
1 24 Sep 2001

Interaction Support in a Kernel for
the Embedded Environment

C Gray Girling

AT&T Research Cambridge
24a Trumpington Street

Cambridge, UK

Abstract
As any other systems, those produced for an embedded environment are better developed when
specified and implemented in a modular fashion. This paper outlines some infrastructural
abstractions that allow the interaction of a wide range of system components; and goes on to
describe their implementation optimised for the simplicity of typical embedded applications in a
kernel for a component-based operating system. At the same time it explores the extent to which
these abstractions can apply to a standard model of “computational” elements in the Open
Distributed Processing environment. It is argued that designing code to use the proposed
abstractions may help to extend its utility beyond application to specific embedded systems.
Finally, some examples of the practical use of such an infrastructure are described.

1 Introduction
The embedded system kernel discussed in this paper (the Embedded Environment Kernel, EEK) was developed
originally in order to support a number of practical research projects within the laboratory but is now principally
associated with the “Piconet” low-power room-area radio network project [Bennett et al 97]. Its lineage can be
traced back to the “Tripos” operating system, developed in Cambridge University’s Computer Laboratory in the
late 70s and used in the Cambridge Distributed Computing System [Needham et al 82], which gave rise to a
number of commercial and research operating systems including AmigaOS [Pountain 89], used in the Amiga
personal computer, and ATMos [Virata 99], EEK’s immediate precursor. Although these generations have
shared almost no code with their successors they do share a number of design elements:

(1) pre-emptively scheduled light-weight processes;

(2) single address space in a single memory domain; and,

(3) cheap call-by-reference message passing.

Such kernels (particularly due to the use of a single memory domain) are appropriate only for a restricted
range of applications. The lack of protection means that systems can incorporate only applications for which
there is some reason to believe in their integrity, and also means that systems are unlikely to scale well. The
latter is due to the inverse relationship between integrity and system complexity. None-the-less there is a class
of systems, with a small and temporally fixed number of parts that can take advantage of the higher performance
that call-by-reference messaging delivers. These generally fall under the heading of “embedded systems”. It is
this type of system for which EEK is primarily intended, although it is also appropriate in hardware platforms
that cannot support memory protection.

1

However, it is a matter of everyday observation that embedded systems, or at least their software components,
very often do continue to evolve. Eventually increasing complexity may mean that re-implementation in a
different environment (for example one with separate memory domains or one in which the application is
distributed between machines) becomes the only practical way forward. If interaction between system
components (e.g. message passing) has not been handled according to good design principles this form of
portability will be difficult or impossible to achieve.

1
 When address spaces are very large (e.g. 64 or 124 bit) a measure of security can be achieved through the capability-like nature of an

address – this type of operating system may also be relevant here.

24 Sep 2001 2

It is for this reason that one of EEK’s design goals was to use intercommunication primitives that would be
appropriate for the general case but which would have the cheapest possible implementation in an embedded
system.

2 Message Interfaces
It was once said that, no matter what the operating system, message passing back and forth between protected
domains would run no faster than 50Hz. Since then the search for faster ways of interacting has developed in
two main directions: exploring the alternative of messageless monitor-only systems (e.g. [Lauer et al 78]); and,
designing systems that employed some form of lighter-weight process. Whilst there is still informed debate as
to whether a message-based or procedure-call-based interaction paradigm is “best” the former is at least as
respectable as the latter, being used both in communication formalisms, such as CSP [Hoare 85], and in standard
models, such as International Standards Organization’s (ISO’s) ODP [ISO 95]. Today, particularly in the
domain of distributed processing, code is structured in terms of the “process”, “task”, “light-weight thread”,
“coroutine”, or “activation” in preference to re-entrant guarded objects and monitors.

In addition to the specific communication mechanisms supported by EEK (call-by-reference messages) a
generic messaging environment must apply to a variety of other implementations. A successful messaging
paradigm must be as relevant between coroutines or POSIX threads as it is between lightweight kernel processes
in a micro-kernel, or between separate activations in different domains of a vertically structured operating
system (such as Nemesis [Roscoe 95], for example).

2.1 Open Distributed Processing Environment

The Reference Model of Open Distributed Processing (ODP) [ISO 95] standardizes a vocabulary—complete
with concepts, rules, design principles and guidelines—that enables distributed systems to be described at
different levels of abstraction without recourse to ad hoc terms such as “process”, “task”, “light-weight thread”,
“coroutine”, or “activation”. It provides one vocabulary to describe the computational objects that interact as
well as a separate vocabulary to describe the parts of an operating system engineered to support them. These
vocabularies are part of the computational and engineering viewpoints that, together with the enterprise,
information and technology viewpoints, comprise the whole model.

For the purposes of this paper at least, the ODP Environment is defined to contrast with the Embedded
Environment in a number of ways:

Open Distributed Processing Environment Embedded Environment
Open development Closed development

Application design can be shared

among many developers
Application design is (normally)
contained within one developer

Open applications Closed applications

There may be conformance points
within applications that enable

internal interfaces to be re-used by
third parties

Internal interfaces are not
(normally) intended for third party
use

Focus on non-local interactions Focus on local interactions

Significant design and the
implementation of related

mechanisms exists to accommodate
interactions that span different

computers

Design and implementation tend
to address interactions inside the
same computer, non-local
interactions may be ignored
altogether

Long-lived interaction infrastructure Per-application interaction infrastructures

Interaction infrastructures (e.g.
CORBA) are designed to exist

independently of the lifetime of
individual distributed applications

using it

Interaction infrastructures are not
(normally) required to outlive the
particular embedded application
for which they are used

Expectation of complexity Expectation of simplicity

Application design is normally done

in the expectation that the
application will be required to scale

Application design is normally
done in the expectation that
requirements and scale will not

3 24 Sep 2001

Open Distributed Processing Environment Embedded Environment
application will be required to scale
and will accommodate an evolution

in the original requirements.

requirements and scale will not
change following application
deployment.

Table 1

Since many of these differences between the ODP Environment and Embedded Environment appear to be
differences in requirement handling and design, and many of the choices made in the ODP Environment appear
to conform with “best practice” it is tempting to deduce simply that the Embedded Environment ought not to
exist distinctly and that embedded applications ought to be designed and implemented as they would be if it
were in an environment such as ODP. An alternative, and perhaps more positive, point of view, which is taken
in this paper, would be to accept the failings that omitting best practice might bring and consider whether there
are benefits in exploring the design freedom implicit in the Embedded Environment.

The ODP reference model provides a basis for standardization in Open Distributed Processing and contains
much more valuable material than just the definition of the computational and engineering viewpoints. Very
much of it (for example, the computational model) has value when considered in non-open, non-distributed

2

environments such as the Embedded Environment, which is why this paper refers to it.

