
Handling Audio and Video Streams in a Distributed Environment

Alan Jones†, Andrew Hopper†‡

† Olivetti Research Ltd.
24A Trumpington Street
Cambridge CB2 1QA

United Kingdom

‡ University of Cambridge Computer Laboratory
New Museums Site

Pembroke Street
Cambridge CB2 3QG

United Kingdom

Abstract

Handling audio and video in a digital environment
requires timely delivery of data. This paper describes the
principles adopted in the design of the Pandora networked
multi-media system. They attempt to give the user the best
possible service while dealing with error and overload
conditions.

Pandora uses a sub-system to handle the multi-media
peripherals. It uses transputers and associated Occam code
to implement the time critical functions. Stream imple-
mentation is based on self-contained segments of data con-
taining information for delivery, synchronisation and error
recovery. Decoupling buffers are used to allow concurrent
operation of multiple processing elements. Clawback buff-
ers are used to resynchronise streams at their destinations
with minimum latency.

The system has proved robust in normal use, under over-
load, and in the presence of errors. It has been in use for a
number of years.

The principles involved in this design are now being used
in the development of two complementary systems. One
approach explodes Pandora by having the camera, micro-
phone, speaker and display as independent units linked
only by the LAN. The other approach integrates these
devices as peripheral cards in a powerful workstation.

1.0 Introduction

The Pandora project demonstrates the practicability of
bringing real-time audio and video traffic onto the desktop
via a general purpose ATM network [Hopper90]. The data
is digitised at source, transmitted using standard protocols
[McAuley90], and returned to analog form at the eventual
destinations. The Pandora’s box [King92] provides all the
real-time functions and the ATM network connection,
while the applications run under the X Window System on
a stock workstation. About 50 Pandora boxes have been
built since they were first deployed in February 1990, and
many continue in use around the offices of Olivetti
Research Laboratory, the University of Cambridge Com-
puter Laboratory and Engineering Department, and Uni-
versity College London.

1.1 Pandora Hardware

The Pandora’s Box is a hardware sub-system that can be
controlled by a workstation over a 10Mbit serial line (an
Inmos Link [Inmos89]).

Audio
Video

Video

Control
Link

ATM Network

Pandora’s
Box

Figure 1.1 Pandora Connections

It intercepts the analog video output from the workstation,
and can insert areas of active video from its own
framestore under the control of a mask. It can also digitise
video from a camera, and it can receive and transmit
streams of data over a dedicated ATM network connection
[Hopper88]. An audio board within Pandora’s box can
accept microphone or telephone input, and can drive loud-
speakers or telephone handsets. The box is controlled by
commands from the host workstation that instruct it where
to send video from the local camera, where video windows
are to be placed, which parts of them are visible, etc. The
host states what it wants done with the streams, and they
then run continuously until stopped.

There are five boards in the box as shown in figure 1.2.

capture board Digitises camera input

mixer board Assembles video into a framestore and
mixes it with host output

audio board Transports audio streams to/from 8kHz
codec

server board Acts as a data switch between the other
boards

network board Interface to ATM Network

Each of the boards contains an Inmos Transputer
[Inmos89] as a programmable embedded controller. Each
Transputer runs common Pandora communication and
synchronisation software written in the programming lan-
guage Occam 2 [Inmos88]. This software communicates
over Inmos links, with some high bandwidth data paths
provided by memory mapped fifos. The mesh of control
links is shown in figure 1.3. Many early pandora’s were
built without the network card, the server transputer han-
dling the network interface hardware directly. Other early

Capture
Board

Network
Board

Server
Board

Audio
Board

Mixer
Board

Figure 1.2 Data Transport Between Transputers

Video

100 Mbit/s Fifo 100 Mbit/s Fifo

Video

20 Mbit/s Link

20 Mbit/s Link
Audio

Mixed traffic

configurations have included the use of fifos for the trans-
port of audio to the server, a SCSI interface for the host
link to the audio transputer, and SCSI hardware on the
server transputer for local disk storage of streams..

Almost every process in the Pandora system can receive
commands and generatereports:

• Commands are used to set up the operations per-
formed by each process running in the transputer, usu-
ally with reference to a stream number that identifies a
particular audio or video data stream. To set data
flowing, it is necessary to allocate a new stream num-
ber, inform each process from the destination back to
the source what is to be done to that stream, and then
command the source to begin producing data. The
data will then flow indefinitely without any further
interaction with the host.

• Reports are collected from all main processes, and
multiplexed together. They are usually in the form of
text messages generated when Pandora is overloaded,
when some error has been detected, when a command
has requested some information, or on occasion just to
say that everything is all right. Reports are sent to the
host computer for display or logging. They are occa-
sionally intercepted by other pandora processes for
the purpose of extracting information that is not time-
critical.

Audio
Transputer

Figure 1.3 Use of the Transputer Links for Control

Network
Transputer

Capture
Transputer

Mixer
Transputer

Server
Transputer

Reports

Commands

Commands

Host Link

Reports

Reports

Commands

Synchronisation
FifoFifo

Synchronisation

Commands and Reports

2.0 Principles

One of the design goals of Pandora was to allow many
video windows to be active on the screen at once. Their
accompanying audio streams are mixed by software in
real-time on the destination transputer. No limit is placed
on the number of incoming streams that can be mixed,
save that imposed by system bandwidths and CPU
resources.

Several desirable attributes of the final system were identi-
fied in the form of principles which were used to guide the
design. They have different implementation costs and
importance in different parts of the system, and should be
considered wherever they might be relevant. The princi-
ples are described here under the headings: priorities,
splitting, and timing.

2.1 Priorities

The first four principles deal with priorities between
streams, and are mostly used where there is a choice of
data streams to process next. By default, we share
resources evenly, but sometimes find that better results can
be obtained when some bias is given in the directions sug-
gested by these priorities.

