
Mobile Computing with Python

James “Wez” Weatherall & David Scott,
Laboratory for Communications Engineering,

Cambridge,
England,

{jnw22, djs55}@eng.cam.ac.uk

Abstract

This paper describes MoPy, a port of the Python 1.5.2 interpreter to the Psion
5/Epoc32 platform and Koala, a CORBA-style Object Request and Event Broker
implemented natively in Python. While primarily a direct POSIX-based port of the
standard Python interpreter, MoPy also adds thread, socket and serial support for
the Psion platform. The Koala ORB is designed particularly with MoPy in mind
and aims to support interoperation of devices over the low-power Prototype Em-
bedded Network. The low-power requirements of PEN impose severe bandwidth
and latency penalties to which conventional RPC technologies are not typically
well suited.

1 Introduction

Recent advances in wireless communications and embedded processor technology have
paved the way for tetherless, intelligent embedded devices to enter into everyday use.
Already technologies such as BlueTooth[2] and WAP[19] enable users to read their
email, browse the web and link their various computational devices without physical
network connections. This paper describes some key features of Koala, an Object
Request and Event Broker written natively in Python and designed for use on handheld
and wireless devices, and MoPy (Mobile Python), a Python interpreter for the Psion 5
Series[14].

The PEN project[1] at AT&T Laboratories Cambridge explores the future possibil-
ities of embedded low-power wireless communications support in both conventional
computer equipment and everyday appliances, with a view to providing totally ubiq-
uitous interaction between devices. The prototype units use the 418MHz band and
provide 24kbps throughput over a 5 metre radius, with power management allowing a
unit to operate for several years on a single cell, subject to environmental conditions.
The PicoRadio[15] and Hyphos[13] projects are examples of systems with similar de-
sign goals to PEN.

One example of ubiquitous device interaction is that of a generic remote controller
interacting with its environment. The controller would act as a mobile, untethered user
interface, with wireless access via PEN to all the locally available devices. These might

1



range from simple light and temperature sensors, through lamps and window blinds, to
a PC’s MP3 jukebox or a hi-fi.

An ideal platform to act as the remote controller is the Psion organiser. The device
is compact, low-power, and already provides a number of useful applications. A PEN
node may be attached to the serial port of the Psion and used as a network interconnect.
The Psion then runs client-side software which can use the node to scan the local area
for other nodes and to communicate with them.

The Psion can use the connection to pull email from its user’s folders when he is in
the office, and can then push that email out to a display in his car, all while tucked away
in his briefcase or sitting on his desk. It can use the contextual information inherent
from the short range of the radio link to decide when the user is at home, on their bike
or in the office for example, and reconfigure neighbouring equipment accordingly.

1.1 Follow-me-MP3

A popular demonstration for many distributed multimedia and sensor systems is that
of “follow-me audio”. In this example, a user roams around a building populated with
speakers connected to networked PCs. A central MP3 archive feeds audio to the speak-
ers nearest the user, across the network, so that their personal audio preference accom-
panies them wherever they go.

Using MoPy and Koala, we can extend this example. Our user carries his standard
Psion 5 organiser, as he would normally, except that his organiser has a tiny PEN node
attached to it’s serial port1. An example screen-shot is given in figure 1.

As the user moves around the building, the PEN node will be in direct contact with
only a few devices — only those within a 5-10 metre radius — allowing it to establish
a rough idea of proximity. The Psion can monitor this proximity metric and contact
the nearest speakers, telling them to connect to the MP3 jukebox. The previously used
set of speakers can disconnect automatically when the Psion is out of radio range, or
can be made to disconnect by an RPC to the speaker, through a gateway into the wired
network.

Because the Psion is independent of the wired infrastructure, the user can have a
similar but separate network within his home. The mobile device can detect that it is in
the home and reconfigure accordingly, to use the home jukebox rather than the (perhaps
unreachable from home) office one, for example.