2.2 System Configuration

One of the attributes presumed of embedded systems is the varied but static nature of its components. In
contrast to other types of operating system, components (such as processes and devices) are normally embedded
statically in the system build rather than loaded dynamically on demand

3
. Because of pressure on resources

redundant software and drivers are not normally part of a build, nor is the additional code needed to load or
select configuration data. In consequence, whereas other operating systems may be instantiated in only one or a
small number of basic configurations (which then extend and reconfigure themselves dynamically), the
configuration of an embedded system needs to be externally specified for almost every use. In support of this
requirement EEK is closely associated with a system-building tool (“Project”), which parses a system
composition language. The language is used to describe the objects and interfaces that are available and their
initial instantiation. Project uses the language to build a script that can then be used to construct the required
system out of pre-built binary or source-code component templates.

2.3 A Model for Computational Object Interaction

One way to gain confidence that an interaction infrastructure is general purpose is to use a model that is
accepted to be generally applicable (such as the ODP reference model) and show how relevant concepts in the
model can be implemented using the infrastructure.

The ODP computational viewpoint isolates two distinct forms of interaction between computational objects,
which might both, therefore, be expected in a “complete” infrastructure. They are: those provided at operational
interfaces and those provided at stream interfaces. Both operations and streams are complex interactions
composed of a series of simple atomic interactions called signals (operations involve the synchronous two-way
remote procedure call-style exchange of signals whereas streams may involve a number of isochronous one-way
exchanges of signals)

4
.

Signals each conform to a specific signature that indicates its “meaning” and the type of data it carries. A
structured interface signature that incorporates the signatures of each signal involved describes each interface.
In effect, it also describes the protocol used: insofar as it dictates the sequencing and direction of individual
types of signal. In the case of an operation the protocol is fixed: normally an invocation signal is sent in one
direction and a termination signal is then sent in the reverse direction.

2
 Or not-necessarily-open, not-necessarily-distributed to be more precise.

3
 This is not to say that embedded systems are defined not to be able to extend themselves dynamically. They might be able to, but typically

choose to do so only infrequently.
4
 This is not a tutorial on the ODP reference model, the actual content of the standard is being paraphrased and refined for the purposes of

this paper.

24 Sep 2001 4

ISO has adopted the Object Management Group’s Common ORB (Object Request Broker) Architecture
(CORBA) Interface Description Language (IDL) [OMG 99] as the standard language to use to describe
operational interfaces.

In the context of a given interface signature a computational object must take one of the roles that have been
defined for that type of interaction. In the case of an operational interface the role will be either “client” or
“server”. In the case of a stream an arbitrary number of roles might be defined. In principle, the interaction
behaviour (and thus the supporting code) needed to implement an interface is determined exactly by the
combination of interface signature and role.

In order to use an interface the ODP computational viewpoint defines the operation of binding, which
attaches complementary interfaces together. For example, given an operational interface signature it might
attach a client version of the interface to a server version of it. An interface supported by some other
computational object can be used once a local binding to it has been created. A traditional way to support such
a binding operation is to use interface references [van der Linden 93, ISO 95] that locate the participants needed.
When interface references are mobile they can be passed from object to object and may be able to be stored in
long-term data storage objects.

2.3.1 Signal Bindings
In EEK signals are implemented as the basic form of interaction and they are used to support both operational
and stream interfaces. A signal binding supports an interface for the delivery (and receipt) of a one-way signal.
More complex operational or stream bindings can be made from a number of these more primitive signal
bindings.

In designing a signal binding the invocation mechanism (the means whereby causing a signal results in a
signal notification) must be chosen, and in particular:

(1) how a signal can be caused (by a causer); and,

(2) how a signal can be notified (to a notifiee).

In accordance with its design goals (and Occam’s Razor) the simplest possible design was chosen for EEK: in
which causing a signal is implemented by calling a function and notification of invocation is implemented by
being invoked as a function. This means that the most trivial implementation of a signal binding is null: the
cause and the notification of a signal can be accomplished in the same action (a function call).

One of the advantages of such a design is that signal (and thus operational and stream) interfaces are
potentially very cheap to implement and can therefore be used freely throughout an operating system. One of
the main disadvantages of such a simple implementation of a binding is that it is often inappropriate. Consider,
for example, the implementation of an operation supported by a “server” function: this function will be invoked
to notify the server of an invocation signal and, after some processing it will need to cause a termination signal.
Using a simple implementation of a signal binding this would result in calling a function in the “client”, which
will perhaps need to invoke the server again and thus continue a recursive regress that is likely eventually to
cause a stack error. However, whilst a direct call is the simplest binding mechanism, and occasionally is of
great use, it is certainly not the only signal handling policy as we will discuss below.

2.3.2 Interface Signatures
In the ODP reference model both operation and stream interface signatures are intended to be structured
descriptions of the signals that require notification and that can be caused at an interface. There may be many
uses for such a description including “type checking” whereby the description of a provided interface is
compared with a description of one that is required – to check whether it can be used. Such run-time type
checking is of value in a kernel to increase the robustness of modularly constructed systems.

Note that, because there are different roles that an interface signature caters for (e.g. client or server in the
case of an operational interface) in general, the interface provided by those with one role in a binding will be
different from that being provided by others. Thus, for example, given a particular operational interface, the
interface that the client requires of the server is not the same as the interface the server requires of the client.
The difference is in whether the required interface is to cause, or be notified of, the individual signals from
which the interface is composed. Furthermore it should not be assumed that an object with a particular role

5 24 Sep 2001

would have a monopoly on taking the initiative in seeking others in a binding. It is possible, for example, for a
server to seek clients actively – in which case the interface signature it requires will be complementary to the
one that a client would need of a server.

“Type checking” involves ascertaining, at minimum, that the provided interface accepts all the signals (of the
appropriate type) that the required interface would and that it does not generate any signals that the required
interface would not. A more elaborate check might also take into account the semantics associated with the
interface or perhaps the quality of service associated with signal delivery etc. By and large, however, the run-
time implementation of the check will involve verifying a relation that should hold between two interface
signatures. In practice, only two operations on interface signatures will take place:

BOOL if_subtype_of(INTERFACE_TYPE required, INTERFACE_TYPE provided)

INTERFACE_TYPE if_combine(INTERFACE_TYPE interface1, INTERFACE_TYPE interface2)

These functions are supported in EEK. Unlike a large distributed system it is practically feasible to change
the implementations of these operations (e.g. altering the way an INTERFACE_TYPE interface signature is
implemented) to suit each embedded application. In EEK the standard implementation is extremely simple and,
again, makes use of the static nature of an embedded system. In systems which do not generate new interface
definitions dynamically the full implementation of an interface signature, that would be available from a
structured description incorporating type information about each signal, is not necessary at run time. In essence,
the INTERFACE_TYPE × INTERFACE_TYPE relation can be pre-calculated and embedded into each computational
object. The disadvantage of such an approach is that many implementations of the relation will not allow the
introduction of new kinds of interface whilst the embedded application is running (although some may). The
advantages include:

• efficient implementations of the two operations above are possible (e.g. with a complexity independent of
the number of signals involved in an interface); and,

• more complex issues, such as the semantic nature of interfaces
5
 and environmental (e.g. Quality of Service)

guarantees can be taken into account during the construction of the relation without imposing any additional
run-time overhead.

