
Preliminary Performance Evaluation of SandiaXTP on ATM at ORL∗

Glenford Mapp

Email: gmapp@cam-orl.co.uk

Olivetti Research Limited
Old Addenbrooke’s Site
24a Trumpington Street

Cambridge
CB2 1QA

UK.

Abstract

With the deployment of high speed networks based on ATM, multimedia systems are quickly becoming
an integral part of distributed computing environments. Protocols which can transport multimedia data
are essential for the success of this new enterprise. XTP is one such protocol. In this paper we examine
the issues involved in porting SandiaXTP to the ORL’s ATM environment and assess its performance using
some preliminary tests.

Keywords: ATM, XTP, SandiaXTP

Motivation

Increasing processing power and faster networks will soon make it possible to build large multimedia envi-
ronments at a reasonable cost. Asynchronous Transfer Mode (ATM) techniques are being used to meet the
temporal demands involved in the transfer of multimedia data, including interactive audio and video.

Olivetti Research Limited (ORL) has a long tradition of research into multimedia systems using high speed
networks. Pandora [Hopper90], a multimedia platform developed in the late Eighties, explored the creation
of a multimedia environment using a networked-attached peripheral called a Pandora’s Box. The networking
for this environment was based on the Cambridge Fast Ring [Hopper88].

Recently, ORL has developed a new network architecture based on the “exploded workstation model” in which
multimedia peripherals such as cameras and audio devices are attached directly to the high speed network
[Wray94]. We have constructed a number of such devices along with an in-house 100 Mbits/sec ATM network.
These devices include an Audio Brick for handling audio, a Video Brick which is essentially an ATM camera,
a Video Tile which is a network framestore with an LCD display and a Disk Brick which is a storage system
built using RAID technology. See Figure 1.

The hardware is based on an ATM interface card called an ATMos board. The ATMos board essentially
consists of an ARM processor, 8 MBytes of memory, an ATM network interface and an interface known as the
ATOMIC interface. Special cards are added to the ATMos board via the ATOMIC interface to make a network
device. These devices run a lightweight, message-based operating system called ATMos which provides a
modular software environment to build modules which control and manage them [French95].

Several multimedia applications with different transport requirements have been developed for this environment.
Interactive applications such as video-conferencing can use unreliable connections in which lost or corrupt frames
are tolerated in order to maintain low latency. However, for sophisticated applications such as face and voice
recognition [Samaria93], [Walker95], which examine multimedia data looking for certain characteristics, the
reliability of the data is more important than the latency of the connection. In certain situations it is better
∗Appeared in PROMS ’95, Second Workshop on Protocols for Multimedia Systems, “Mozart on Multimedia Highways”

,Salzburg, Austria. October 9-12, 1995

1



ON AIR

BBC TV 

RAID 

SYSTEMAUDIO 

BOX 
FRAMESTORE 

ATM NETWORK 

PROCESSOR 

BANK 

Figure 1: ATM Devices

that there is no retransmission as the next new item of data, e.g. a video frame, will be transmitted shortly
and retransmitting old data only introduces jitter.

These different transport requirements must be simultaneously satisfied by these devices. In a conventional
computing environment, these different quality-of-service or qos requirements would need different transport
protocols, e.g. TCP and UDP. Using one transport protocol which can satisfy a wide spectrum of qos require-
ments may represent a better approach. The Xpress Transfer Protocol or XTP [Strayer92] can provide
such functionality. XTP is managed by an organisation called the XTP Forum and a public domain version
called SandiaXTP is being developed at Sandia National Laboratories in Livermore, California. In this paper,
the port of SandiaXTP to the ORL ATM environment is described and preliminary performance evaluation
results are given.

XTP: A brief overview

The current specification, XTP 4.0, is being implemented by several members of the XTP Forum. A more
detailed view of the protocol is given in [XTP Forum95].

A connection is identified by a 64-bit key and 64-bit sequence numbers are used to represent bytes in transit.
XTP does not define an addressing scheme of its own but supports several commonly used addressing formats
including IP. The system also uses the IP checksum algorithm but does not use a pseudo header in the checksum
calculation. There is a sort field in the XTP header which indicates the priority of a given connection. This
allows low latency data, such as audio, to be processed before other less demanding media. Multicast connections
are also supported.