1.1.1 Follow-me-MP3 Implementation

The Follow-me-MP3 example has been implemented as a text-based application run-
ning under MoPy on the Psion 5mx and under the standard Python distribution for
Linux. The devices communicate via PEN nodes attached to their serial ports. The
Linux device runs an MP3 jukebox and a “speaker” application, both made available
to the Psion over the PEN network using the Koala ORB described below. The Psion
then runs a controller application which imports interfaces to the jukebox and speaker
and accesses the two entities via the Koala ORB.

1The current PEN prototypes are almost the same size as the Psion itself. In principle, though, there is no
reason why very tiny embedded versions cannot be built



Figure 1: Screen-shot of a Wireless Follow-me-MP3 Controller

In this system, our primary interest is in the design of the Koala ORB, which in-
terfaces between a high-level communications model and the low-level PEN network
interface. This is supported on the Psion platform by the development of the MoPy
interpreter, which provides a standard python environment, avoiding the need for a
separate development environment and/or Koala implementation.

1.2 Further Applications

In addition to the roaming MP3 example described above, several other applications
have been prototyped using the system, of which two are described below.

1.2.1 Home Control

A rudimentary home control system has been built using the PEN, MoPy and Koala
systems combined. For this application, home appliances such as lights, blinds, sensors
and switches are connected directly to PEN nodes. Each device uses the standard Koala
protocol to make itself available via the PEN network.

When a Psion running MoPy and Koala is introduced into this environment, the
PEN-enabled appliances may then be monitored and/or controlled by the mobile Psion
device. In particular, because of the ease with which new fragments of Python code



may be introduced into the system at run-time, it is straightforward to add automated
rules to control home appliances according to personal preference. This capability is
currently the subject of further research.

1.2.2 Slaved Remote Controller

A simple “thin client” mobile remote controller has been built, similar in operation to
that used in the ParcTAB[18] project. The device is a dedicated user interface with a
black-and-white LCD display and three buttons attached to a PEN node, through which
it makes its features available. The controller device is then “slaved” to a nearby PC,
which runs the software on behalf of the controller and manipulates it using Koala and
PEN.

This system works well in an office environment, where PEN base-stations can be
placed so as to provide complete coverage of the environment, so that remote con-
trollers operate seamlessly throughout. Because PEN is an ad hoc network, thus re-
quiring no infrastructural support or pre-configuration to operate, the Koala objects
provided by these remote controllers may also be accessed by Koala programs running
on mobile devices such as the Psion. This allows the remote controllers to be used in a
wider variety of ad hoc environments.

2 Koala

The Koala ORB is an Object Request and Event Broker designed to support universal
compatibility between devices in an efficient manner. It is implemented partially as
a minimal server library written in C for the PEN platform 2, and as a more complete
client and server library written in Python.

The ORB is deliberately designed to be functionally equivalent to the CORBA[11]
ORB standard but, because of its simpler design and the choice of implementation
language, it is a great deal easier to experiment with. Because Python is cross-platform,
the bulk of Koala can be built on a PC and the resulting code files transferred to the
Psion to be run.

For most of the applications we are building, Psion or PC devices act as the user
interface, hosting Koala stub classes for different types of device and importing object
references from nearby PEN nodes. The PEN devices run servant objects which can be
manipulated by the PC or Psion remotely. For example, in the roaming audio example
given in Section 1, our user can cause their audio to be Played, Paused or Stopped,
as with conventional audio equipment. The steps involved, using Koala running under
MoPy, might look like:

1. orb = Koala.ORB()

The program creates a Koala ORB instance through which to contact remote
Koala objects.

2Use of a Python interpreter running under PEN was considered, but PEN’s threading model and limited
memory would have required a Stackless Python[17][16] port, and would have been a prohibitive develop-
ment effort



2. orb.add_transport(TCP_Transport)
orb.add_transport(PEN_Transport)

The program registers some previously-imported “transport” modules with the
ORB. These modules provide a standard API to a variety of underlying networks,
through which the ORB may use them.