Because it is assumed that it would be practicable to implement an alternative representation of this relation
throughout an embedded system prior to its re-instantiation

6
 and thus improve its features when necessary, it is

possible to default to an implementation that concentrates on the efficiency rather than general applicability.
Thus the default in EEK is to maintain an offline register of primitive interface components and to represent
each INTERFACE_TYPE as a set of these – the set being implemented as a simple fixed sized bitmap. This allows
the two INTERFACE_TYPE operations to be implemented using AND and OR operations respectively.

This approach would become unwieldy should the number of primitive interfaces become very large because
the size of the bitmap is dependent on their number. In addition, it will not allow the retrograde run-time
introduction of interface types “more primitive” than those already selected into which any existing interface
types ought to be recomposed. In deference to what was said above, however, it does allow a limited possibility
to extend the number of interfaces extant in a system at run-time insofar as new combinations of primitives can
be used, and new primitive interfaces might be allocated positions in the bitmap if it is initially deliberately
“over-sized”.

Although not its primary motivation, one of EEK’s design guidelines—to re-use existing interface types
wherever possible—happens to be well rewarded by this approach.

2.3.3 Operational Interfaces
By far the majority of interfaces in EEK are operational (as opposed to stream) interfaces. In terms of the ODP
computational model operations may be either an interrogation (in which a termination follows as a

5
 For example, although an interface signature for copying and deleting things may be structurally identical to one for renaming and deleting

things their semantics are not compatible and it may be a mistake to allow the latter to be used where the former is required.
6
 In the case of a single node system this corresponds to recompiling, re-linking and re-deploying.

24 Sep 2001 6

consequence of an invocation) or an announcement (in which no termination results). The latter requires the
definition of a single message to be used to carry the invocation signal and the former may require an arbitrary
number of additional signals to convey the different terminations. All of the messages involved in the same
interface are described to Project in an interface definition file. Project then provides a unique value associated
with each signal type and also generates a data structure that represents the fields of the message. Code that
marshals and unmarshals messages uses the signal type value and data structure provided. Currently Project
supports only “C” or “C++” data structures.

Each interface definition file specifies the type of the interface for each role in which it is expected to be
required. It does this either by composing it from a combination of other interface types (the message
definitions are not required in this case) or by indicating one or more primitive interface types to which it
conforms.

In interrogations, because EEK supports call by reference there is a substantial saving in complexity
(particularly in memory management) to be gained by using the message data area used for the invocation to
return any of the terminations. In order to assure a consistent message size that can be used for both purposes it
is normal to use the same message definition for both the invocation and termination. Project supports this
mode of use by allocating both an invocation signal type value and a termination signal type value for each
message definition. The termination value will also be allocated even when the message is intended to be part
of an announcement.

The way in which memory for messages is to be managed is an important detail, which can be recorded in the
interface definition file, but there is no run-time support to enforce or prevent any particular combination of
memory management operations on messages. The dominant protocol in interrogations is to return a
termination in the same message area and thus leave memory management entirely in the hands of the sender of
the invocation.

Binding an operational interface requires:

1. the object in a client role to obtain a signal binding for the delivery of an invocation signal to the
server; and,

2. (in the case of an interrogation) the server subsequently to obtain a signal binding for the client (who
invoked it) for the delivery of a termination signal.

There are a number of ways for a client to obtain an initial signal binding to the server, which we describe
below. Although these methods are also applicable to the server, a server will normally choose to use the
feature of EEK’s signals that enables it to derive a return signal binding from an incoming message. Each
message has an optional field that can hold a return binding specified by the signal sender (see Figure 1). This
binding may need transforming as it traverses a system and this is discussed below.

Arguments

Reply TO

Signal Type

Signal
Binding

Figure 1: Major fields in a message

2.3.4 Stream Interfaces

As indicated above, the interface types required by one of the participants in a binding will vary according to the
roles the others in the binding are to take. To this end a typical stream interface will require a number of

7 24 Sep 2001

interface types – up to one per role. Because of the variable nature of the protocol in a stream interface these
types need no longer be simple inverses of each other, as they are in the case of an operational interface: for
example, one participant may cause signals that are notified to another but be notified of signals that are caused
by a third.

Other than making it unlikely that the additional signal types defined by Project for use as a termination will
be used, stream interfaces do not impose any additional requirements on Project.

Binding a stream interface requires each participating computational object to obtain signal bindings to the
required subset of other participants consistent with interface types appropriate to their roles. Each such signal
binding can be obtained only in the ways that would also be applicable to an operational interface, and in this
respect EEK needs no additional support to enable the use of streams. One problem, however, is exacerbated in
the case where many individual signal bindings have to be made at a number of different points before the
whole stream binding can be said to exist: and that is the overall co-ordination of creating and closing down the
individual bindings and of monitoring errors in any isochronous flows involved. A single computational object,
the control binding, is expected to handle these tasks and provide a unified interface for the stream.

An unacknowledged signal type, WRITE_FREE, is provided for use between the source and sink of an
individual flow within the stream. Such messages are allocated at the sink and freed either en route to or at the
sink. A local SINK_LINK signal type requests a flow source to open a flow and provides a storage object from
which signals should be retrieved, with a given quality of service, to a sink and a SINK_UNLINK signal type
requests its closure. EEK provides a library supporting the use of these signals and another for creating a
simple stream with just one flow.

3 Signal Transport
One of EEK’s design goals is to provide intercommunication primitives that would be appropriate for the
generic case. Therefore, even though generality will not necessarily be a feature of its implementation, some of
the aspects of that general case need to be established. The principle cases to consider are those in which natural
boundaries between the “causer” and the “notifiee” of the signal make the simplistic function-call style binding
inapplicable. These boundaries include:

invocation mechanism boundaries

• in which there is no existing type of invocation mechanism that common to the causer and the notifiee
(e.g. where there are invocation mechanisms that allow “threads” to talk to each other and mechanisms to
allow “library objects” to interact but none that allow threads to talk to library objects); and

invocation medium boundaries

• in which no existing message reference namespace is commonly available to both causer and notifiee
(e.g. causer and notifiee use different non-overlapping memory domains).

