
Writing Tcl programs in the
Medusa Applications Environment

Frank Stajano

Olivetti Research Limited Phone: (+ 44 223) 34.30.00
24a, Trumpington Street, Fax: (+44 223) 31.35.42
Cambridge CB2 1QA, England (U.K.) E-mail: fstajano@cam-orl.co.uk

Abstract
Medusa is an applications environment for distributed multimedia which has been de-
signed and developed at the Olivetti Research Laboratory in Cambridge, U.K. The soft-
ware building blocks, or modules, are written in C++, while the applications that create
networks of modules and make useful things with them are written in Tcl/Tk/Tcl-DP.

The Medusa system

The backbone of the Medusa
system is an ATM network
which, by virtue of its high
capacity and low latency, is
capable of shipping multiple
simultaneous audio and video
streams between the various
peripherals and workstations.
The multimedia devices such
as cameras, microphones and
speakers are connected directly
to the network rather than be-
ing physically attached to a
specific workstation. This pro-
vides uniform and
unconstrained scalability to a
multistream setup: to equip a
workstation with multiple
cameras, so that the viewer at
the other end can select be-
tween a talking head and sev-
eral wide-angle views of the of-

fice, all that is required is to
plug more cameras into the
network wiring. The network
becomes the important data
bus of the system, taking over
the workstation�s bus. And

looking through a remote cam-
era does not have any extra
performance cost with respect
to looking through a local cam-
era.

A Medusa workstation equipped with multiple cameras, speakers and microphones.
Note the ATM network switches in the lower right, just under the video bricks.

The main features of Medusa are modularity
and the ability to process the raw data. The
software architecture is such that every de-
vice in the system � source, sink or unit of
processing � is represented by a software
�module�; modules can be connected together
and data will flow through them. The behav-
iour of the system can be dynamically changed
by inserting or removing modules from these
pipelines. From a software point of view, mod-
ules are self-contained entities that can be
written independently of each other. A video
compression module may be written entirely
in software and then later replaced by another
module that instead drives a hardware com-
pression card. The system never uses any
video overlay techniques: all the multimedia
data actually goes through the modules; this
enables us to include analysers and proces-
sors in the pipelines. One interesting example
of this is an application where the user can
position sound in a quadraphonic space by
waving a hand in front of a camera whose
output is piped into a �virtual mouse� image
analysis module.

This laboratory has developed numerous
�ATM Direct Peripherals� such as cameras,
video tiles, audio AD/DA cards, and disk
arrays; these devices are built as small inde-
pendent networkable computers, all based on
the same general purpose board which con-
tains a network interface and an ARM proc-
essor running our in-house micro-kernel,
ATMos. Modules, being the software compo-
nents that can handle the raw multimedia data,
generally live in close contact with the hard-
ware they control; they are written in C++,
sometimes with an inner assembler core for
the most time-critical sections like handling
audio samples. Every ATM Direct Peripheral
runs some ATMos processes that contain
Medusa modules and uniformly expose the

functionality of the device to the rest of the
Medusa system.

Medusa is also integrated with the Active
Badge� personnel and equipment location
system at the ORL laboratory. One can ask
the system to make a connection to a specific
user; the system will then find the location of
the user, find out what Medusa devices are
currently available at that location, and make
the appropriate connections to these devices.
No manual database updates are required if
equipment is moved from one office to an-
other.

The integration of Medusa and Tcl

For obvious efficiency reasons we do not use
Tcl to handle the multimedia data; instead we
use it as a configuration language to control
the way in which modules should be con-
nected together. Modules are not written in
Tcl, but whole applications, which use the
modules as prepackaged components, are.

The Medusa modules have been made acces-
sible to Tcl using the same object-oriented
approach that Tk itself uses for its X widgets.
Consider a standard Tk widget: its name is
also a command that can be used to control
the behaviour of the widget. The same thing
happens with Medusa modules: after creation,
the module name becomes a new Tcl com-
mand that accepts subcommands. These
subcommands, or methods, allow the pro-
grammer to configure the module, connect it
to another module, query its state and so on.

Every module has a set of attributes (internal
variables) which can be read and written with
the getattributes and setattributes methods.
Changing an attribute may have the side ef-
fect of modifying the behaviour of a module,

as in the case of the frame_rate attribute of a
camera module. The attributes can be changed
by the module itself, and can indeed even be
read-only, as in the case of the level attribute
of a VU-meter module. Using the
watchattributes method it is possible to reg-
ister a Tcl callback that will be invoked when-
ever the value of an attribute changes, much
in the same way as can be done with the Tcl
command trace on ordinary variables. This
allows a graphical Tk-based VU-meter to fol-
low in real time the variations reported by the
corresponding module without having to poll
the module to periodically retrieve the value
being monitored. Since modules can also
model external devices like a remote control,
the watchattributes mechanism also provides
a way to activate Tcl procedures using input
devices that are not tied or even related to the
workstation. �Buttons�, �sliders� and other
controllers are no longer limited to on-screen
widgets that have to be clicked upon with the
mouse: they can be real-world objects that
combine flexible software-defined semantics
with a physical, tactile feel.

To provide higher efficiency all the module
methods support an asynchronous mode of
operation, where the program requests an ac-
tion and the command returns immediately,
long before the action (which goes on on its
own) has completed. This as opposed to the
synchronous case where a command only re-
turns after it has run to completion and can
report whether it succeeded or failed. To make
this asynchronous mechanism useful, every
module method accepts the -success and -fail-
ure options, which specify Tcl callback com-
mands to be evaluated when the main com-
mand has reached completion. For these com-
mands where a return value is meaningful, the
returned value is appended to the callback
command before evaluation.