3. PEN_trader = PEN_Trader.Trader(orb)

The program on the Psion creates a new PEN Trader. This trader monitors the
local radio channel via the PEN node connected to the machine’s serial port and
populates the trader with all the Koala objects accessible remotely via PEN.

4. jukebox = PEN_trader.FindOne("AudioSource", [])

The Psion imports an AudioSource object from the local PEN trader. This
trader contains object references for all devices accessible locally via PEN.

5. jukebox = jukebox._narrow("AudioSource")

The imported reference is of type Object, so it must be _narrow()ed to
AudioSource before it can be used.

6. jukebox.Play()

The jukebox is made to start playing audio using the Play()method. The juke-
box might also support Pause(),Stop(), FastForward(), etc methods.

2.1 Object-Oriented RPC

As has been mentioned previously, the Koala ORB borrows heavily in its design from
the OMG Common Object Request Broker Architecture. CORBA-based systems con-
sist of interfaces specified in standard OMG Interface Definition Language[8], and
client and server side stubs to perform marshalling and unmarshalling of Remote Pro-
cedure Calls.

Several CORBA-compliant ORBs are available with “mappings” (implementations)
for the Python language. Two popular implementations are Fnorb[7] and omniORBpy[12].
omniORBpy uses the same C++ back-end as the original omniORB C++ mapping for
performance reasons. Conversely the Fnorb ORB is implemented, with the excep-
tion of some low-level marshalling routines, entirely in Python. In our experiments
the performance of the system as a whole is dominated by the latency and bandwidth
limitations of the PEN network rather than by the ORB itself. Fnorb woudl therefore
have been the preferred ORB on which to base our experiments. However, we also re-
quire that the ORB should operate on a resource-limited device such as the Psion. For
this reason we wished to avoid using a full CORBA ORB implementation, and instead
chose to build a simple CORBA-like ORB from scratch.

In Koala, interfaces are currently specified in scripts via a well-defined data struc-
ture, rather than from IDL. Interfaces are registered with the ORB at run-time, both
at the client and server sides. It will automatically generate appropriate stub code on
demand, so that the code only exists when it is needed, saving space. Koala doesn’t
currently have an IDL compiler, since it is sufficiently straightforward to generate the



Python data structures by hand. It was decided that the effort required to build or
modify an IDL compiler was not warranted.

The interface definition structure is also used when dealing with incoming method
invocations, to establish how to unmarshal the parameters. Python, being a scripting
language, makes this process fairly trivial, since an incoming RPC can be quickly un-
marshalled and dispatched using a single apply() call.

Method invocations are marshalled via a standard marshalling engine which sup-
ports most of the standard OMG IDL types, plus a few new ones. The marshaller is
designed to produce compact output as speedily as possible and achieves respectable
results.

2.2 Events

One of the experiments we have performed with Koala is to add native event support
to the ORB. Any Koala object can be a source of events — asynchronous notifications
of a change in their state. Clients can then “watch” the object for changes in its state.
The ORB manages this operation as efficiently as possible and notifies the client via
callback when the state next changes.

Events may also contain values (current at the time of notification) for the object’s
attributes. If an interface is derived from the special “Watchable” interface[6] then
its attributes will be marshalled into all event notifications that object produces. This
serves two purposes — firstly, that the client need not contact the object after each noti-
fication, since it will already have the relevant attribute state information, and secondly
that the attribute information received can be synchronised at the server side to ensure
consistency.

Several Event Service implementations exist which use RPC as their underlying
transport mechanism, allowing them to run over a variety of ORB implementations.
These services support events with arbitrary content, either pushed from source to sink
or pulled by sink from source. There are two main problems with this approach:

Firstly, the use of events with arbitrary content makes it impossible to ascertain in
general where the event originated or what caused it. This in turn can make it difficult
to reason about the interactions between events. Koala attempts to limit the scope for
confusion by stipulating that events always indicate a change in the state of zero or
more attributes of a Koala object.