An invocation interceptor is an object that supports the transport of signals across either an invocation
mechanism boundary or an invocation medium boundary. In general there may be a string of an arbitrary
number of interceptors that need to be used between a causer and the corresponding notifiee. There may be
many ways to represent such a route and many different functions capable of transferring a message along that
route. In EEK the signal binding is represented as a triple B=<signal , route, abort> where signal is the
function that is used to cause a signal, taking a message and a route as arguments; route is the route appropriate
to the function and abort is an EEK event (described later in section 5) which is used to signal the failed
availability of an onward route (see Figure 2). The most important characteristic of an event here is that it
provides a signal to all those who express interest in it, whenever the event signal is caused.

24 Sep 2001 8

abort

signal

route

DeliveryRC signal(Message, Route)

Event

Figure 2: Major components of a signal binding

3.1 Forward Route

In general an invocation interceptor is an object that responds to a signal function by finding and using the next
signal binding B2=<signal2, route2, abort2> that it can derive from the context in which it was notified of the
incoming signal and the route supplied. The detail as to how this is done will vary depending on the type and
exact function of the interceptor. Since the derivation of B2 may sometimes require significant activity on the
part of an interceptor, it may choose to cache the <route, context> ? <signal, route, abort> mapping it makes.

3.2 Failure of The Forward Route
An interceptor will also respond to the prevailing conditions of its onward routes (either continuously or on each
transmission attempt), indicating a delivery failure for transmissions that require the use of an invalidated route.
If the onward route was itself obtained as a signal binding, its associated abort event can be used to provide
asynchronous indication of the route’s failure. Similarly if the interceptor has provided a binding that relies on
one of its routes, the abort event provided in them can be caused when the route is found to be invalid. Indeed if
every interceptor in a route obtained a signal binding for each binding’s onward route it is possible for the abort
event at the destination to be visible to the holder of the analogous binding at the source (having been reflected
through each intervening interceptor) even though the abort may occur asynchronously with respect to the
transfer of signals along the route. Where this asynchronism is desirable it can clearly be implemented as
above, which requires:

• that the signal binding, initially local to the notifiee, was delivered to the causer via each of the
interceptors on the route indicated in the binding local to the causer; and,

• that each interceptor holds a different forward binding (with its own abort event) for each binding for
an incoming signal.

There is one case in which asynchronous delivery of an abort event is required. This is the case when there
are no interceptors at all and a direct “functional” binding is in place. If the binding becomes invalid (for
example the route ceases to be a valid address) this cannot be ascertained by attempting to use the binding to
cause a signal and observing whether a delivery error occurs. The indication not to use the invalidated binding
can, however, safely be delivered asynchronously via the abort event.

3.3 Return Route
Because messages contain a return binding, interceptors must transform them as they pass through, for example
by allocating storage to represent the previous binding Brev=<signalrev, routerev, abortrev> with handle routerev2
and replacing it with Brev2=<signalrev2, routerev2, abortrev2>, where signalrev2 is a function that uses this handle
to find the stored previous signal binding. Setting up a reverse route across a system back to the causer can be
expected to use resources in the system, and some mechanism to recover these resources is necessary.

A simple mechanism for resource recovery would be to delete the reverse route information after a fixed time
(which yields a “soft state” style of connection). A more sophisticated mechanism might rely on an explicit
abort event generated at or nearer the notifiee. Additional mechanism might use signals generated by the abort
events of stored reverse bindings nearer the causer. If the route is not liable to be re-used, there may be some
benefit in signalling an abort event in a message’s return binding once the message is no longer needed.

9 24 Sep 2001

3.4 Object Creation and Deletion
One of guidelines associated with the use of EEK is the re-use interface types where possible. It is sometimes
possible to decompose individual operations in a way analogous to currying a function: an operation is provided
with a subset of the required operation’s arguments that creates (and returns) a new object supporting an
interface containing an operation with the remaining arguments. For example an interface to a file system might
originally be envisaged with two operations: one read(FileName, Buffer, BufferSize) and another
write(FileName, Buffer, BufferSize). However this can be replaced by two interfaces: one that supports
the single operation opennamed(Name) that returns an interface reference; and, another (to which the new
interface conforms) providing read(Buffer, BufferSize) and write(Buffer, BufferSize). Of the two new
interfaces the latter is very generally applicable to many things that can be read and written, and the former is
very generally applicable to many things that can provide interfaces bound to a name. In order to support such
decomposition (and for other reasons) EEK must be able to return a signal binding as the result of an operation.

As described above, signal bindings need to be transformed as they travel (through interceptors) from one
invocation domain to another. Every interceptor in the path of a message some of whose arguments may be
signal bindings would have to have sufficient knowledge of each message’s semantics to determine the position
of each binding so that each could be replaced by appropriate transformations, and this is an implementation
expense that could otherwise be avoided. Accordingly the use of a signal binding as an argument in a message
is deprecated in EEK. In its place two distinguished interface types OPEN and CLOSE are identified containing
the operations open() and close() respectively. Typically these interfaces will be used as part of the definition
of a new interface with operations based on the definitions of open and close. Normally one interface will
include an open operation that returns an interface binding which includes a close operation. The definitions
parsed by Project for message formats allow one message type explicitly to be based on another, so Project can
generate message numbers that make their parentage obvious and interceptors handling such messages are able
to identify them as being based on open or close operations.

In the message carrying the termination signal of an operation the “reply to” field normally is of little
consequence. In the case of an open termination, however, it contains a new binding to be delivered to the
caller. In the case of a close termination it contains an empty binding. Because these messages can be
identified in interceptors, the relevant transformation of the new binding in an open can take place (including the
allocation of relevant resources). Such resources can be removed on identification of a close. The
transformation of the termination “reply to” field in this case is identical to the transformation of this field
required in an invocation in order to create a reverse route (discussed above). In fact, interceptors that perform
the relevant mapping on every “reply to” field in every message they see (no matter whether or not it is an open
and whether they are an invocation or termination) will function correctly.

3.5 Abstract Syntax Boundaries
In addition to boundaries placed by invocation mechanisms and the invocation medium another boundary is
formed when the representation of types (transfer syntax) in a signal (i.e. the argument types of a message) can
vary.

An interceptor that bridges this kind of boundary must be able to translate between the syntax used by the
invocation mechanism on the causer’s side to the syntax used by the invocation mechanism on the notifiee side
(for example, the local syntax of the causer’s computer to the transfer syntax encoding used on a network). One
of the most important abstract syntax boundaries is one between a local (native to a network node) syntax and a
transfer syntax (used when transmitting a signal across a network).