Medusa applications

The full power of Tcl and Tk is available to
write complete multimedia applications using
the modules as building blocks. So far two
major applications have been written: Sticks
And Boxes, a test tool that gives visual access
to the modules, and MDphone, a multistream
videophone system.

Sticks And Boxes

This application provides a graphical user in-
terface to the task of creating modules and
plugging them together. The name of the pro-
gram refers to the visual appearance of the
interface elements, which are implemented as
Tk canvas items: modules are shown as boxes
with nozzles as their data ports, while data
connections are shown as sticks joining the
boxes. A browser lets you examine all the
module factories currently available anywhere
on the network to find the ones that will cre-
ate the desired modules. A few mouse clicks
are sufficient to instantiate and connect a mi-
crophone module here and a speaker module
next door, effectively creating a simple audio
link between two offices.

Once a module has been created, clicking on it
produces a panel exposing the attributes, which
can then be inspected and modified interac-
tively even while the multimedia data is flow-
ing. Sticks And Boxes has no embedded knowl-
edge about the various modules, but it will still
correctly expose the attributes for every mod-
ule that it comes across, presenting an inter-
face that is appropriate to the type of the at-
tribute being shown. Boolean attributes are dis-
played as checkbuttons, enumerations are dis-
played as a set of radio buttons, integers within
a certain range (such as a volume control) are
displayed as sliders and so on. For each mod-

ule, Sticks builds a control panel tailored to
the particular attributes of the module. This is
achieved using a special read-only text attribute
that every module has, which lists all the at-
tributes of the module together with their type,
default value, read/write status and so on: every
module is thus self-describing and tools such
as Sticks maintain their generality as new mod-
ules are written.

MDphone

The Medusa video phone system rejects the
conventional constraint of using a single cam-
era and microphone per multimedia
workstation. Standard Medusa-equipped
workstations feature an X11 display, four hi-
fi directional microphones, four hi-fi speak-
ers and four digital colour cameras. One of
the cameras provides the �talking head� view
when the user is sitting at the computer; an-
other camera, vertically mounted on a wall
stand, focuses on a free area of the desk where

the user can display a document or a book; the
other cameras give a wide-angle view of the
whole room from different points of view. The
same goes for the microphones which, by vir-
tue of their positioning, can pick up high qual-
ity speech even when the user is not in front of
the computer. This encourages a wide-band
communication, where the user can walk
across the room and draw up a diagram at the
whiteboard while still talking to the corre-
spondent at the other end.

The system has been implemented as a dis-
tributed application using Tcl-DP. Every
phone is a separate process, running on its us-
er�s computer. There is a central server, con-
ceptually equivalent to the phone exchange,
to which all the phones are connected. A list
of the currently connected phones is broad-
cast by the server whenever there is a change.
The dp_atclose callbacks are widely used to
ensure that the sudden death of a process will
not confuse the remaining running processes.

Sticks And Boxes shows a pipeline of modules sending pictures from a network camera to an X11 window. The modules with the
thick border are factories. The factory browser window and an attribute panel window are also visible.

The user interface tries to present all those
streams in an organic and meaningful arrange-
ment, avoiding an excessive proliferation of
controls. In view of the extension to a multi-
way conference system, all the views from the
same user have been grouped in a single
toplevel window with many subframes. All the
views are shown in small frames and one of
them � selectable by the user � is replicated
in a larger frame. There are plans to make this
selection automatic if desired by using an
image processing module that would recog-
nise which camera the user is facing; this is
already being done for the audio, where the
system dynamically switches to the micro-
phone with the loudest signal. Moving the
composite window on the desktop actually
pans the sound in the quadraphonic image, so
that in a multi-way conference the audio po-
sitioning of the participants is coherent with
the positioning of their respective windows.

Advantages and disadvantages of
using Tcl in such a project

Using Tcl has been a great plus for this project,
especially when compared to the original so-
lution of adopting an ad-hoc configuration
language to plumb modules together. With
respect to that alternative, Tcl has given us a

much greater flexibility and the expressive
power of a full programming language.

The main drawback has been the difficulty of
managing large programs in a programming
environment that provides no static consist-
ency checks. A consistent coding style and
the use of self-contained autoloading librar-
ies may help in keeping the problem under
control, but explicit checking tools would be
very welcome.

Some efficiency problems were experienced,
but they were largely offset by the conven-
ience with which a running prototype could
be produced. Ease of prototyping has been a
great asset in experimenting with new ideas
and has proved to be the right approach for a
research environment, so much that Tcl/Tk has
rapidly spread to other unrelated projects in
our lab.

Acknowledgements

I would like to thank Stuart Wray, who de-
signed and implemented the Tcl interface to
Medusa, and the many colleagues at Olivetti
Research who provided helpful feedback on
the usability and desirable functionalities of the
Medusa applications I wrote.

Frank Stajano obtained his
degree in electronic

engineering in 1991 from
the university of Rome,
Italy. He joined Olivetti

Research Limited in late
1992, where he has been
working since as the Tcl

applications programmer
for the Medusa project. His

interests include Walt
Disney comics and human-

computer interfaces.

A two-way multistream conversation using MDphone