Principle 1: Outgoing Priority

The Pandora software is designed to be operated under
conditions of slight overload - users are observed to
increase the load on such systems until they just begin to
break. To accommodate this very natural behaviour, it is
desirable that the user whose box is overloaded is the one
who first observes the degradation in quality so that the
correct action is more likely to be taken. This leads us to a
principle that guides the implementation:

Under overload, incoming data streams should be
degraded before outgoing data streams.

This principle applies amongst Pandora’s Boxes, but is
reversed for repositories, where the incoming data streams
should be recorded as accurately as possible, even if that
means degrading streams that are currently being played
out. It is a simple matter to play a stream again, but record-
ing one again could present greater difficulties.

Principle 2: Audio Priority

When the system becomes overloaded, the users ought to
be able to communicate as well as possible so that they
can make sense of what is happening and put it right. In
most cases, overload conditions cause loss of data on some
streams. It is preferable to lose some or all of the video
data before the audio is degraded. Efficient communica-
tion is difficult with video only or with a noisy audio
stream. Again, a principle can be defined:

Under overload, video data streams should be
degraded before audio data streams.

Principle 3: New Stream Priority

In a multi-stream system the user does not have to shut
down one stream before opening another. For instance, a
video call may come in while several other streams are
being displayed (local video, a television program etc.).
Although this may overload the system, the user should be
allowed to open the new stream, observe the degradation,
and decide if it is worth shutting something down. To
make this more convenient for the user, we define another
principle:

Under overload, data streams that have been open
the longest should be degraded first.

In the example of the unexpected video call, the new
streams will be given priority, so the user may not have to
bother closing the other streams unless they are a nuisance
in some other way. When the video call is terminated, the
other streams will return to full bandwidth and no data
loss.

Principle 4: Command priority

In a real-time system, it is tempting to deal with the time-
critical data streams first, and process new commands in
otherwise idle time. However, if the time-critical tasks
exceed the system capacity, then it is important that com-
mands are still passed to, and executed by, their destina-
tion processes, otherwise it might not be possible to bring
the system back to normal.

It should not be possible for stream processing to
prevent the transport and execution of commands.

2.2 Splitting

Principle 5: Upstream independence

The data streams from Pandora are often copied to several
destinations (stream splitting). It is desirable that the bad
performance of one destination due to overload should not
affect the recipients of other copies of the data. We imple-
ment this, at the points where the data is duplicated, by not
sending a segment if the next process down the line to a
particular destination is not ready. It is then the destina-
tion’s responsibility to detect (by segment sequence num-
ber) and recover from this. Here is the principle:

Downstream performance bottlenecks should not
affect streams that have been split off earlier.

Principle 6: Continuity during reconfiguration

Consider the case where we are recording a stream when
another destination is added to it. It would be annoying if
there were a break in the recorded data when this hap-

pened, so the software is designed to allow the plumbing
to change while the data flows through undisturbed.

Splitting a stream to an extra destination, or clos-
ing down one of several destinations, should not
affect the other copies of that stream.

2.3 Timing

Principle 7: Minimise delay

Audio performance is critical to the perceived quality of a
system. In our case, the most challenging application was
the hands-free video conversation, since there is a muted
echo back from the far end of any conversation. If this
echo is delayed more than a few tens of milliseconds, the
effect is quite irritating. It is also irritating if the video lags
appreciably behind the audio. In the real world, we are
used to seeing events slightly before we hear them.

Delays in the data streams must be kept to a mini-
mum at all stages.

Principle 8: Local adaptation

It is difficult to predict the bandwidths and critical times
within a system where many different combinations of
audio, video and data streams could be in use. To comply
with some of the above principles, decisions have to be
made about how much data to buffer, what time to start
throwing data away etc. A further principle guided the
decision code:

If possible, timing and buffering decisions should
be adaptive to current, locally observed conditions.

This design style also allowed the code to take advantage
of hardware and software improvements without laborious
retuning, and thus encouraged experimentation.

3.0 Implementation

In the design of the real-time software, we found that the
most severe constraints were imposed by the audio
streams. The ambience of a two-way live conversation is
very sensitive to audio delays in the 10 to 20ms range,
whereas video has more of a supporting role and can stand
delays in the 40 to 80ms range before conversation
becomes impaired. Furthermore, errors in the continuity of
an audio stream are much more noticeable than in a video
stream.

3.1 Overview of the Inmos Transputer

The transputer is designed to allow very low overhead
context switches. This is achieved by having no cache,
memory mapping or registers, but direct hardware imple-
mentation of process structures, scheduling and interpro-
cess communication mechanisms. The result is a CPU that

can, if carefully programmed, do useful amounts of work
even if context switches are taking place at rates greater
than 100kHz. The CPU also includes a timer register with
a resolution of one microsecond that can be used to sched-
ule tasks very precisely.

Interprocess communication is by rendezvous between the
sender and receiver of some data on a unidirectional trans-
puterchannel. The hardware scheduler will automatically
block the first of the processes (sender or receiver) to reach
the transfer (output or input respectively) on the channel,
and bring it back onto the run queue when the rendezvous
is complete. Processes can be waiting for inputs, including
timer expressions, on several channels at once (see the
ALT construct in Occam 2). The alternatives in the clause
can be prioritised so that important channels (such as those
receiving commands) cannot be ignored even if other
alternatives are always ready.

Each transputer includes four high speed (5, 10 or
20Mbit/s) serial lines called Links. These can be con-
nected as point-to-point communication channels between
transputers. They use DMA to transfer data from the mem-
ory of one transputer to that of another under the control of
the same channel read/write commands that are used for
on-chip rendezvous, and with similar synchronisation.
Links are supported directly by the hardware, so that the
time that elapses from the presentation of data by the send-
ing process to the resumption of the receiving process on
another transputer can be as little as a few microseconds.