It is reasonable to expect such interceptors to know the rules with which different types are encoded in the
two syntaxes with which it is dealing. Interceptors must, however, also know which types any particular
message uses and into what kind of data structures they are assembled. The same description of a signal type
could be used by all the transfer syntax interceptors on a signal’s path if a suitably generic abstraction of each of
the transfer syntaxes were used. This kind of description of a message is called its abstract syntax. Ideally
interceptors require a means to obtain the abstract syntax of any message, in order to perform their function.

24 Sep 2001 10

The minimum that is required in a message to identify its type is an identification code
7
 (referred to as “signal

type” above). This code can then be used to index a table of abstract syntax definitions of all the messages in
the system. Some means of generating such definitions is required, however. Currently the information held in
an interface definition file processed by Project includes a definition of an identification code and the abstract
syntax for every message. However, the notation used to describe the abstract syntax is currently “C”, which
has many disadvantages when used as an Abstract Syntax Notation (ASN). In addition Project does not encode
this information into files incorporated into system builds, as would be required to build something analogous to
CORBA’s interface repository.

These are areas for further work in EEK that would be required if abstract syntax boundaries are to be
brooked. The use of a “proper” ASN and a mapping onto C could involve significant development, but would
involve changes to existing code only for (remote) interactions whose existing interfaces could not be re-
expressed in a new ASN. Initially, however, it is sufficient to show only that the chosen intercommunication
primitives would be appropriate for the generic case, in this event by proposing that an abstract syntax
interceptor could be built.

4 Trading
The previous section explained how a signal binding should be involved in interacting with remote interfaces. It
also described one method of transferring signal bindings from location to location, by returning them in
messages based upon the open operation. In principle this means that, given the right functionality, any binding
that might be required could be retrieved once there is some binding available that responds to an open
correctly. However, there is still the question as to where the initial binding comes from.

The ODP reference model defines the notion of “trading” to accomplish this aim and this function has been
standardized by ISO and the International Telecommunication Union’s Telecommunications section (ITU-T)
[ISO 96] which is a successor of the work in ANSA [APM 93]. The most important elements of this function
are: the ability to export an interface reference to the trading system; and then, to be able to import it again
(possibly from a different invocation domain) later.

In EEK trading is accomplished by programming objects (“traders”) characterized by methods to:

• import a local binding (i..e. one usable in the current invocation domain) given an INTERFACE_TYPE
and a name given that it is “closer” than a given distance;

• create, modify or delete an entry in a trader where an entry is either:

♦ an interface: with a trader-local signal binding, its INTERFACE_TYPE and a trader-local name;

♦ a link to another trader: with a trader-local name, a reference to another trader and its “distance”
away; and,

♦ an alias to another entry (which may be in another trader): with a trader-local name prefix, a
reference to another trader and a replacement prefix to use in the other trader.

Many traders may be available and each could be implemented differently, however EEK does provide both a
very simple “standard” general-purpose implementation and a distinguished “node-wide” (available throughout
the node) trader, which is always present. It also provides a trivial library that provides import, export, link, and
alias functions in addition to a few others dealing with updating and removal.

Links and aliases enable a web of traders to be integrated to accomplish the trading function. When seeking
an interface with a given name the mesh is traversed according to prefixes in the name until an interface
reference with the required type is found, which is then returned, or failure occurs.

There are a number of apparent differences between this implementation of a trading function and a
traditional implementation. The following will be discussed in particular:

1. the trading function is not necessarily provided by trader computational objects (with signal-based
interfaces of their own); and,

7
 Similar to the “type code” used in the CORBA protocols.

11 24 Sep 2001

2. the trading function provides for the export and import of signal bindings and not interface
references

8
.

4.1 Trader Computational Objects
To help satisfy the “cheapest possible implementation in an embedded system” goal a library-based
implementation of the trading function was chosen. It provides for ease of implementation, small size and
efficiency at runtime. In most trading scenarios in the literature the trading function involves traders that are
themselves computational objects able to interact across networks in a loose co-operative federation. In order to
show the other part of EEK’s goal (that intercommunication primitives are provided that would be appropriate
for the generic case) it is important to demonstrate that the proposed interaction scheme, using signal bindings,
can scale to similar systems (in which traders accessible via their own, possibly remote, signal interface can be
used).

Clearly it is possible to create a trader computational object with an appropriate operational interface. It is
also possible to create a trader implementation that uses such a computational object to perform the operations
required for each method. It is not immediately apparent however, that it is possible to retrieve relevant or
efficient signal bindings from such objects. Signal bindings are relevant and usable only within their home
invocation domain – a binding relevant to one domain, stored in the trader object’s domain and made available
in a third domain provides a variety of opportunities for corruption or inefficiency. For this reason, in EEK the
signal bindings that traders hold are always local to their own invocation domain.

The import operation of a trader computational object should be based on open – returning the imported
binding in the same way than an open operation will. This will ensure that the binding available at the trader
object (which, by definition, is the same location as the interface the binding gives access to) is correctly
translated to a binding usable at the operation’s invoker.

A given binding can only be exported to local traders and this might appear to introduce a restriction on the
availability of interfaces. It is, however, possible to effect an “export” by placing aliases, or links, in more
remote traders to a local trader. The importing user of the trading function would be unable to distinguish
whether or not traders are restricted by this implementation detail.

4.2 Interface References
The combination of a trader name and the name for an object in it, being the information required to insert an
alias in another trader, can be treated as an data type in its own right and can be used as an “interface reference”.
Note that the name for a trader must be locally relevant, so that if it is moved from one place to another within
the same name domain the name need not be transformed, but if it is moved outside that domain it will require
renaming in order to refer to the same trader object. Subject to the need for this renaming, such interface
references can be stored within a system and can be “exported” to other traders (insofar as creating an alias in
them would have the same effect).

In general an EEK interface reference is a hierarchical name, led by a local trader, in which each successive
part of the name identifies a computational object within the context of the trader so far identified. Thus if an
external name E is found in external trader L/T, where L is the local trader and T is the local name for the trader,
the interface reference L/T/E can always be used for it locally. However, if L/T is known to be part of the same
name domain as L then L/T/E identifies the same object as L/E and the interface reference L/E can be used
instead.

Because a signal binding provided by an open includes a route from the object to which it refers (the one via
which the open termination was returned), there are benefits in using the information in intermediate trader
computational objects directly, rather than allowing traders to request an import recursively. Consider the
situation in which a local trader has an alias to an intermediate trader object that itself has an alias to a final
trader object: if the local trader requests an “import” from the intermediate trader object the binding will be
returned via the intermediate trader – and will therefore have the intermediate location in the binding’s route.
This can result in the “triangular routing” problem: whereby signals to the located object, which is potentially

8
 That is, the thing imported using the function is not subject to a separate binding operation before the interface it refers to can be used.