Secondly, in a high-latency environment such as a local-area PEN network or a
wide-area network such as the Internet, a separate thread must be created by the event
source for each registered event sink, to ensure that events are notified to sinks in par-
allel. Serial notification would result in too significant delays and hence performance
degradation if used with a high-latency network. Koala instead provides a high-level
“watch” interface, under which the ORB may then use the most appropriate event trans-
port for the underlying network. This allows events to be transferred by standard RPC
for example, or, as is the case with several of the PEN devices we have prototyped, by
passing the attribute state information in periodic broadcast messages.

An example device using the Koala event mechanism is a wireless mouse (see
Figure 2). The mouse supports three attributes through which its position and the states
of its buttons may be obtained. The mouse may either be a primitive device which



interface Mouse : Watchable
attribute unsigned long Xpos;
attribute unsigned long Ypos;
attribute unsigned long ButtonState;

};

Figure 2: An example interface to a wireless Mouse

simply transmits a broadcast datagram via PEN whenever an attribute changes, or may
be a more complex device which accepts incoming wait() RPC calls and blocks
them until its position changes. Which of these techniques is used depends on the
environment for which the mouse is designed. Programs using the mouse need not be
aware of the distinction in order to use the device, because of the attribute-watching
mechanism provided by Koala.

2.3 Asynchronous RPC

The PEN radio layer is a high-latency transport, partly as a consequence of its low-
power operation. As a result, sequentially dispatching multiple method invocations
to a remote object can be prohibitively time-consuming, since each request is only
dispatched when the previous request has been received.

Very often, such invocations could actually have been dispatched in parallel, in
which case an obvious solution is to spawn a separate thread for each request and to
join with those threads at some later time. This is a poor approach for two reasons;
firstly, spawning a thread can be a very expensive operation, in particular on platforms
such as Linux or Psion, on which thread switching is expensive in terms of CPU-cycles
(Conventional control-flow processors are not well suited to thread-switching, in fact).
Secondly, the return values of each call must be manually saved by each thread and
then retrieved once the threads have been explicitely synchronised.

Koala therefore supports asynchronous RPC, a technique designed to be both ef-
ficient and simple to use. The calling thread first obtains an asynchronous stub for
the object from the ORB. This stub dispatches all invocations made through it to the
same socket connection and records the sequence number of the operation, without
waiting for the operation to return. Figure 3 shows the difference in timings between
synchronous invocation and asynchronous invocation of three independent RPC calls
across a moderate-latency network. Figure 4 shows sample Python code to read the
status of a Mouse device using asynchronous RPC.

As the ratio of CPU cycles required per invocation to network latency increases,
the two cases converge because the time spent by the servant in processing incoming
requests is dominant. As the ratio of CPU cycles per invocation to latency decreases,
the two cases diverge because the synchronous case involves more round trip delays
and is therefore more affected by latency.

The latency per message over a TCP-based network is comparable in maginitude to
the processing time required for a typical null-Echo method invocation. As a result, the
extra overhead incurred in performing asynchronous invocations reduces performance



greatly. When PEN is used as the underlying network however, latency can exceed
CPU time per invocation by several orders of magnitude. The overhead in using asyn-
chronous invocation becomes insignificant in this case.

In general synchronous invocation provides better performance over low latency
networks while asynchronous invocation is preferable over high latency networks.

Network
Message

CPU

Time

Working

Figure 3: Synchronous versus Asynchronous RPC for three independent invocations

amouse = mouse._async_stub()
xpos = amouse._g_Xpos()
ypos = amouse._g_Ypos()
buttons = amouse._g_ButtonState()
...
actual_xpos = xpos()
actual_ypos = ypos()
...