The transputer has an event pin which acts like another
link input, allowing the CPU to be interrupted according to
external conditions. A high priority process waiting
(descheduled) for the event pin can be running in less than
1 microsecond.

3.2 Audio Format

Audio is sampled by a standard 8-bitµ-law codec at 125µs
intervals. It is handled in blocks of 16 samples, represent-
ing 2ms of audio. For the purposes of transmission outside
the audio board, a number of these blocks are grouped
together with a header to form a pandora segment (figure
3.1).

Each field in the header is 32 bits in length. The first five
fields, up to and including the length, are common to both
audio and video segment formats.The segment header
completely describes the audio samples that follow. It con-
tains in encoded form the format used, sampling rate,
sequence number and carries a timestamp with 64µs reso-
lution derived from the Transputer clock as close as possi-
ble to the data source.

The timestamps are relative to the last time the Pandora’s
Box was booted, and are not drift corrected. They are not
necessary for the operation of any of the Pandora’s Box

code, but are included for fault diagnosis, and for the con-
venience of other systems working with Pandora such as
the Repository. They will be synchronised to a global time
standard: GPS time [Nato91], as soon as the time service
becomes available on our ATM network. This will release
us from the present requirement that streams to be syn-
chronised during playback must have been recorded on the
same repository, where their timestamp offsets are
recorded.

The number of blocks in each outgoing segment can be
varied. We usually run with 2 blocks per segment (princi-
ple 7), but can alter this dynamically if the recipient cannot
handle the arrival rate (perhaps using 12 blocks = 24ms) or
if we want a particularly low latency (1 block = 2ms).
Incoming segments of any mixture of sizes are accepted.

A major use of this facility is when streams are stored on a
repository. As they are no longer live, there is no require-
ment for low latency, and we would like to reduce the disk
space taken up by headers. This is done as a separate oper-
ation after the stream has been recorded, by splitting out
the 2ms blocks, and merging them to form 40ms long seg-
ments containing 320 bytes of data plus a new 36 byte
header. These can be played back directly to any Pandora
box.

3.3 Video Format

A stream of video comes from an arbitrary rectangle of the
field of view of the camera. The capture transputer can
read several streams from different overlapping rectangles.

Video segments do not have to contain a whole frame. A
frame can be broken up into a number of rectangular seg-
ments, so the segment header contains a count of the num-
ber of segments in the frame, the number of this segment
within the frame, and enough information to place this
segment in the correct position (figure 3.2).We have a vari-

Length

Version ID
Sequence Number

Time Stamp
Type e.g. audio/video

Sampling Rate
Format

Compression

data
data
data
data

data
data
data
data

Length

Header

Block

Block

Common
Segment
Header

Audio
Specific
Header

16 samples
2ms Audio

16 samples
2ms Audio

Figure 3.1 Pandora Segment Format for Audio

able number of fields after the compression type field so
that compression parameters for any scheme can be
accommodated. Compression schemes and parameters can
be changed from one segment to the next to give the fast-
est possible response to user requirements.

3.4 Server Data Transport

On the Server Transputer, through which all Pandora data
streams in a box must pass, it is clear that unnecessary
copying of data is to be avoided. It is possible to copy data
straight from its source (fifo or link) to its destination
using a single block move instruction. However, this
would not work well for the following reasons:

•In the case where there are multiple destinations
(e.g video to be displayed both on the local screen
and sent out over the network) we would have to
copy into local memory (evaluation registers or on-
chip memory) in order to perform the duplication.

•Synchronisation of such transfers would break the
stream independence principle. A delay waiting for
the destination for stream A to be ready would hold
up stream B coming from the same input device,
even if it is travelling to a different destination and
could proceed immediately.

For these reasons, we chose to copy once into memory,
and once out for each output device that wants the stream.
The input processes obtain empty buffers from an alloca-
tor process in advance, fill them as the data become avail-
able, and then transmit the buffer index numbers through
the rest of the system. Figure 3.3 shows the main datapaths
through the Server Transputer.

Length

Version ID
Sequence Number

Time Stamp
Type e.g. audio/video

Frame Number
Segments

Segment Number

y Offset
Pixel Format

Compression Type
Argument length

data
data
data
data

x Offset

Header

Data

Common
Segment
Header

Video
Specific
Header

Figure 3.2 Pandora Segment Format for Video

x Width
Start Line y

Lines y
Data Length

Each input device handler is responsible for receiving pan-
dora segments encoded over links, fifo’s, software genera-
tors, SCSI interface or the ATM ring network. Similarly,
the output device handlers are responsible for different
classes of transmission hardware. Each handler is a sepa-
rate Occam process that runs for all time, and handles
many simultaneous streams of buffer indices. Each of
these top level processes are addressable objects that can
be configured or interrogated from the host, network or
internal Pandora software via their command and report
channels.

It should be noted that Occam processes are built by
sequential or parallel composition of simpler Occam pro-
cesses, right down to the individual assignment or I/O pro-
cesses that are the statements of the Occam language.
These diagrams can only show certain levels of the pro-
cess structure. Looked at in detail, many of these processes
will be found to contain several long-lived Occam pro-
cesses inside, and to interact with other service processes
such as command and report routers. Some of these inter-
nal processes do not terminate, while others have lifetimes
measured in microseconds.

Figure 3.4 shows a little more detail of a typical datapath
from the audio input handler to the audio output, complete
with the Occam channels that are used to interact with the
allocator process.

The buffer memory is shared by all the processes that may
use it. The allocator keeps a reference count of the number
of processes using each buffer, and so must be informed
whenever:

•A process has finished with a buffer without pass-
ing it on (to decrement the reference count).

switch
and

buffering

Figure 3.3 Overview of Data Paths in the Server

audio
in

Input device handlers

network
in

disk
in

test
in

Output device handlers

audio
out

network
out

disk
out

test
out

video
out

video
in

Segment buffer indices

•A buffer descriptor has been sent to more than one
other process (to increment the reference count).