24 Sep 2001 12

nearby, always travel via the intermediate trader which may be some distance away. If the local trader retrieves
the trader name for the intermediate alias directly (including any name transformation needed) and then uses
that to retrieve the binding from the final trader the returned binding need not have the intermediate trader as
part of its route when all the traders are in the same name domain.

5 Events
Event counters are described in the context of their use in the Fawn operating system described in [Black 95]
and were used in the Nemesis operating system developed as part of the ESPRIT funded "Pegasus" project
[Roscoe 95]. [Black 95] defines the operations that event counters support, and provides a number of examples
in which many extant styles of concurrency control are implemented using them

9
. An event counter "e" is

defined to support operations with the following semantics:

read(e)

• This operation returns a value of the monotonically increasing counter associated with the event, as it
was at some time between the time this “read” operation was invoked and when it terminated.

await(e,v)

• This operation blocks the caller until the event counter reaches or exceeds the value “v”.

advance(e,n)

• This operation increments the value of the event counter by “n”, which may cause “await” callers to
execute or become runable.

Two types of interface to events are implemented: an operational interface, which supports operations
event_read, event_await and event_advance; and, a procedural interface. The procedural interface does not
use signals and has a small performance advantage.

The operational interface is supported by a library function that returns a local signal binding to access a
given event (that is created in C programs as a data structure with type EVENT, which essentially keeps the
current event counter value and the set of pending await invocation messages). This binding may then be used
to access any of the above operations.

Note that the value awaited need not be the “next event”, and that the value of the event counter may exceed
the value awaited by the time an await operation completes. These properties allow EVENTs to be used for
relatively loosely coupled synchronization in which event generators and event consumers can each operate
without necessarily requiring the other to be scheduled between events. When the processor is busy this can
save unnecessary context switches.

6 Signal Ports
As implied above in section 2.3.1, signal reception at a signal binding is indicated by the invocation of a
function of the receiver’s choosing. This may be appropriate when dealing with some signals (for example,
those that can be serviced instantly), or it may provide a convenient opportunity to demultiplex signals into an
application’s data structures (e.g. message queues for different functions). However, when the signal is required
to be handled synchronously with its notifiee, the signal must be stored in some intermediate location until that
synchronous opportunity arises. A signal port is a general-purpose representation for this state (illustrated in
Figure 3). It includes the signal binding through which signals are delivered and additional functions to poll,
read and time-out any pending signals. A small library of functions allows signal ports:

• to be initialised with a signal binding;

• to define the functions used for polling, receiving and setting time outs for a particular variety of signal
port;

9
 It also explains their implementation as part of the fundamental scheduling infrastructure in Fawn. The implementation here merely

duplicates event counter operations, it does not form part of EEK’s task scheduler.

13 24 Sep 2001

• poll:
to inspect whether or not a signal is available for reading on the signal port;

• read:
to (suspend execution, wait then) return the first signal available on the signal port, or an error code; and,

• timeout:
set a timeout for the next read.

abort

signal

route

thread
interface

poll

timeout

read

(state)
signal

binding

Figure 3: Major components of a signal port

Different signal ports can be defined for operation not only in a wide range of concurrent execution
environments but also to support a wide range of signal handling policies. From the perspective of a particular
thread of execution signal ports have two common roles: client synchronization – to synchronize with the
notification of an operation’s termination signal in an operation exchange; and, service synchronization – to
synchronize with the notification of an operation’s invocation signal once processing due to a previous
invocation is complete.

6.1 Client Synchronization

Synchronous exchanges, such as those that might be required during the invocation of an operation on a
computational object, can be achieved through the use of a signal port uniquely allocated for the purpose. The
sequence of behaviour is:

• the client thread obtains a unique signal port, initialised for synchronous working;
• the client sends an invocation signal to the server quoting the unique signal port for any reply; then,
• the client waits for a termination on the signal port.

Since a thread can wait on only one signal port at any one time a signal port used for this purpose can be pre-
allocated, which will removes a certain amount of overhead that might otherwise be associated with this
algorithm.

6.2 Service Synchronization

Self-synchronizing exchanges, such as those that might be required during the sequential servicing of operation
invocations on a computational object, can be achieved through the use of a single “work” signal port that is
capable of retaining and ordering a set of invocation signals. Typically the repetitive sequence of behaviour
would be:

• the server waits for an invocation signal on the “work” signal port;
• the server performs the required processing in order to define the termination signal; then,

24 Sep 2001 14

• the server replies with the termination signal to the “reply to” field in the message representing the
signal.

In a typical server thread the signal binding associated with the signal port would be the one through which it
advertises itself (e.g. in a local trader).

6.3 Signal Handling Policies

A signal port describes not only how a process stored signals destined for its thread, but also describes the way
in which signals are placed there. Signal bindings can incorporate an arbitrary amount of state identified by the
route associated with their signal binding. This can be used by the notification function to accomplish many
different goals. Although the architecture of the port thus enables a variety of signal handling policies to be met,
the signal interface the port provides remains standard, as does the interface the port presents to a thread using it.

6.3.1 A Mailbox

A signal “mailbox” is implemented trivially by using the port’s signal binding’s route to identify a variable
capable of holding a single signal. The signal binding’s signal function returns a delivery error if the variable is
in use or otherwise places the signal in the variable

10
. The port’s waiting function returns the content of the

variable when it is available.

6.3.2 A Queue

A signal queue is implemented by using the signal binding route to identify a queue and the signal function to
append each message to the back of the queue. The port’s read function takes the first message on the queue.

6.3.3 Listening on Many Queues

A number of different signal bindings are distributed to different causers. Each binding has its own signal queue
and all signal bindings share a single mailbox and a bit map containing one bit for each signal queue. When a
message is transmitted the signal is appended to the relevant queue, the bit corresponding to it is added to the bit
map and the bit map is placed in the mailbox

11
.

The port’s poll function checks the bit map to see if it is non-zero. The read function uses this value to
determine which queues have messages available, choosing randomly among them and adjusting the bit map if a
queue is emptied.

Note that this type of signal port could be constructed by composing mailbox and queue signal ports.

6.3.4 Prioritorized Signals
A number of “real time” kernels provide a mechanism to send high and low priority messages. Higher priority
messages arrive before lower priority ones. This can be implemented as a multi-queue signal port as described
above with one queue per priority level. The signal function of the port’s signal binding finds the priority of a
message and appends it to the queue for that priority. The read function reads a signal from the highest priority
queue whenever a signal is available.

6.3.5 Load Sharing
A set of threads can be identified by a port’s signal binding’s route. The corresponding signal function can then
choose either the “next” task in the list to which to send an invocation signal or, perhaps, the first one that is
waiting on its queue. In this way a number of instances of the same process can be active to service the same
stream of operations.