Figure 4: Example code for retrieving the initial position and button state of a Mouse
device using asynchronous RPC

The client calls methods on the stub as it would the synchronous version, except
that all methods now return a callable Python object instead of their normal results. The
returned object contains a link to the asynchronous stub and the sequence number of the
method invocation. When it is “called” with no parameters, it checks the asynchronous
stub to see whether it has already received a response for the operation. If the results
of the invocation have not been received then the caller is blocked until they are. If the



result object is deleted without being called, then the any results from that invocation
are lost and no synchronisation occurs. Asynchronous result objects also support a
_ready() method, through which they can be polled for completion if required.

In this way, asynchronous RPC makes it extremely simple to dispatch concurrent
requests and to only synchronise with those requests when their results are required,
by “calling” the result object. Python’s callable objects and lack of strong typing made
this a very straightforward feature to implement.

3 MoPy

When the Koala project started, two ports of Python to the Psion existed. The first, by
Duncan Booth, was a fairly direct port of Python 1.5.1[3] via the Posix compliance API
of Psion, with several useful extensions including a readline-alike library and support
for the Psion’s touchscreen. The second port, by Otfried Chong[5], was based on
the first but extended to have a standard Psion user interface, with the familiar button
layout, menus and access to the task panel.

While both ports were well built, stable and pleasant to use, they lacked support
for a few standard Python modules which were required for the purposes of developing
Koala.

3.1 thread

Neither port supported threads. This meant that the Koala runtime would need to be
coded to be single-threaded, and to use select() calls to multiplex the various data
streams involved, such as keyboard events and incoming RPCs. Sadly, neither port
supported select(), either — an understandable omission, since the platform itself
does not support select().

Psion threading is extremely expensive both in terms of CPU cycles and, as a con-
sequence, of power. The Psion runtime (known as EPOC32) is heavily optimised for
single-threaded operation, since only a single application may have control of the dis-
play at any one time. In spite of this expectation about the design of Psion applications,
the platform does support a fully preemptive thread model, providing a sound base on
which to implement the PyThread API.3

MoPy now supports the thread and mutex classes natively. Inherently, this allows
support for the more convenient threading interface. Performance when no new threads
are started is almost identical to that of the threadless ports. Performance once other
threads have started suffers slightly more, but the tradeoff is on the whole a favourable
one.

3The only notable exception was the ThreadId() function, which is presently a dirty hack since Psion
threads use opaque and transient objects as identifiers, rather than plain integers - the interpreter must there-
fore make assumptions about the contents of the Epoc ThreadId class in order to obtain a suitable integer
value



3.2 socket

The existing ports did not support sockets. The Psion Posix compliance library does
provide socket support, making the porting task trivial.

Some noteworthy limitations include:

� The inability of the TCP stack to return a machine name via gethostby-
name().

� getservbyname() and SOCK_RDM are not supported (causing MoPy to fail
the standard regression tests).

� The ability to lock the Psion completely (to the level of requiring a soft reset)
when using accept() calls in particular ways.

Although latter problem is rather severe, it has only been found to be reproducible
by forming a local-loopback connection via TCP between two threads in the Python
interpreter, and then closing the interpreter forcibly via the System menu. 4 In this situ-
ation, the device must be soft-reset using the button in the backup battery compartment.

Socket connections out from the Python interpreter to other processes and via mo-
dem to the Internet have not shown any similar problems. Python processes ac-
cept()ing incoming connections from other processes, such as the Psion 5mx Web
application, show similar stability to outgoing connections.

3.3 serial

Each different Operating System platform appears to have its own serial API. Similarly,
Python’s serial support is splintered between TERMIOS commands under Unix and the
sio module[4] under Windows, among others.

Because the sio and accompanying serial modules provide a convenient and
extensible interface to the serial ports, their API forms the basis for our _serial
module on the Psion.

The current _serial implementation is extremely basic, supporting a 9600baud,
8-1-N mode, with no flow control. The module exports a single function, open(),
which is used to open a serial port and to return the corresponding Python object.
_serial module objects are per-thread, to match the Psion’s serial interface seman-
tics — using a _serial port object from a thread other than the one in which it was
created causes an exception to be raised. To support multi-threaded serial port access,
the Python serial module is provided as a Psion-specific wrapper to the _serial
module functionality, providing a more standard, multithreaded port model at the cost
of some efficiency.