XTP has other fields to specify quality of service requirements. There are mechanisms to indicate whether
user data should be checksummed and whether corrupt or lost messages should be retransmitted. These may
be specified on a per packet basis. The frequency of acknowledgements is under the user’s control and both
go-back-n and selective repeat retransmission techniques are supported.

Rate-based and windowing flow control mechanisms are employed on each connection. The window size can
be configured by the user at the start of a connection. There are traffic parameters with which the user can
specify several qos requirements including the maximum size of data segments that can be transmitted as well
as the inward and outward average and burst rates. For ATM networks that provide qos guarantees, it may be

2



possible to map XTP traffic parameters directly onto the underlying network qos parameters.

SandiaXTP

SandiaXTP is implemented using C++. The code is divided into two sections. The first is the Meta-Transport
Library or MTL which contains generic protocol functions such as FIFO management routines, checksumming
as well as transmitting and receiving packets from the underlying data service. There is an abstract data
delivery class from which classes for running over real networks are derived. The code supports data delivery
classes for running over UDP and raw IP. A more detailed layout of the code is described in [Strayer94].

The SandiaXTP section of the code implements the XTP protocol. The protocol is run in a separate user space
process known as the XTP daemon or xtpd. Each XTP connection is represented by an instance of a context
class and one context manager class manages all the XTP connections on a given host. SandiaXTP does not
currently support streams of different priorities or multicast connections.

Users interact with xtpd via a shared message queue built on top of the local IPC mechanism. There are also
shared buffers between xtpd and the user for receiving and sending data. When the user wishes to send data, it
is first copied into the shared send buffer before it is sent on the network. The user interface supports a number
of operations including configuring, registering and binding a context, after which the user can connect to other
destinations or listen for new connections. The configuration call allows the user to set several qos parameters
on a connection including the window size, the frequency of acknowledgements and the retransmission policy.
There are separate calls to get and set the traffic parameters.

Packet management is done using an XTPpacket class which is derived from a generic packet class in the MTL
Library. In SandiaXTP there is a global packet queue which is used to send and receive data. Sending data
onto the network is a synchronous operation and the packet is returned to the packet pool when sending is
finished.

ORL’s ATM environment

ORL began building its ATM network in late 1992 and so predates some of the ATM standards developed by
the ATM Forum. In particular, the system uses a local meta-signalling mechanism, developed at the Computer
Laboratory, University of Cambridge [McAuley90], to setup and manage ATM connections. There are plans
to move to the ATM Forum signalling standards in the near future.

As well as directly-attached devices, DEC Alpha workstations currently running OSF 2.0 are also connected to
the ATM network. These workstations have locally developed network interface cards (NICs) of which there are
two versions. The older Yes NIC card, provides the basic service of transmission and reception of ATM cells.
All per cell handling, including segmentation and reassembly, has to be done by the workstation. Recently, a
new NIC card called the TCAT card has been developed which off loads these ATM protocol functions onto
an on-board ARM processor. Presently, both cards are in active service.

The ATM switches at ORL are also based on the ATMos card. There are 4-port and 8-port switches. The
4-port switches operate at 200,000 cells/sec while the 8-port version switches cells at 1Mcells/sec. Topology
determination as well as support for mobile devices are being explored using these switches.

The switches as well as ATM peripherals run the ATMos operating system. This is a single address space
operating system, so an image may contain several processes. Currently, there is no support for dynamically
starting a new process. User processes may have one of two priorities. ATMos uses message passing as its
basic communication paradigm and sending a message to a process of higher priority will result in the current
process being suspended and the higher priority process being scheduled. There is a native threads package
but the POSIX threads package is also supported. ATMos supports the concept of an active queue where
the processing of ATMos messages is executed in the sender’s context with interrupts disabled so there is no
context switch involved.

Porting SandiaXTP

Porting SandiaXTP to the ORL ATM environment can be divided into two major tasks. The first is porting
the ATM environment to the SandiaXTP code on the 64-bit Alphas running OSF and the second is porting

3



SandiaXTP, which was written for a UNIX environment, to ATMos. In both cases, we wanted to keep the code
needed to be changed to a minimum. We detail some problems below.