10

 If scheduling is involved the signal function might also indicate that the thread associated with the port has become runable.
11

 If scheduling is involved then making the bitmap non-zero might also be used to indicate that the thread associated with the port has
become runable.

15 24 Sep 2001

6.3.6 Functional Discrimination
As in the load sharing example above, a number of threads are included in the same signal binding route, but in
this case, each is associated with a different group of signal types. The threads co-operate to service the full
range of signal types but each undertakes only a subset of them. The signal function associated with the signal
binding demultiplexes incoming messages to the appropriate queue based on their signal type.

Note that the user of this signal binding sees no distinction between this kind of binding and any other.
Effectively the detail of the way in which the system is structured behind the signal binding to service his
requests is transparent to him.

Naturally the same strategy can also be used to distribute signals to queues that are all accessed by the same
thread.

6.3.7 Immediate Response

Some types of signal require a minimal amount of processing (for example they may be used to set an integer
representing a debug level). The signal function associated with a signal binding potentially can isolate these
messages and execute their associated function immediately rather than passing the message on to a queue for
later processing.

This might also be appropriate for messages that need a minimal overhead in their handling for which the
expense of a context switch is too great, or in which no other context (e.g. process) is available.

7 Some Uses of Signal Bindings in EEK
EEK incorporates a third party scheduler as one of the modules incorporated into every system build. The one
chosen was µC/OS [Labrosse 92], which is publicly available, small, almost entirely written in C, and has been
implemented on a wide range of “embedded” processors. It supports a priority-based pre-emptive scheduling
regime in which a limited number of processes are each identified by a unique but variable priority and it
provides primitives very similar to a number of more commercial offerings. Inter-process communication is
supported with fixed length queues, mailboxes and semaphores and it imposes no restriction (or
recommendation) on Inter-Process Communication (IPC) formats etc.

Although the scheduler is relatively compact and efficient this is achieved at the expense of a fixed process
limit (63) and a requirement for unique priority values. However, since almost all of the functions provided by
µC/OS are invoked through the signal binding and signal port abstractions it is a relatively simple matter to
replace it with another scheduler should these restrictions become onerous.

7.1 Signal Bindings in Processes
By default every µC/OS process created is accompanied by two signal ports, each constructed around a µC/OS
message queue. One (the mailbox) is intended for use in client synchronization and the other (the work queue)
for use in server synchronization. On creation the signal binding for the work queue is placed, along with the
process’s name and its interface type in the node-wide trader.

A system description file parsed by Project determines the initial set of processes in a system. Project
supports the specification and instantiation of arbitrary system objects – allowing different types of object
initialisation to be defined. In fact, a µC/OS process is an object entirely defined in one of the “modules” parsed
by Project, and processes in a system build could not be supported without it.

7.2 Signal Bindings in Other System Objects

Other modules support other system objects, for example generic “devices”, or more specific objects such as
UARTs.

The instantiation of system objects may or may not involve the creation of signal bindings and their export to
a trader. In the case of devices, for example, each instantiation registers an instance of the predefined device
API for a named type of device. In the case of a UART the instantiation of the API appropriate to the named
kind of UART is found and an entry is placed in the device trader which is linked-to from the node-wide trader

24 Sep 2001 16

for names prefixed with “dev/”. This trader generates signal bindings that map on to the device APIs when
imports are requested. Thus an import request from the node-wide trader using the name “dev/tty2”, with the
appropriate interface type, might obtain an interface to one of the system UARTs. Note, that in an alternative
system build, in which there was a process named “dev/tty2”, the same import might provide access to an
identical interface which differs only in the nature of its implementation.

7.3 Standard I/O using Signals

The C library used in EEK makes use of traders to implement the standard input/output functions. Each
instance of the C library (normally each instance is tied to a different process, but they may be tied to arbitrary
system objects) contains a local trader. Initially this is set to the system’s node-wide trader, but the library user
can subsequently change it. Streams are implemented very simply by using a FILE to hold references to a small
number of functions that are used to read a block of data, write a block of data, return the stream’s size, and
close it etc. A small number of stream implementations exist, one of which makes use of “block” interfaces and
another of which makes use of “pipe” interfaces. In either case the associated INTERFACE_TYPE is constructed
from two more basic INTERFACE_TYPEs: one for reading and one for writing. Appropriate block and pipe
interface types are constructed depending on the requirements to read or write. A signal binding is sought using
a name which is imported from the local trader under first one interface type and, if that fails, the other. A new
stream is opened using a stream implementation appropriate to “block” or “pipe” interfaces depending on which
interface type succeeded. The close associated with the stream will invoke the close operation on the signal
binding if that interface is supported.

7.4 An “Open” Trader
The scheme above allows a fixed set of streams to be implemented easily – each file being named and exported
into the local trader – but it does not conveniently provide the kind of interface traditionally associated with a
file system – since it would appear to require every “file” to have its own entry in the local trader; nor does it
provide an interface in which parameterised stream names can be used – since stream names for each possible
option would need to be available in the trader redundantly. These are the problems of hierarchy and dynamic
instantiation respectively. The hierarchical problem could be addressed by creating a hierarchy of linked traders
to service the whole set of files, or it could be addressed by a dynamic search in some other data structure, for
which a solution for the dynamic instantiation problem would be required.

In order to accommodate the dynamic instantiation of signal bindings to service “stream names” there is an
open trader in EEK. This import-only trader is instantiated with a specific signal interface that supports the
objopen operation that is based on the open operation extended to include a single name as its argument. When
any name is requested for import from this trader the objopen interface is used to retrieve a new signal binding
for that name and, if successful, this is returned as the result of the import. An in-store filing system module, for
example, implements an objopen interface that returns a “block” interface to named files held in memory and
creates an open trader from it. It simply links this trader into the node-wide trader after some appropriate prefix
to implement the filing system.

7.5 Bridge Interceptor

Above the (theoretical) operation of an interceptor was described. They allow signal bindings appropriate in
one invocation domain to be mapped into signal bindings for another. Because EEK is a single memory
domain kernel there are no internal invocation medium boundaries, but there are invocation mechanism
boundaries. The most useful interceptor is one that deals with the export of the simplistic intra-task procedure
based signal binding so that it can be used as a inter-task message passing binding. The interceptor that supports
this function (and more generally, the export of any internal interface through an existing signal port) is called a
bridge interceptor.

The description of an interceptor in section 3 implies that reply signal bindings in messages might be
translated dynamically as they are forwarded. However, because (in EEK) the “export” invocation mechanism
is valid wherever the local one is, a significant efficiency can be gained by using export signal bindings for
message replies all the time and avoiding the dynamic translation.