Clients open ports using the serial.open(portname)method, supplying ei-
ther “ECUART” for the serial cable, or “IRCOMM” for an IrDA[9][10] serial line 5.
Serial port objects currently provide read(), write() and close() methods.

4This is sometimes necessary in order to quit a Python script that has entered an endless loop, because no
present Python implementation for Psion supports Ctrl-C or similar

5Although serial via IrDA is in principle supported, it has not been observed operating between devices
as yet



A future implementation will hopefully support fully configurable serial port ac-
cess, the present choice of settings being a popular lowest-common-denominator used
by the PEN prototypes.

4 Conclusion

4.1 Koala Performance

Table 4.1 gives results for the classic string Echo example, on standard RedHat, Win-
dows NT and EPOC32(Psion) platforms, using the Python 1.5.2 interpreter. All values
quoted are invocations-per-second.

Platform
TCP

Local-loopback
Koala

Same-process
Python
Native

RedHat Linux2.2.12
450MHz Pentium II

362.7 6072 134700

Windows NT 4 SP6a
450MHz Pentium III

293.9 4717 103400

Psion 5mx,
36MHz ARM 710T CPU

12.19 278.3 8000

The “TCP Local-loopback” result is for method invocations passing between client
and server in the same process, via the TCP loopback interface. The “Koala same
process” result is for method invocation between client and server in the same process,
via Koala, without passing through TCP. The final result, “Python native”, comes from
calling the Echo servant object directly, bypassing Koala entirely.

Koala is a factor of twenty slower than native access, due solely to the overhead
of detecting and locally dispatching the invocations, a process which involves two dic-
tionary lookups and several function calls. Although dictionary lookups are a well-
optimised specialty of the standard Python implementation, they still involve hashing
and comparison of keys, inevitably introducing a large number of extra CPU cycles as
compared to a single function call.

In addition to the CPU-cycle costs incurred in performing method invocations us-
ing Koala, invocations performed via TCP loopback are affected by three further fac-
tors; the quality of local-loopback in the TCP stack implementation, the cost of thread
switching on each platform and the speed with which operands can be marshalled. The
results for Psion show these costs are more significant relative to the cost of Koala-
internal invocations than under Linux or NT. Memory allocation may make marshalling
the extra bottleneck on the Psion, or the quality of its thread switching may have an ef-
fect (it is known to be poorly optimised). Resource limits on the smaller device are
unlikely to affect performance - the device has 16Mb of RAM but the Python inter-
preter is limited to using only 2Mb by default, and shows no signs of approaching this
limit while running Koala programs.



4.2 MoPy Performance

The expected performance of the MoPy port, based on the capabilities of the processors
and operating systems of the test machines, is around a factor of twenty worse than the
PC platforms.

Using the pystone benchmark6 MoPy achieved only 90.22 pystones, as compared
to 6060 pystones on the Windows PC platform above.

4.3 Downloads

MoPy is a stable Python 1.5.2 port but lacks some finesse. It passes 34 of the standard
Python regression tests, fails 4 (imageop, sha, socket7, and time8) and skips 22.
Programs not requiring GUI access or Posix-like features such as select() support
should run unmodified on MoPy.

Some important limitations are:

� The Ctrl-C key sequence cannot be used to interrupt the interpreter. This means
that the System menu must be used to kill errant Python processes.

� Like the handles used under Epoc/32 to access the serial ports, Epoc/32 file han-
dles are thread-specific and cannot be used by threads other than the one that
created them. When normal files are opened, the Epoc Posix-compliance library
against which MoPy is compiled maintains a special Posix server thread which
accepts file operations from MoPy threads and maps the file descriptors used in-
ternally to the corresponding Epoc/32 file handles. This creates a performance
bottleneck but allows multiple threads to share Posix file descriptors.