Porting the ATM environment to SandiaXTP

This basically involved implementing a new data delivery service for ATM. The generic data delivery service
defined in the MTL library proved insufficient to support a connection-oriented service such as ATM. So we
added some calls to do so. We believe that there should be two generic network classes one for connectionless
systems and the other for connection-oriented networks.

It was decided to use one ATM connection between two hosts. We are aware that this allows the multiplexing
of different streams on the same ATM connection [Tennenhouse90] but since the ATM network does not
presently support the relevant qos parameters and SandiaXTP is yet to support stream priorities, there was
little to be gained by insisting on a one-to-one mapping between a context and ATM connections. This can be
readily modified once the necessary functionality is present to make use of it.

As previously stated, the SandiaXTP code assumes a totally connectionless model of operation. The data
delivery service is given the packet as well as the full destination address. Since we did not want to change the
semantics of the send operation, it was necessary to dynamically map a given destination address to an ATM
connection in the ATM data delivery service. Performance was improved by caching the last ATM connection
on which data was sent. The effect of this was that SandiaXTP was completely unaware of the ATM connections
being made on its behalf. The advantage of this approach is that it was possible to timeout and remove ATM
connections when they were unused for a given length of time. Connections were remade as required resulting
in only active connections were supported by the ATM layer.

Porting SandiaXTP to ATMos

The port of SandiaXTP to ATMos presented some major challenges. Firstly, the shared message queue between
the XTP daemon and the user was implemented as discrete, synchronous ATMos messages where a user would
send and immediately wait for a reply. We implemented routines which resembled the shared memory system
on Unix. This was not too difficult since ATMos is a single address system, where pointers can be passed freely.
Some functionality associated with Unix is not provided under ATMos including signals, getting a user id,
finding out if a client process had terminated, etc.

The XTP daemon in ATMos continually runs in a loop waiting for ATMos messages from various sources,
including the network, which indicates incoming messages for remote connections, the timer and local clients.
This structure prohibits the use of blocking in other parts of the system for any length of time hence the ATM
data delivery service in ATMos had to be written in an asynchronous manner to handle different events.

The only exception to this rule is when the XTP daemon attempts to send to a destination for the first
time. Since SandiaXTP assumes a synchronous send, the connection to the destination host must be made
synchronously. This is fine once the connection can be made without any trouble. If not all the active streams
will be affected.

Improving the code

SandiaXTP uses a dual copy architecture in which data is copied first to the shared send buffer. There is a
further copy in the UNIX network driver which is given pointers to the header and data. In ATMos, this second
copy must be done in the ATM network class for XTP since the ATM driver does not support scatter-gather
operations. This requirement allowed us to implement a fast checksum-and-copy routine in assembler which
improved the speed of the code.

The other major improvement was using an active queue to recycle receive buffers without a context switch.
When the ATM networking code receives a buffer for SandiaXTP, it executes the function for a receive ATMos
message on the active queue of the XTP daemon. This function takes the receive buffer and places it in a local
packet receive queue and then attaches an empty buffer to the receive message which is used by the ATM driver
to get more data. Hence no context switches are involved in getting data from the network but an additional
message must be sent to notify the XTP daemon that something has been received from the network. This
mechanism operates well on a heavily loaded network since several receive packets will be in the local packet

4



0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70

M
bi

ts
/s

Block_Size (KB)

XTP: Network size 2K : Data Sent 100 Mbytes

ACK-Un
ACK-Rel

Blast_Mode_Un

Figure 2: Throughput vs Send Buffer Size

queue before the XTP daemon actually runs.

Testing

Our main interest was to find out how fast the system could perform in two modes of operations. The first is
synchronously; i.e., the sender sends a buffer and blocks until it is acknowledged by the remote XTP daemon
whereupon the sender continues sending. There are two context switches involved in sending data: one from
the sender to the XTP daemon and the other from the XTP daemon back to the sender. It was interesting to
keep the total number of bytes transmitted the same but the size of the buffer that the sender gives the XTP
daemon was varied from 512 bytes to 64 Kbytes. We were also interested in measuring the cost of reliability
so the above process was done twice: the first with totally reliable send semantics and the other with totally
unreliable send semantics. In the results, these are denoted by ACK-Rel and ACK-Un respectively.

