid, so client operations on the object will fail.
In this case, the client needs to resort back to the
original persistent identifier. This re-contacts the
object loader and attempts to re-load the object. As
the proxy is down, this will also fail. At this stage,
the clients ORB enters a polling loop whereby it
sleeps and then retries the operation. Eventually,
the proxy will be restarted and the object loader
will cause the object to be loaded in the new proxy.
While this causes a delay in service availability, all
clients continue to run once the proxy service is re-
stored.

3.3 Maintenance

A similar approach provides the ability for system
upgrades to take place without disruption to ex-
isting clients. A new proxy is started in parallel
with the existing one. This registers with the ob-
ject loader so that any new objects that are loaded
will be created using the new proxy. Any existing
clients will continue to use the old proxy. At some
stage, the old proxy can be killed, at which point
any existing object references will become invalid.
At the next method invocation, the client will resort
back to the original persistent ID and cause the ob-
ject to be reloaded from the new proxy without any
perceived interruption to availability.



3.4 Scalability

The proxies are designed to be long running and the
database may contain thousands of objects. Over
time, these will be loaded into the proxy and would
cause the proxy to consume resources even though
only a subset of the objects may ever be in active
use. The problem is knowing when it is safe to dis-
pose of an object in one of the proxies. CORBA
object references may be stored indefinitely and in
a variety of forms including textual off-line refer-
ences. This makes distributed garbage collection
impossible without complex client negotiation. By
using on-demand loading, any object may simply
be disposed of as and when system resources need
reclaiming. Should the object be later referenced,
it will be reloaded on demand from the database.

In the implementation, each object loaded by a
proxy has an associated LRU counter. This is up-
dated whenever an operation is called on the ob-
ject. Limits can be set on the maximum number
of loaded objects in any given proxy, and the LRU
counter will be automatically used to dispose of an
existing object prior to loading the new one.

4 Performance

4.1 Proxy Filtering

When dealing with real time updates, there is insuf-
ficient storage bandwidth for every transaction to
be passed via the database. In these cases, a fast-
path for real-time data is provided as shown by ar-
row (b) in Figure 1. This is used, for example, by a
spatial indexing service which is sent the raw sen-
sor streams directly for subsequent processing. The
results of this processing may then be stored in the
database and used in subsequent database queries.

Real time data may also be stored and retrieved
directly from the proxy servers. This ensures
clients gain the best response time and the most up
to date information. Periodically, the information
stored in the proxy can be stored into the database
to allow its use in more complex resource queries.
In this way, the proxy acts like a write through
cache. Should the proxy crash, any cached values
will be lost. However, the nature of the data means
that once the proxy is restarted, the values that were
lost would be out of date anyway.

Figure 4: Potential areas for parallelism

4.2 Client Filtering

Domain-specific knowledge can be employed to re-
duce the number of updates sent to the proxies.
When dealing with machine monitoring, the types
of information to be sent to the database can be
broadly classified as state information and resource
level information.

State information includes aspects such as the
name of the CD-ROM currently loaded in a given
drive, and changes very infrequently. The database
needs only to be notified of the changes. Simi-
larly, when dealing with a scalar value which rep-
resents some resource level, one can define bands
which correspond to notional states. The database
is only notified when the band of the resource level
changes. For example, we could define CPU load
bands of 0-30%, 30-70%, and 70-100%.

Client filtering has the disadvantage that the
monitored values available will not represent cur-
rent state. Using CORBA, a feedback channel
could easily be added to allow the database to throt-
tle back the number of updates when it is heavily
loaded and increase the rate of update when it is less
loaded.

4.3 Parallelism

In the cases where filtering is not appropriate, the
architecture supports a number of levels of paral-



lelism to allow performance to be improved. Con-
sider Figure 4.

At the most basic level, more disks may be used
for the database and they can be organised into a
RAID structure to allow data to be striped to im-
prove storage bandwidth. Similarly, multiple disk
controllers may be used to provide concurrent disk
accesses.