Unfortunately, the Posix library does not perform this mapping for the stdin,
stdout and stderr file descriptors (descriptors 0, 1 and 2), possibly for per-
formance reasons. As a result, these file descriptors cannot be shared transpar-
ently between threads within MoPy. In order to cope with this limitation, the
sys.stdin, sys.stdout and sys.stderr file descriptors are specially
handled in MoPy, reducing the interpreter’s performance on file access. Refer-
ences to file descriptors 0, 1 and 2 are transparently mapped to the corresponding
thread-specific standard IO file handle, as a result of which the os.dup() call
must not be used to duplicate them9. Doing so can result in an Epoc/32 KERN-
EXEC error in the calling thread.

A better approach from a performance perspective would have been to replace
the default stdin, stdout and stderr objects with custom Epoc-specific
versions mapping to the correct thread-specific value. This would avoid the per-
operation performance penalty incurred by the current implementation but would

6The benchmark was modified to use time() instead of clock(), since the clock() function on the
Psion uses microseconds and CLOCKS_PER_SEC is erroneously defined to be 1 in the types.h header

7See Section 2.3
8The basic time functions are available. Localised time functions, such as timezone and daylight

are not.
9os.dup() duplicates an existing file descriptor to a new file descriptor value, thus potentially by-

passing the standard IO workaround



involve a significant re-write of portions of the interpreter. Ideally, the interpreter
would be completely re-written to perform all interactions with the operating
system via a single special thread within the interpreter, much like the Posix
thread used currently, thus avoiding handle/thread interaction issues completely.

� MoPy currently exports the posix module. Future versions will rename this
module epoc, so that poorly supported Posix API calls can be improved or
removed.

� Each thread is limited to a 64K stack. All threads share the interpreter’s 2Mb
heap.

MoPy is available for download from

http:
//www.uk.research.att.com/~jnw/downloadables/index.html

Future improvements will be posted at the above URL.
Koala is a stable system. It is possible to write scripts which import Koala and

create one or more ORBs, add custom object interfaces to them and add customised
network transports if required. Such scripts can then export standard Python classes
implementing the registered interfaces, so that they may be accessed transparently by
other Koala-aware scripts.

Koala is not currently available via the web but it will be!

5 Acknowledgements

The authors wish to acknowledge Andy Hopper and Sai-Lai Lo of AT&T Labs Cam-
bridge for their support in this work. Thanks are due to Frank Stajano and Duncan
Grisby of AT&T Labs Cambridge and to Diego Lopez de Ipina of the Laboratory
for Communications Engineering, Cambridge, for convincing us to give Python a try.
Thanks are also due to all the Python contributors, and Guido van Rossum in particular,
for producing a language which could be learnt in a single weekend in spite of a killer
hangover.

Finally, the AT&T Laboratories Cambridge and the Engineering and Physical Sci-
ences Research Council should be thanked for their funding of this work.

6 Appendix A - Glossary of Terms

� Object Request Broker

The Object Request Broker is the body of software responsible for transparently
interfacing between objects running on different programs across a network. The
ORB deals with the issues of accepting and unmarshalling incoming Remote
Procedure Calls and dispatching them to the relevant objects, and of marshalling
and transmitting outgoing RPCs to remote objects.



� interface

An “interface” is a collection of methods and attributes used to define how an
object may be manipulated remotely. The OMG’s Interface Definition Language
(IDL) provides a set of standard data types which are used when defining inter-
faces, to ensure compatibility between different CORBA ORB implementations.
Interfaces may inherit from each other in a similar manner to C++ or Java classes.

� servant

The term “servant” refers to an object implementing a particular interface and
made available through a network by the ORB. The servant is called into by the
ORB when an incoming RPC is received, and the results of each invocation are
marshalled and returned to the caller transparently by the ORB.