The common case of a process passing on a descriptor to
just one other process does not require a change in the ref-
erence count.

If there are no buffers available, then the allocator will not
listen for any requests, and the requesting processes will
be descheduled by the usual channel synchronisation
mechanism until the allocator is ready to receive again.
The allocator reports this (serious) fault on its report chan-
nel so that it can be logged.

All the separate streams of data through the Pandora Box
are labelled by stream numbers allocated by the interface
code [Wray89]. Incoming streams from the network carry
the stream number allocated by the destination box in their
VCIs (Virtual Circuit Identifiers used by the ATM net-
work), and streams within pandora pass the stream number
in an extra field preceding the segment header.

Any process which handles a variety of streams in differ-
ing manners will use the stream number to index private
tables that describe the operations to be performed on the
segments of each stream (e.g which processes to send
them to, what outgoing VCI to use etc.) and hold the state
of that stream (e.g. number of dropped segments, muting
level etc.). The tables are updated without disturbing the
flows of data when commands are received from the inter-
face code, (principle 6). A command will be received as
soon as the process has finished dealing with any current
segment, so that there is no possibility of the table chang-
ing during the processing of a segment, nor of high data
rates locking out commands (principle 4).

3.5 Audio Data Transport and Buffer Allocation

The 125µs samples from the codec are written continu-
ously into a byte-wide fifo. Every 2ms, the Transputer
event pin is signalled, and the code notes that another 16
bytes (a block) are in the fifo (figure 3.5).

allocator

Figure 3.4 Example Buffer Management Channels

audio
in

Reference

switch decoupling
buffer

audio
out

count
changesRequests

Segment
descriptors

Segment
descriptors

Segment
descriptors

Replies
Reference
count
changes

When sufficient 2ms blocks have accumulated to justify
the overhead of a Pandora segment header, the server
writer process is ordered by the block handler to transmit
them to the server board. The server writer is implemented
as a separate process to allow some concurrency in case
the Server is busy, or in case the CPU is needed urgently
for other block handler tasks such as audio mixing.

The data transmitted over the links are placed in transputer
memory, and then the appropriate process waiting for
input from that link will be set runnable by the transputer
scheduler. If a process writes to a link before the previous
message has been received by the recipient, then the writer
will be blocked until the first communication is complete.
This mechanism is implemented by the transputer hard-
ware, and is used for interprocess synchronisation
throughout Pandora. A context switch can be accom-
plished in less than 1µs, so we are not imposing too much
of an overhead when we add another process into the
chain.

3.6 Video Data Transport

Rectangular blocks are read from a video framestore at
intervals determined by the requested frame rates of the
streams. Each stream can be from different, possibly over-
lapping, sections of the store. The frame rates are
expressed as a fraction of full 25Hz frame rate. For exam-
ple, 2/5 gives an average of 10 frames per second. The
reading of the blocks is carefully timed so that the data
from the camera being written continuously on a second
port does not update any part of a block while it is being
read.

Large blocks may be sent as several pandora segments,
each of which is despatched as soon as the data is ready,
reducing latencies and buffering requirements. The seg-
ment headers are sent over the transputer link to the server,
while the data goes via a fifo to a compression subsystem.

audio
segments

from
server

transputer

audio
segments

to
server

transputer

server
writer

process

Figure 3.5 Movement of Data on the Audio Transputer

CODEC

FIFO

FIFO block
handler
process

LINK

LINK

2ms event
block instructions

Each segment of video data is reduced further into several
slices of a few lines each for transmission through the
compression subsystem. After each slice has been written
to the fifo, a small description containing the number of
lines and their length after compression is sent over a link
to the server transputer. Each line of video data has a one
byte compression header added, which is used by the com-
pression hardware to determine what sub-sampling and
DPCM coding should be applied. When the last slice has
been sent, a tail marker is sent over the link. A header slice
description precedes the first slice of a segment to describe
what compression algorithm has been selected, what
stream number the segment is for, and contains the full
segment header.

The slice descriptions on the link can be considered to be a
model of the data that is in transit through the fifo’s and
compression hardware. We buffer a few slice description
in software to allow several slices to be in transit at a time
and so increase concurrency across the link. This is espe-
cially useful because our compression hardware is pipe-
lined and does not drain automatically. In order to flush the
last slice of data from the pipeline without waiting for the
next segment to arrive, we send a few dummy lines after
each video segment. The server transputer must not
attempt to read these dummy lines until some other data
has pushed them through the compression engine, so one
of the buffers on the link is special. It is designed to
always hold back one slice description at all times, with
any tail or head descriptions that follow, until another slice
description is read. In this way, the buffer chain models the
slice of data that will always be held in the compression
pipeline, but still allows for several slices to be in transit
when necessary.

The batches of video data are assembled into a segment
buffer on the server transputer as they arrive, and its index
is launched into the rest of the system as soon as the tail
marker is read from the link.

The route through the decompression hardware from the
server transputer to the mixer transputer is similar to the
compression route. The decompression hardware expands
the DPCM coded video, and can also interpolate both hor-
izontally and vertically. A problem arises when we inter-
leave segments from different video streams, as the
vertical interpolation for the first line of a segment needs
to know what the last line of the previous segment con-
tained. We had three choices:

1) The interpolation hardware keeps a copy of the last line
processed on each stream - too costly.

2) Each segment contains a copy of the required lines from
preceding segments - ties segment format too tightly to the
particular hardware in use.

3) Maintain a software cache of the last line processed on
each stream, and reload the interpolation hardware when-
ever we interleave segments. This is what we chose to do.