As each proxy is focused on a particular object
type, each generally only refers to a subset of the
overall data. The Oracle database used in this work
supports a parallel server mode, whereby a num-
ber of database servers refer to the same database.
Proxies can be partitioned amongst the multiple
database instances and requests may then be pro-
cessed in parallel. The on-demand loading mecha-
nism also means that if one database is being par-
ticularly heavily utilised, some of the proxies may
be moved to one of the other databases without dis-
rupting client access.

The architecture supports one more level of par-
allelism. A special redirection proxy may register
with the object loader to receive proxy object load
requests. A number of copies of the same proxy
then register with the redirector. When a request to
load an object is received, the redirector selects one
of the proxies and forwards the request to it. This
selection may be on the basis of machine load or
take other factors into account such as client geo-
graphical location.

4.4 Results

The system is still in the testing stage an has not
been fully deployed on a large population of ma-
chines and users, but initial testing indicates that
performance targets should be achieved.

Currently the database and proxies run on a sin-
gle processor Sun Ultra-1 workstation (167MHz)
with 4 standard 2GB disks.

Using omniORB2 on this machine, the round
trip time to echo a null string is around 500�s for
intra-machine communication and around 700�s
for inter-
machine communications (using 10 MBit/s Ether-
net). A typical Ouija round trip time (client-proxy-
database-proxy-client) is 3ms for intra-machine in-
vocations and about 3.5ms for inter-machine invo-
cations, again under the same conditions.

The real time location system generates events
at about 25Hz. Necessary computation lags these
events by about 40ms. Compared to this figure, the
extra lag of about 1ms introduced by distribution
using CORBA is not significant.

When attempting to support large numbers of
machines, the client side filtering in the monitors
manages to generally remove between 80-99% of
the updates (about 97% on average). The current
system monitors the CPU, motherboard, disks, net-
work cards and processes of lifetime greater than
30 seconds on each machine. This produces, on av-
erage, a figure of about 6 fairly small update trans-
actions per minute per machine. The other users of
database resources are updates of data about spatial
relationships between objects and users, and the in-
tegrated spatial resource queries themselves. These
loads are quite small in comparison to the update
load caused by resource monitoring.

The above figures indicate that it is feasible to
monitor at least two hundred machines and users
while maintaining good query response times using
the current server hardware.

It should be noted that operations are automat-
ically queued in the proxies. This can smooth
out the occasional transaction peaks such as under
‘start of day’ conditions, e.g. after a power cut, but
will result in poor query response times on these
rare occasions.

Finally, it should be noted that the parallel nature
of the overall architecture provides much scope to
leverage additional CPUs, disks and network con-
nections on the server side.

5 Experiences

Using the modelling language, an initial data model
representing the complete ORL system resources
database was written in around 6 months. This was
implemented into a working database in 2 months.
Since then it has undergone two revisions. The
first involved major changes to the complete data
model, but took only around 2 months to change
the model and implementation. The second in-
volved reorganisation of the member functions and
took about 1 month. Clearly, these system changes
could not have been made without the rapid proto-
typing capability provided by the Ouija tool. The



current deployed system features 33 entities, 16 re-
lationships and 680 interface methods, all organ-
ised as 17 modules. This collection is set to grow
as other projects add their own modules to the
database.

5.1 Positive Experiences

From this work, it has shown that middleware does
work and can be used as the basis for high per-
formance, high reliability applications. The sys-
tem has been deployed on a number of machine
architectures, including Solaris 2.4, Linux, DEC
OSF/1, Windows 95 and Windows NT. Long run-
ning monitoring clients on each of these machine
types have been shown to be robust to network
faults and machine crashes. These clients are also
unaffected by routine system maintenance, which
often involves shutting down the proxies and/or
database and restarting them. Since the system was
first started, some clients have run uninterrupted for
months at a time.

Performance is good, though actual figures are
hard to measure as there are so many aspects of
the system which are still undergoing tuning. With
proxy and client filtering in place, the system can
cope with all the monitoring clients and still main-
tain sufficient response to service mobile clients.

In terms of using the information, the use of
CORBA has meant it is very easy to write new
clients. Writing the proxy servers is harder, but
most of the code is automatically generated. Use
of C++ and STL has allowed the source code size to
remain small and allows easy extension of the prox-
ies by overriding the generated code.