� stub A “stub” is an object created by the ORB, through which a remote servant
object is accessed. The stub provides the same interface to programs as the
servant but marshals the parameters of method invocations and dispatches them
to the corresponding servant rather than implementing the method locally.

7 Appendix B - Example IDL

Sample IDL for the follow-me-MP3 example.

interface Jukebox {
typedef sequence<octet> Key;
typedef unsigned long State;

Key Reserve(in unsigned long mode);
void Release(in Key k);

void Play(in Key k);
void Stop(in Key k);
void FFwd(in Key k);
void RRwd(in Key k);
void Pause(in Key k);

attribute State CurrentState;
attribute string CurrentTrack;

};

The Jukebox IDL as supplied to the Koala ORB. The TC module provides Type-
Code definitions for the standard OMG IDL datatypes and is assumed to already have
been included.

class JukeBox:
""" Interface to a very simple MP3 Jukebox """



TC_Key = TC.Sequence(TC.Octet)
TC_State = TC.ULong

IDL_Type = "Jukebox"
IDL_Interface = [

("Reserve", (TC.ULong, ), TC_Key),
("Release", (TC_Key,), TC.Void),

("Play", (TC_Key,), TC.Void),
("Stop", (TC_Key,), TC.Void),
("FFwd", (TC_Key,), TC.Void),
("RRwd", (TC_Key,), TC.Void),
("Pause", (TC_Key,), TC.Void),

("_ATTR_CurrentState", (), TC_State),
("_ATTR_CurrentTrack", (), TC.String)

]

References

[1] Frazer Bennett, David Clarke, Joseph B. Evans, Andy Hopper, Alan Jones, and
David Leaske. Piconet - embedded mobile networking. IEEE Personal Commu-
nications, Vol. 4, No. 5, pp 8-15, October 1997.

[2] Specification of the Bluetooth System Version 1.0A. From http://www.
bluetooth.com/, July 1999.

[3] Duncan Booth. Python for Epoc Systems. At http://dales.rmplc.co.
uk/Duncan/PyPsion.htm, August 1999.

[4] Roger Burnham. Win32 Serial Interface Module. From ftp://ftp.python.
org/pub/python/contrib/sio-151.zip and http://starship.
python.net/crew/roger.

[5] Otfried Chong. Python for Epoc. At htpp://www.cs.uu.nl/~otfried/
Python/.

[6] David Evers (AT&T Laboratories Cambridge). Omni Object Services. In prepa-
ration.

[7] Fnorb Homepage. At http://www.fnorb.org/.

[8] Object Management Group. OMG IDL Syntax and Semantics. In The Common
Object Request Broker : Architecture and Specification, Revision 2.4, chapter 3.
OMG, November 2000.

[9] IrDA Serial Infrared Data Link Standard Specifications. From http://www.
irda.org/.



[10] IrDA SIR Data Specification. At http://www.irda.org/standards/
pubs/IrData.zip, February 1999.

[11] Object Management Group. The Common Object Request Broker: Architecture
and Specification, 2.4 edition, 2000.

[12] omniORB for Python. At http://www.omniorb.org/omniORBpy/.

[13] Robert Dunbar Poor. Hyphos : A Self-Organizing Wireless Network. Master’s
thesis, Massachusetts Institute of Technology, June 1997.

[14] Psion PLC Homepage. At http://www.psion.co.uk/.

[15] Jan M. Rabaey, M. Josie Ammer, Julio L. da Silva Jr., Danny Patel, and Shad
Roundy. PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking.
Wireless Computing - p42-48, July 2000.

[16] Christian Tismer. Continuations and Stackless Python. In Proceedings of 8th
International Python Conference, January 2000.

[17] Christian Tismer. Stackless Python. At http://www.stackless.org/,
March 2000.

[18] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Peterson, David
Goldberg, John R. Ellis, and Mark Weiser. The ParcTab Ubiquitous Computing
Experiment. Mobile Computing, pages 45–102, 1995.

[19] WAP Formal Specifications. From http://www.wapforum.org/, April
1998.