The other mode that was thought to be interesting is what is called the blast mode. Again the total amount
of data is kept the same but the data is sent in short bursts with a defined wait period between bursts. The
sender does not wait for acknowledgements. Data is sent using totally unreliable semantics. In the results, this
is denoted by Blast Mode Un.

It should be stressed that these experiments were geared towards measuring maximum throughput. Hence the
results obtained were in the absence of any detectable networks errors which required retransmission for reliable
XTP connections. In addition, window sizes were set to twice the send buffer size in the synchronous mode
and much higher in the blast mode to avoid any delays due to a small window size.

We also wanted to see the effect of changing the network buffer size. So two network buffer sizes were chosen:
2Kbytes and 4Kbytes. The total amount of data sent on each occasion was 100 Mbytes. In burst mode, this was
divided into bursts of 1 Mbytes long and a waiting period of 100 milliseconds between bursts. Two parameters,
throughput and CPU usage, were measured as the send buffer size was varied. The throughput is measured
from one end to another by the applications. The results are given for ATM peripherals running ATMos.

5



0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70

M
bi

ts
/s

Block_Size (KB)

XTP: Network size 4K : Data Sent 100 Mbytes

ACK-Un
ACK-Rel

Blast_Mode_Un

Figure 3: Throughput vs Send Buffer Size

Results

Figure 2 shows the throughput as the send buffer size is increased using a network size of 2Kbytes. There is
a wide variation in throughput. There is low throughput for small packets in the synchronous mode. This
indicates that there may be a lot of overhead involved in communicating between the XTP daemon and the
user. This overhead involves the two context switches, which were mentioned earlier, an ATMos message being
sent and the reply obtained, finding the relevant context as well as formatting and decoding the commands for
the XTP daemon to execute.

For a given block size, the difference between the ACK-Un and the ACK-Rel represents the cost of reliability
in terms of reduced throughput. This cost appears to increase as the send buffer size increases. When data
is being sent unreliably, it is simply copied into the network buffer. When data is being sent reliably, the fast
checksum-and-copy routine is employed. The former is quicker than the latter. However, the point to note
is that the difference at the network buffer size is important since for bigger send buffers the data must be
segmented into the network buffers so for large send buffers the difference at a given size will be proportional
to the number of network buffers that are required to be sent.

In addition, for a given send block size, the difference between ACK-Un and Blast Mode Un can be used as
an indirect measure the end-to-end latency as it represents the cost, in terms of throughput, of the need to
wait for acknowledgements from the other side before proceeding. This measure was about 2.45 Mbits/sec for
512-byte blocks and between 1Kbyte and 4Kbyte blocks was fairly constant at around 4.3 Mbits/s, dropping
steady afterwards to 1.05 Mbits/s for 64Kbyte blocks. This indicates that the end-to-end latency is fairly high
for small blocks when compared to large blocks. This may be due to the fact that large send blocks will benefit
more from the improved ability to receive a large number of network packets without doing a context switch.

Figure 3 shows the results for the same tests but this time 4K network buffer sizes was used. The graph shows
that there is some improvement in throughput but the shapes are similar. For 2Kbyte network buffers, the
maximum throughput for ACK-Rel was 13.97 Mbits/s, for ACK-Un it was 15.4 Mbits/s and for Blast Mode Un
it was 16.45 Mbits/s. With 4Kbyte buffers the figures were 17.37 Mbits/s, 19.59 Mbits/s and 21.5 Mbits/s
respectively. There was no increase in the throughput for small packets.