This is just one example where the requirement of multiple
low latency streams has an impact on the design of hard-
ware components. Many commercial components and sys-
tems are being designed with single stream operation in
mind, with little thought being given to the requirements
of multi-stream environments such as Pandora.

On the mixer board, the video data is copied from the fifo
into a waiting memory buffer. We do not display any part
of a video frame until all of the segments have been
received, otherwise the effect of a tear can be seen when
part of the image is moving parallel to a segment bound-
ary. Once we have all the data for a frame, it is copied into
the display frame buffer as soon as possible, care being
taken to avoid the scan of the display controller, as this can
also lead to tears. The ability to schedule processes with
precisions of a few microseconds allows us to make full
use of our knowledge of the display scan, copying frames
both in front of and behind the scan if necessary.

3.7 Buffer Queues

There are two sorts of buffer queue used in the Pandora
audio paths,decoupling buffers between processes or
hardware units that do not run synchronously, andclaw-
back buffers used to enable streams with jitter to be syn-
chronised with the local clock (figure 3.5). Each buffer
queue is implemented by a separate Occam process.

3.7.1 Decoupling buffers

These are generic circular buffers, holding a FIFO queue
of references to pandora segments. In addition to an input

Decoupling
Buffer

Decoupling
Buffer

Figure 3.5 Movement of Audio Data between Boxes

CODEC

Audio
Input

Switch Network
Output

Decoupling
Buffer

Network
Input

Switch Audio
Output

Block
Handler

Clawback
Buffer

Server
Writer

CODEC

Audio Transputer

Server Transputer

Audio Transputer

Server Transputer

Transputer LINK

Transputer LINK

ATM Network

A B

and an output channel for segment references, they also
respond to commands and generate reports. Some are used
for audio only, while others are buffering segments of all
types.

If the buffer is full, the process will not be listening on its
input channel, so another process which attempts to send
on that channel will be blocked until an item has been read
from the buffer. If such behaviour is undesirable (principle
5), a form of the decoupling buffer with aready channel
for the input can be used (figure 3.6).

After an item has been accepted on the input, if there are
still more free slots, then the ready channel signals TRUE
immediately. If there are no more free slots, then it signals
FALSE immediately, and TRUE later when a slot becomes
free. The input process can then choose to throw away the
data rather than block waiting for the buffer to become
free.

It is important that the ready channel always sends a reply
immediately. Suppose that it simply signalled TRUE when
it was ready to receive input again - a conventional
acknowledgement. Then it is possible that the decoupling
process would be descheduled between receiving some
data and sending the acknowledgement, and the upstream
input process would not know whether this was due to the
buffer being full (which would lead to blocking if it tried
to send more), or just scheduling (in which case it can
safely send more). To avoid this, the upstream process will
block on input from the ready channel until it gets a reply
one way or the other before continuing, and the decou-
pling buffer will send an immediate reply after every input
indicating whether or not it has more free buffers (i.e.
whether it is READY). After a FALSE reply, the input
process will not send any more data on its output to the
decoupling buffer, but will listen on the ready channel in
addition to its other inputs. When it subsequently receives
a TRUE reply on the ready channel, it sets a flag indicating
that the corresponding output can be sent data again, and
ceases to listen on the ready channel.

The decoupling buffers should not normally become full
(principle 7). They are inserted to allow some concurrency
between processes or independent hardware units. If they
do become full, then it means that 1) the system is over-
loaded, and 2) the scheduling is such that the input pro-
cesses are handling more segments than the output
processes. In Pandora, we arrange that the output pro-

Figure 3.6 The use of a Ready Channel

Output
Process

Input Decoupling
Buffer
Process

Input
Process Ready

Output

cesses have priority, and that the input processes run with-
out data loss as far as the decoupling buffers, at which
point they throw away data if the buffers are full. If the
transputer has too few CPU cycles to handle the data, then
the output processes will take priority, and the input side
will be held up, causing back pressure that will allow data
to be thrown away closer to the source.

The decoupling buffers on the server transputer are placed
downstream of the switch so that the poor performance of
one output device does not affect streams to other output
devices (principle 5). If an output device falls so far
behind the input that its decoupling buffer fills, then the
switch simply omits to send it any more segments (effec-
tively discarding traffic for that output only) until the
buffer has free slots again. The switch records how many
segments have been dropped in this way, and periodically
sends reports while the condition persists.

The first limit that tends to be exceeded in normal opera-
tion is the bandwidth of the interface to the network. We
see this as slow response from the network output process
(figure 3.5, mark B), leading to an excess of data held in
the decoupling buffer (figure 3.5, mark A) before it. We
limit the size of this buffer so that the video delays do not
become aggravating to the user, and buffer the audio sepa-
rately so that it can be given priority (principle 2). See fig-
ure 3.7.

The decoupling buffers are attached to command and
report channels in the same way as all other Pandora pro-
cesses. If a stream degrades, a command can be used to
request a report from the buffer process, that will include
its present length (indicating where any delay is being
introduced), size limit and pointer positions (indicating
how active it is). It is also possible to specify a new buffer
size dynamically, and the buffer will adjust to this size
without any loss of data. During debugging, this can be
used to see if a buffer has become full because it is too
small to cope with the jitter in the input and output pro-
cesses, or whether there is a consistent overproduction of
data which will fill a buffer of any size.

Figure 3.7 Splitting out the Audio Data

Network
Output

Switch

Audio
Decoupling

Buffer
Splitter

Video
Decoupling

Buffer

3.7.2 Clawback buffers

These buffers are designed to remove the effects of drift
and jitter, and should be placed downstream of any com-
ponents that introduce variable delays. In practice, this
means as close to the destination as possible.

The clawback buffers must operate on individual streams,
so there is one for each audio stream arriving at the desti-
nation (figure 3.8).

They also tend to have different lengths according to the
amount of jitter being removed. So that they can share a
common pool of memory dynamically, they are imple-
mented by linked lists rather than circular buffers.