5.2 Negative Experiences

Not everything went to plan. The original strat-
egy was for user querying and maintenance ap-
plications to be written using Java. In practice,
this highlighted that none of the currently avail-
able Java ORBs fully implement the IIOP proto-
col [9]. Many did not support heterogeneous archi-
tectures by having broken marshaling code that as-
sumed that the endian of values was fixed. None
of them correctly supported the location forward-
ing messages used to support the on-demand load-
ing. Finally, the Java security feature of only being

able to contact the network address of the machine
which served the application was served from pre-
cludes the use of any of the proxy distribution tech-
niques.

Despite considerable investment in trying to cir-
cumvent these problems, the Java approach had
to be abandoned and CGI was chosen to provide
a portable user-interface to the information in the
database.

The main disadvan-
tage found with using CORBA was the size of the
stub code generated. The stubs generated by om-
niORB2 are amongst the smallest of any available
ORB, but when a typical monitor refers to the stubs
from three or four modules, the stub code still rep-
resents around 97% of the total lines of code. Much
of this code implements the interfaces for querying
the database. With Java no longer being used, most
of this is now redundant, so it is hoped the next re-
vision of the model will reduce the code size some-
what.

6 Conclusions

From our experiences, it is clear that using high
quality CORBA middleware can provide many im-
portant benefits to developers of distributed sys-
tems with very few performance costs or other
limitations. Performance measurements on om-
niORB2 [10, 11] indicate that it has a very small
call overhead and there is little performance gain
by adopting custom communications protocols im-
plemented using low level socket calls. The slight
performance hit is more than offset by the much
richer RPC abstraction provided, which hides many
of the implementation details from client applica-
tion authors. This includes the problems encoun-
tered when dealing with heterogeneous computer
architectures and also the provision of support for
robustness to network or server failures.

While clients are easy to write using CORBA,
the servers are more complex. In this work, this
has been addressed by the use of an automated code
generation tool which allows much of the process
of server construction to be automated. Using this
tool, it is easy to prototype new data models and to
adapt existing ones to reflect changes in system re-
quirements.



Directions where middleware support could be
improved include the provision of fully CORBA
compliant Java ORBs and the problem of the size
of the CORBA stub code generated. In this latter
case, the problem can easily be reduced with the
provision of better linkers which can recognise and
ignore functions that are never called.

Through the use of CORBA middleware a ro-
bust and scalable framework has been produced.
This scalability applies to both the number of ob-
jects which it can support and to the amount of per-
formance which can gained through optimising the
clients and tuning the database. Future work will
focus on how to best approach this process in or-
der to meet the performance requirements of cur-
rent and future applications.

References

[1] SPIRIT home pages. Online.
http://www.orl.co.uk/spirit.

[2] Andy Harter and Andy Hopper. A distributed loca-
tion system for the active office. Technical Report
94–1, Olivetti and Oracle Research Limited, 24a
Trumpington Street, Cambridge, England, 1994.

[3] Andy Ward, Alan Jones, and Andy Hopper. A New
Location Technique for the Active Office. IEEE
Personnel Communications, 4(5):42–47, October
1997.

[4] Oracle Corporation. PL/SQL User’s Guide and
Reference, Release 2.3, 1996.

[5] Ouija overview. Online.
http://www.orl.co.uk/spirit/ouija.html.

[6] Oracle Corporation. Programmer’s Guide to the
Oracle Call Interface, Release 7.3, 1996.

[7] omniORB 2.5.0 user documentation. Online.
http://www.orl.co.uk/omniORB/omniORB.html.

[8] OMG. The Common Object Request Broker: Ar-
chitecture and Specification, Revision 2.0, Up-
dated July 1996.

[9] Interoperability between omniORB2 and Java
ORBs. Online.
http://www.orl.co.uk/omniORB/javaORBs.html.

[10] omniORB performance comparisons. Online.
http://www.orl.co.uk/omniORB/omniORB.html.

[11] CORBA comparison project: Throughput test.
Online.
http://www.kav.cas.cz/�buble/corba/comp/.