17 24 Sep 2001

signal port for bridge
interceptor

signal
port

signal binding

signal binding

signal binding
signal binding

signal binding
signal binding

external
bindings

internal
bindings

export

export

Figure 4: bridge interceptor

Because it is convenient for a server thread to receive all of its operation invocations on one signal port, a
process normally supports only one signal binding. A bridge interceptor provides a signal port instantiated from
an existing signal port that allows any number of external signal bindings to be generated from signal bindings
internal to the thread’s invocation domain. For example, if an internal signal binding might involve a direct call
to a function local to the thread, an “export” function supported by a bridge interceptor will create an external
signal binding that can be used in the wider invocation domain incorporating other threads. Bridge interceptors
conveniently allow threads to support interfaces based on open (in which a thread may have to support an
arbitrary number of newly created opened interfaces).

In normal operation a thread will replace an original signal port by a bridge interceptor into which the original
is bound. The external signal bindings it creates includes a

• route: a reference to the signal binding of the original signal port and the internal signal binding on to
which it should map; and,

• signal: a function that associates the internal signal binding with the message before invoking the
original signal binding.

The read function of the bridge interceptor calls the read function of the original signal port until a message
not associated with any original signal binding is found, which it returns. The other messages are forwarded to
the associated (internal) signal binding.

The standard bridge interceptor in EEK implements the association of messages with a destination internal
signal binding using a special “destination” field in a message (which would not otherwise be necessary). This
has the advantage of making bridge interceptors extremely simple and quite efficient but both makes messages a
little larger than they need be, and means that this type of bridge interceptor can not be nested (i.e. the original
message port can not itself be a bridge interceptor).

24 Sep 2001 18

Because EEK both uses a single address space and only a single memory domain it is possible to use an
internal signal binding directly from “outside” a thread. For example, a function-based signal binding can be
exported from a process where the function could still be invoked. The effects will be:

• there will be no message passing or context switching latency,

• the signal function (used to deliver the message) will be called using the current processor stack and not
the one belonging to the exporting thread

12
; and,

• the invocation of the signal function will not implicitly be synchronized with other processing in the
exporting thread.

Where these features are disadvantageous (e.g. potentially requiring very large stacks in Interrupt Service
Routines that cause signals) external bindings, created by a bridge interceptor, can be used. If the purpose of
using signal bindings and signal ports is to achieve some level of independence from the computational object
abstraction provided by an underlying kernel, external bindings (or, more generally, bindings appropriate to the
invocation domain in which they are to be used) should always be generated.

8 Conclusions
A set of simple data structures capable of supporting the abstractions of signals, signal bindings, signal ports,
events, traders and bridge interceptors has been described. Their design has been driven by a requirement to
provide functionality that could extend to much more complex scenarios than would initially be anticipated in
an embedded system, whilst limiting their “common case” implementation cost and complexity to that
appropriate for embedded systems.

The sufficiency of the chosen structures to represent a computational model, as exemplified by the standard
ODP reference model, has been outlined and this should give some confidence that they will be appropriate in
other environments. Their implementation in EEK has lead to a kernel that supports a flexible and highly
configurable set of interacting components.

9 References

[APM 93] Architecture Project Management Ltd, “The ANSA Model for Trading and Federation”, AR.005.00,
published by authors, Feburary 1993.

[Bennett et al 97] Bennett F, Clarke D, Evans J B, Hopper A, Jones A, Leask D, “Piconet – Embedded Mobile
Networking”, IEEE Personal Communications, Vol 4 No 5, October 1997, pp 8-15.

[Black 95] Black R J, "Explicit Network Scheduling", Technical Report No 361, University of Cambridge
Computer Laboratory, April 1995.

[Hoare 85] Hoare C A R, “Communicating Sequential Processes”, Prentice Hall International Series in
Computer Science, 1985. ISBN 0-13-153271-5 (0-13-153289-8 PBK)

[ISO 95] ISO/IEC JTC1/SC21, “Information technology – Open Distributed Processing – Reference Model”,
ITU-T X.901 to X.904 or ISO/IEC 10746:1995, May 1995.

[ISO 96] ISO/IEC JTC1/SC21, “Information technology – Open Distributed Processing – Trading Function”,
ITU-T Recommendation X.930 or ISO 13235:1996, February 1996.

[Labrosse 92] Labrosse J J, “µC/OS The Real-Time Kernel”, R & D Publications Inc, Lawrence, Kansas, 1992.

[Lauer et al 78] Lauer H C, Needham R M, “On the Duality of Operating System Structures” Proceedings of the
Second International Symposium on Operating Systems, IRIA, October 1978, reprinted in Operating
Systems Review, Vol 13, No 2, April 1979, pp 3-19.

12

 If the internal binding incorporates a signal function that is simply a direct call to a message handling function this will involve the whole
of the processing of the message.

19 24 Sep 2001

[Needham et al 82] Needham R M, Herbert A J, “The Cambridge Distributed Computing System”, Addison
Wesley, Reading MA, 1982.

[OMG 99] Object Management Group, “The Common Object Request Broker – Architecture and Specification”
chapter 3 “IDL Syntax and Semantics”, revision 2.3.1, October 1999.

[Pountain 86] Pountain D, “Tripos - The Roots of AmigaDOS”, BYTE, Vol 11, No 2, pp 321-328, February
1986.

[Roscoe 95] Roscoe T, “The Structure of a Multi-Service Operating System”, Technical Report No 376,
University of Cambridge Computer Laboratory, August 1995.

[van der Linden 93] van der Linden R J, “The ANSA Naming Model”, AR.003.01, Architecture Projects
Management Ltd, February 1993.

[Virata 99] The ATMOS Book, Virata Ltd, Developers’ reference DO-007001-TC (TC0001), issue 8, 20 May
1999.

24 Sep 2001 20

Index
abstract syntax, 9
abstract syntax notation, 10
announcement, 6
binding, 4
bridge interceptor, 17
causer, 4
client, 4
control binding, 7
device trader, 15
EVENT, 12
event counter, 12
FILE, 16
interface reference, 4, 11
interface signature, 3
interface type: close, 9; open, 9
INTERFACE_TYPE, 5
interrogation, 5
invocation boundary, 7
invocation domain, 9
invocation interceptor, 7
invocation signal, 3

local syntax, 9
local trader, 16
notifiee, 4
open trader, 16
operation, 3
operational interfaces, 3
project, 3
role, 4
server, 4
signal binding, 4
signal handling policy, 14
signal port, 12
signals, 3
stream, 3
stream interfaces, 3
termination signal, 3
trader computational objects, 10
trading, 10; export, 10; import, 10
transfer syntax, 9
triangular routing, 11