A 2ms block is read from the output end of each buffer
every 2ms by the audio mixing code. If the clawback
buffer is empty at this time, then it is not included in the
mixing. This is equivalent to inserting 2ms of zero ampli-
tude samples into the stream. When the samples do even-
tually arrive, the buffer will fill to one block more than it
would have done, and will hopefully have enough data
buffered in future to cover the time waiting for the next
late block. If the source clock is slower than the destina-
tion clock, then the buffer will always have a tendency to
empty, and this mechanism will insert occasional silences
appropriately. If the effect of the zero samples were found
to be annoying to the listener, then more sophisticated
audio processing could be used to bridge the gap in a gen-
tler way.

When blocks arrive, they are placed straight into the claw-
back buffer, which need have no limit on its size. In Pan-
dora, we have a total of four seconds of clawback
buffering shared between all active streams. With our
ATM network, there is no point in buffering more than
about 120ms of audio for a single stream, as this will only
be exceeded by a serious failure somewhere else in the
system combined with overenthusiastic buffering. There-

Figure 3.8 Placement of Clawback Buffers

Audio
Mixer

FIFO
to

Codec

FIFO
from

Server

Clawback
Buffer

Clawback
Buffer

Clawback
Buffer

Clawback
Buffer

Clawback
Buffer4 or 12ms

Segments

2ms
Blocks

2ms
Blocks

2ms
Blocks

125µs
Samples

fore we throw away samples if the buffer is above its limit
when they arrive. We do not expect the jitter correction to
approach the limit even when the network is severely
loaded, and the process reports this condition so that the
cause can be investigated.

Now we have a buffer that will increase its contents in the
presence of jitter, until it holds just enough data to cope
with the worst peaks. The problem is, the extra delay
introduced is mildly annoying to the users of live two-way
streams, as they will hear their own echoes as an unnatu-
rally long reverberations, and the conversation can be
hampered if one speaker does not realise that another has
already started talking. There is not much that can be done
to reduce the delay while the jitter continues, but if condi-
tions improve, perhaps because the users have closed
down other streams that were causing the jitter, we would
like to reduce the delays back to minimum levels (princi-
ple 7) without having to be informed by higher level soft-
ware (principle 8). This is where the clawback mechanism
helps.

The first step in reducing the contents of a buffer is to
monitor how close it has come to emptying completely.
Therefore, every time a block is added, the clawback
mechanism checks the count of blocks in the buffer
against a lower target (our default is 4ms). If it is above
this target level, a count is incremented. When this count
exceeds some value (4096 in our implementation, repre-
senting 8 seconds), the current incoming block is dropped
to reduce the delay. This mechanism allows the delay for
jitter correction to be reduced at the rate of 2ms every 8s,
or 1 in 4000; this is called the Clawback Rate. With our
network, the jitter is usually around 2ms, sometimes rising
to 20ms if there are large blocks of video being transmitted
through the same network interface. It will take about one
minute to adjust to the change from 20ms jitter correction
to 4ms. If this correction were faster, there would be a dan-
ger that it would be applied during occasional short inter-
vals of low jitter, and lead to unnecessary degradation of
the audio stream when the jitter increased again.

The only remaining problem is clock drift where the
source clock is faster than the destination clock. This is
covered by the same clawback mechanism provided that
the clawback rate is greater than the maximum clock drift
rate. Since our clocks are controlled by quartz oscillators
with a 1 in 105 drift rate, our 1 in 4000 clawback rate is
sufficient to satisfy this condition.

If we could not limit the buffering (and hence the maxi-
mum jitter) across our network connections to such a small
level, then a multi-rate clawback would have to be used.
This would involve keeping a running minimum of the
buffer contents, and removing blocks at a frequency pro-
portional to that minimum. A suitable algorithm would be
to remove a block and reset the counts whenever the prod-

uct (minimum contents)× (blocks since last reset) exceeds
some level (expressed in block seconds). 20 block seconds
would be suitable for our environment. Then if the mini-
mum contents were 10ms, we would be removing a 2ms
block every 2000 blocks, or 4 seconds. If the minimum
contents were 50ms, then we would remove a 2ms block
every 400 blocks, or 0.8 seconds. The block seconds level
represents a time constant for the exponential decay of the
jitter correction delay. The time to halve the delay when
the jitter source is removed is roughly 0.7 times the level
that has been set for the product, which would be about 14
seconds for our example.

The time saved when a clawback buffer is found to be
empty is used to deactivate the stream, removing the claw-
back buffer altogether. If a block arrives for a stream that
does not have a buffer, a new clawback buffer will be
inserted, and mixing will resume. In this way, the audio
code does not have to be informed of the creation or dele-
tion of streams; it just adapts to the incoming data.

The clawback mechanism is an extension of the elastic
buffer approach used in many systems [Swinehart83], but
allows the buffer limit to be much greater as the buffering
will not be used except when absolutely necessary. The
efficacy of this approach was demonstrated when Pandora
was used in trials of a new country-wide acandemic com-
puter network, SuperJanet. Unmodified Pandora’s Boxes
communicated audio and video successfully under the
high jitter conditions of a connection from Cambridge to
London involving several networks and protocol conver-
sions.

To avoid problems with clock drift, some systems dump
data from their buffers when some critical amount is
reached, and attempt to match the clock rates by receiver
clock adjustment [Want88, Ades86]. Such adjustments
would not scale well to multi-way audio, and buffers could
remain occupied when not strictly necessary.

3.8 Error Recovery

If an error occurs, such as a decoupling buffer becoming
full or data becoming corrupted, the general rule is that the
current segment is thrown away. Processes keep local
counts of how many segments have been thrown away,
and send messages on the report channel as soon as possi-
ble subject to a minimum period between reports for any
particular sort of error. These messages are brought
together on the host computer, and written to a log file. If a
stream is corrupted because of data loss, it is possible to
look in the log file to find out whether the data is being lost
within Pandora, and if so, which process is losing it and
why.