Figure 4 shows the amount of CPU usage measured at the transmitter and the receiver for reliable and unreliable
synchronous transmission. In blast mode, instantaneous CPU usage proved too difficult to measure accurately.
For the transmitter, CPU usage climbs fairly gradually to total CPU usage. For the receiver however, the

6



70

75

80

85

90

95

100

0 10 20 30 40 50 60 70

C
P

U
_U

sa
ge

 (
%

)

Block_Size (KB)

XTP: Network size 2K : Data Sent 100 Mbytes

ACK-Un-CPU-T
ACK-Un-CPU-R
ACK-Rel-CPU-T
ACK-Rel-CPU-R

Figure 4: CPU Usage vs Send Buffer Size using 2KB Network Buffers

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70

C
P

U
_U

sa
ge

 (
%

)

Block_Size (KB)

XTP: Network size 4K : Data Sent 100 Mbytes

ACK-Un-CPU-T
ACK-Un-CPU-R
ACK-Rel-CPU-T
ACK-Rel-CPU-R

Figure 5: CPU Usage vs Send Buffer Size using 4KB Network Buffers

7



movement towards total CPU usage is different. In particular, there appears to be a sharp increase in CPU
usage when the send buffer size becomes equal to the network buffer size. This occurs for both reliable and
unreliable transmission. We have no firm explanation for this and investigations are continuing. Figure 5 shows
the results for 4Kbyte network buffer sizes, the results are similar although the CPU usage is generally lower.
This apparent mismatch between transmitters and receivers highlights the need to have proper qos support
such as those in XTP to prevent receivers being swamped by one or more transmitters.

Conclusions

Some of the observations above are due to how the XTP protocol is implemented in SandiaXTP rather than the
protocol itself. For large blocks, good throughput is achieved, while low throughput and high latency have been
found for small blocks. In terms of multimedia, it is necessary to address this issue since audio uses relatively
small blocks and has very strict temporal requirements. The results show that SandiaXTP would only support
a small number of high quality audio channels.

There has been some discussion about doing a kernel version of the SandiaXTP code for Unix systems. We
believe that this will be useful and would probably increase performance. However, in the ATMos environment,
where the core system is made up of a set of processes rather than a monolithic entity, we believe that there
may be greater benefit in trying to run most or all of the XTP protocol in the process space of the application.
This can be done by using threads and implementing the protocol as a user space library. We would also like
to explore issues of Application Layer Framing (ALF) and Integrated Layer Processing (ILP) [Clark90] in this
context. We are presently examining these issues.

Acknowledgements

Special thanks to Martin Brown of ORL for writing the low level ATMos device drivers for the network devices,
Gray Girling and Ian Wilson for their work on ATMos and Tim Strayer for his hard work on SandiaXTP.

References

[Clark90] D.D. Clark and D. Tennenhouse. Architectural Considerations for a New Generation of Pro-
tocols. In Proceedings of ACM SIGCOMM ’90, pages 200–208, September 1990.

[French95] L.J. French, I.D. Wilson, and D.P Gilmurray. ATMos III System Manual. Olivetti Research
Limited, 1995. Edited by C.G. Girling.

[Hopper88] A. Hopper and R Needham. The Cambridge Fast Ring Networking System. IEEE Transactions
on Computers, 37(10), October 1988.

[Hopper90] A. Hopper. Pandora – an experimental system for multimedia applications. ACM Operating
System Review, April 1990.

[McAuley90] D.R. McAuley. Protocol Design for high speed networks. Technical report, Computer Labo-
ratory, University of Cambridge, January 1990.

[Samaria93] F. Samaria and F. Fallside. Automated Face Identification Using Hidden Markov Models.
In International Conference on Advanced Mechatronics. The Japan Society of Mechanical
Engineers, 1993.

[Strayer92] W.T. Strayer, B.J. Dempsey, and A. C. Weaver. XTP: The Xpress Transfer Protocol. Addison
and Wesley, 1992.

[Strayer94] T. Strayer, G. Simon, and R. E. Cline Jr. An Object-Oriented Implementation of the Xpress
Transfer Protocol. XTP Forum Research Affiliate Annual Report, pages 53–66, 1994.

[Tennenhouse90] D. Tennenhouse. Layered Multiplexing Considered Harmful. In Protocols for High-Speed
Networks. Elsevier Publishers, BV, 1990.

8



[Walker95] R. Walker. An Application Framework for Speech Recognition in Medusa. Technical report,
University of Cambridge, 1995. Computer Science Tripos Pt II.

[Wray94] S. Wray, T. Glauert, and A. Hopper. The Medusa Applications Environment. In International
Conference on Multimedia Computing and Systems, May 1994.

[XTP Forum95] XTP Forum. Xpress Transport Protocol Specification. XTP Forum, March 1995. Rev 4.0.

9