The original intention was that software on the host com-
puter would interpret these events, and take action appro-

priate to the applications involved by increasing
compression, decreasing frame rates, or even asking the
user to shut something down. As it turned out, this was
unnecessary, as the user of the overloaded machine notices
the effects, and tends to shut down unwanted applications
without further prompting.

As all pandora segments carry sequence numbers, the des-
tination can detect that segments are missing as soon as a
later one arrives. Action appropriate to the type of data can
then be taken.

In the case of audio, the recovery from lost data should not
create unpleasant sound effects. Single byte samples
dropped occasionally were undetectable except during
solo violin pieces, and then only because they took place
at constant intervals. Dropping occasional 2ms blocks was
noticeable in most music, but rarely in speech. If 2ms
blocks are repeatedly dropped, the speech sounds “grav-
elly”.

When audio samples have to be inserted, occasionally
repeating the last byte sample is again virtually undetect-
able. Replaying the last 2ms block occasionally is per-
fectly acceptable for speech, and replaying 2ms blocks
frequently gives a garbled effect. We replay the last 2ms
block, and try to ensure that it does not happen frequently.

4.0 Audio Performance

4.1 Applications

The audio streams described in this paper have been used
in a variety of applications. Live bi-directional streams are
used in video phone and multi-way video call systems.
Live one-way streams are used for shout (one destination)
and tannoy (multiple destinations) commands. Finally,
stored audio streams are used for video recording, play-
back, and videomail applications.

Sometimes the boxes are all on the same network, but
more often, some will be on different networks joined by
bridges, or distributed over an ATM backbone network.
The audio streams have proved to be quite robust in the
face of these changes in the network environment. The
main problem recently has been a failure of lip synchroni-
sation (early audio, late video) when problems with our
experimental networks caused high loss rates for the video
segments. In most instances, the audio is uncorrupted, so
the participants can describe the situation and work
through possible causes (principle 2).

4.2 Throughput

The T425 transputer used on the audio board can mix five
audio streams in the straightforward case, but only three if
we have jitter correction, muting (see next section), an out-

going stream and the interface code running at the same
time.

The 20Mbit/s link to the server transputer is not a limiting
factor; it would be capable of taking 100 audio streams if
we could process them. The context switching rate is prob-
ably around 5kHz, and is not a problem for the transputer.

In the network code, the overheads for processing a block
of data must be kept fairly low since audio segments are
small blocks, and should not be batched together as this
would increase latency (principle 7). Our network code
introduces more latency than necessary because segment
transmissions are not interleaved. Thus video segments
can hold up following audio segments, introducing up to
20ms of jitter in a stream.

When other streams are quiet, the best one-way trip time
from microphone input of one box to speaker output of
another box over the network was 8ms. 4ms of this can be
accounted for in the bufferingto the codec, and 2ms in the
bufferingfrom the codec.

4.3 Muting

When audio is played hands-free at both ends of a conver-
sation, there is a potential problem with feedback. Care-
fully positioned loudspeakers and microphones with flat
frequency responses can avoid howl-round so long as the
loop gain is kept down (that is, microphone gains and
speaker volumes are not too high); alternatively, a fre-
quency shifter can be used. However, the residual echo is
still distracting, especially if it is appreciably delayed, and
the problem becomes worse if several offices are all linked
in a conference.

Echo cancellation would be possible in some environ-
ments by measuring the frequency (or impulse) response
of the room, predicting the received echo given the loud-
speaker outputs, and subtracting this from the microphone
input. However, the audio transputer does not have suffi-
cient spare CPU cycles to perform this in real-time, so a
simpler muting scheme was implemented. This scheme
can also be used for audio handled by a general purpose
workstation provided the timing constraints of a few milli-
seconds can be met.

The data stream to the loudspeaker is monitored for sam-
ples exceeding a threshold level. When the level is
exceeded, the data stream from the microphone is muted
in two stages, and returned to full volume after a sufficient
time for any room reverberations to die away. The return
to full volume only occurs after the loudspeaker output has
remained below the threshold for sufficient time. The
threshold, muting factors and delay times are all dynami-
cally alterable, but our default values are shown in figure
4.1.

The muting is performed by lookup tables that directly
scale the 8-bitµ-law samples as they are copied from the
codec fifo to the server link.

The two-stage muting was chosen because the steps are
not so high that audible clicks are heard when it is applied.
The 2ms granularity was chosen for convenience as this is
the smallest unit of data that we move around in the audio
code. The 22ms at a factor of 20% was chosen so that the
sounds from the speaker will have travelled about 22 feet
before we return to the 50% factor. We then remain at 50%
while the last reverberations die away. We do not have any
problem with delay in starting the muting, as we are
detecting the threshold before the samples have been sent
to the codec input fifo, and are muting them after they
have been received by the codec output fifo. Thus we have
at least 4ms in which to react.

Even with the muting, the echo is still detectable, but at a
more acceptable volume. We still have to keep the laten-
cies as low as possible (50ms round-trip at most) so that
the echo seems natural. If it comes say 1/2 second late,
then it becomes much more noticeable.

5.0 Conclusion

5.1 Related Work

There have been many papers describing the setup and
control of multimedia streams over a variety of networks.
See for example [IEEE90] for a good collection of papers.

Some systems implement real-time voice over synchro-
nous channels [Leung90], while others run receiving video
codecs at a higher rate than the transmitting codecs [Cas-
ner90] to ensure minimum delay. Systems with adaptive
buffering for jitter and clock drift compensation have been
proposed, based upon an analysis of recent packet delay
times, but these systems often require synchronised
clocks, carefully selected parameters or end-to-end coop-
eration to work successfully. See [Naylor82] for a good
analysis of such systems. In contrast, clawback buffers
only require the setting of one parameter (related to the

Figure 4.1 Muting Function

22ms 22ms

2ms2ms

100%

50%

20%

Mute factor

Time

Threshold
exceeded
during
this
period

rate at which jitter conditions change), operate purely at
the destination with no knowledge of the sources, and do
not require timestamps.

5.2 Future Work

It has been very encouraging that a minimalist approach
has continued to operate well while our networking infra-
structure and applications have grown. The next imple-
mentation (project Medusa) encompasses a wider range of
operating environments including Pandora, peripherals
attached individually to the network, and application spe-
cific software processes running on workstations. While
the timing and control of streams will be rather different,
particularly if the peripherals are distributed over a large
ATM internet, the principles employed in Pandora will
still be applicable.

The main difference in Medusa is that the Pandora boards
communicating over a network of links and ATM rings
have been replaced by Medusa boards communicating
over an ATM switch fabric so that we have anexploded
Pandora. The software running in the ATM switches per-
forms some of the tasks of the Pandora server and network
processes, and the same design principles apply. The Pan-
dora boxes themselves have been upgraded to operate over
100Mbit/s ATM links instead of the ATM ring networks,
and no retuning was found to be necessary.

The Camera and Audio boards for Medusa operate in a
similar fashion to the Pandora boards. The display equip-
ment however is more varied. While we will use Pandora’s
boxes and special purpose video tablets for display, the
majority of video will be displayed on standard worksta-
tions equipped with ATM network cards. Here, we find
that the Pandora principles are still relevant to the design
of device drivers and software toolkits for the real-time
streams, and that the overall architecture is very similar in
terms of data description and buffering. A major differ-
ence is that the streams in a workstation are more indepen-
dent than in Pandora, being split apart into different chains
of processes once they leave the input device driver, and
not converging again until they meet the display driver.
This makes it much easier to insert special purpose pro-
cesses such as face trackers into the video paths, but may
lead to scheduling problems as control has been delegated
to the operating system.

Another approach that we are investigating is to centralise
the real-time peripherals in a single workstation. We
achieve this by building a number of option cards for the
workstation bus. We use the DEC TurboChannel, and have
built video capture, compression, framestore and ATM
network cards. The cards transfer data by DMA, but are
scheduled by the main CPU. This allows us to manipulate
uncompressed video with the main CPU, so that user pro-
cesses can perform operations such as titling, head track-

ing etc. The same Medusa software infrastructure used in
the distributed system controls the streams within the
workstation. It operates on similar principles to the Pan-
dora processes, handing around references to the data, and
keeping reference counts of the number of processes that
are using each segment.

It remains to be seen how difficult it will be to follow these
principles as our systems evolve, and how they might have
to be extended or relaxed.

Acknowledgements

Many people at Olivetti Research and the University of
Cambridge Computer Laboratory were involved in the
Pandora project. The Pandora’s Box hardware was
designed by Tony King, Oliver Mason, Roy Want, David
Clarke, Andrew Jackson and David Milway. The software
inside the box was written by Alan Jones, Mark Chopping,
Stuart Wray, Gavin Stark and Tim Glauert. The repository
was implemented by Ian Wilson. Roger Needham and
Maurice Wilkes helped to guide the design.

References

[Ades86] S. Ades, R. Want and R. Calnan. Proto-
cols for Real Time Voice Communica-
tion on a Packet Local Network. IEEE
International Conference on Communi-
cations 1986, Toronto, June 1986.

[Casner90] S. Casner, K. Seo, W. Edmond and C.
Topolcic. N-way Conferencing with
Packet Video. In Third International
Conference on Packet Video, Morris-
town, New Jersey, March 1990.

[Hopper88] A. Hopper and R.M. Needham, The
Cambridge Fast Ring Networking Sys-
tem, IEEE Trans. Comp., vol 37, no. 10,
Oct 1988.

[Hopper90] A. Hopper, Pandora - An Experimental
System for Multimedia Applications,
ACM Operating Systems Review, vol.
24, no. 2, April 1990

[IEEE90] IEEE Journal on Selected Areas in
Communications, special issue on Mul-
timedia Communications, Vol. 8, no. 3,
April 1990.

[Inmos88] Occam 2 Reference Manual, Inmos
Limited, Prentice Hall International
Series in Computer Science, 1988

[Inmos89] The Transputer Databook, Inmos Lim-
ited, 1989

[Leung90] W.H. Leung, T.J. Baumgartner, Y.H.
Hwang, M.J. Morgan, S.-C Tu. A Soft-
ware Architecture for Workstations Sup-
porting Multimedia Conferencing in
Packet Switching Networks. IEEE Jour-
nal on Selected Areas in Communica-
tions, special issue on Multimedia
Communications, Vol. 8, no. 3, April
1990.

[McAuley90] D.R. McAuley, Protocol Design for
High Speed Networks, University of
Cambridge Tech. Report no. 186, Jan
1990.

[Nato91] Technical Characteristics of the Navstar
GPS, NATO, June 1991.

[Naylor82] W.E. Naylor and L. Kleinrock. Stream
Traffic Communicat ion in Packet
Switched Networks: Destination Buffer-
ing Considerations. IEEE Transaction
on Communications, Vol. COM-30, no.
12, December 1982, page 2527.

[Swinehart83] D.C. Swinehart, L.C. Stewart and S.M.
Ornstein. Adding Voice to an Office
Computer network. In proceedings of
GlobeCom 1983, IEEE, November
1983.

[Want88] R. Want. Reliable Management of Voice
in a Distributed System. University of
Cambridge Computer Laboratory Tech-
nical report no. 114, July 1988.

[Wray89] S. Wray, The Interface to Pandora’s
Box, Tech. Report 89/4, Ol ivet t i
Research Limited, 1989.

