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Abstract

Networked Surfacesare surfacessuch as deskswhich
provide network connectivity to specially augmented de-
vices,for examplehandheldcomputers. Whenthe devices
arephysicallyplaced ontopof thesurface, theycanconnect
to differentkindsof services– mainly, but notexclusivelyto
sendandreceivedata.

This paper discusseschallenges in implementingNet-
worked Surfaces, payingparticular attention to data flow
issues,focusingon howthevarious software andhardware
entitiescomprisingtheSurfaceinteract to transport datato
andfromobjects.
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1. Intr oduction

This paperdescribesthevarioussoftwareandhardware
entitiesthatmake up theNetworkedSurface, concentrating
on how theseentitiesinteractto achieve datatransport be-
tweentheInternet anddeviceson theSurface.

In the first section,a short overview of the conceptof
NetworkedSurfaceswill bepresented,andcomparisonsto
wired andwirelessnetworks will bedrawn. Otherservices
that canbe provided,suchaslocationinformation for ob-
jects,will alsobehighlighted.

Thesecondsectionwill discusstheprocessof connect-
ing a device to the Networked Surfacebusses,in orderto
allow datapathsto be established.Detailsarealsogiven
of the different typesof network provided, to support the
variousclassesof devices,from palmtopto PC.

Thethird sectionlooksat implementationdetailsof the
“SurfaceManager”, which bridges databetweenconven-
tional networksandNetworkedSurfacebusses.Hardware,
kernel-level software,anduser-level softwaremustall in-
teractto enablethisdataflow.

The fourth sectiondiscussesandinterpretspreliminary
measurementsof how long it takesto connectanobject as

well asof thedatarateandthereliability of a datachannel
oncetheobject is connected.

1.1. Wir ed vs. Wir eless

The world of todaycontainsmore andmoreelectronic
devices thatcanstoreandexchangedatain privateandpro-
fessionallife.

Desktopcomputersare common in every office, more
laptops arein useandin addition an increasingnumber of
smallerdevicessuchasdigital cameras,personal digital as-
sistants(PDA), playersfor digitally storedmusicandmo-
bile phonesaremorecommonplace.All thesedevicesneed
to exchangedatato beuseful.For example, userswill want
to downloadmusicfromtheirdesktop into theirMP3player
or storeminutes from a businessmeetingfrom their PDA
ontoa laptop, etc..

Desktopsaretypically connectedto high speedethernet
networksandlaptopsareincreasingly connectedto wireless
ethernet, representing examples of the main two ways to
connectdevices,namelywiredandwireless.

Wiredconnectionsofferhighbandwidth asin thecaseof
ethernet. They alsooffer a wide rangeof differenttypesof
connectionsincluding USB andRS-232, whicharein wide
usefor thesmallerdevicesmentioned.Unfortunately, with
moreandmoreof thesedevices,theusersalsogetmoreand
moredifferent cables,cluttering desks.

Wirelessnetworks suchaswirelessethernet [5] or Blue-
Tooth[1] offer asolutionto theproblemof toomany wires,
but typically provideslessbandwidth which, in addition, is
inherently shared.This disadvantageis likely to beampli-
fiedasmoreof thesmallerdevices gainwirelessconnectiv-
ity.

1.2. The Networked Surfaces Concept

TheNetworkedSurfacesproject representsanattemptto
keeptheadvantagesof bothmethods of connectivity while
minimisingthedisadvantages.Thegoalis to beableto con-
nectvarious devices to a network thatfulfills their needsin



termsof bandwidth (that is, higherbandwidth for devices
like laptops and lower bandwidth for devices like PDAs),
in a manner which is intuitive to the user, eliminatingthe
needto know which device connects with which cableand
avoiding tedious setupproceduresof multiple serial ports
etc.

In order toachievethesegoals, it is proposedthatdevices
beconnectedby simplyplacingthemontoaspecialsurface
suchas desks. Both the surfaceand the device are aug-
mentedto enable themto recognizeeachotherandto nego-
tiatewhattypesof connectionsthatparticular object needs,
and whether they are available on that particularsurface,
enabling usto usethesameintuitiveconnectionmethod for
differentdevices. Thesurfaceis permanentlyconnected to
anentitycalledtheSurfaceManager, whichservesthedual
purposeof managing thesurfaceitself, aswell asproviding
themeansfor variousobjectsto sendandreceivetheirdata.

Thus,with this method,devicescanbeconnectedwhile
they areplacedon the surface. While this approachdoes
not offer quite thesamefreedom of movementthat is pro-
videdwith wirelessnetworks, it is sufficient for mostpur-
poses:digital cameras for example typically do not need
to take pictureswhile they aredownloadingtheir contents
onto anothercomputer, usersdo not listen to musicwhile
they aredownloadingit into anMP3 player andlaptopsare
commonly usedfor extendedperiodsof timewhile they are
placedondesks.

1.3. Additional Advantages

In addition to datatransmission,theproposeddesigncan
alsooffer otherusefulservicesto devices.

Since portable devices typically only draw a small
amount of power from their batteries,it is possibleto pro-
vide power as an additional serviceon the surface,given
thatappropriatesafetymeasuresareprovided. Thiswaythe
object would not needto useits batterieswhile it is placed
on thesurface.Furthermore,thesurfacecouldalsoprovide
energy to charge the object’s battery. Mobile phones,for
example,couldeasilyberechargedthis way, sincethey are
oftentakenoutof pocketsandplacedondesks.

Furthermore, location information for every object
placedon the surfacecan be provided, a very important
quantity for sentientcomputing [8, 3], which in turn en-
hancesandfurther simplifiestheuseof devices.

For example, insteadof directly connecting the digital
camera to a specificworkstationvia a cable,locationinfor-
mationcould be usedto infer that connection. Given that
the locationof the workstationandits keyboardis known,
the usercould specify to download the pictures from the
camera to that particulardesktopcomputer by placingthe
camera closeto thekeyboardona networkedsurface.
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Figure 1. Networked Surface Architecture

1.4. DesignOverview

Only a brief overview of the designcan be presented
here,but a moredetaileddescription canbefound in [9].

Thedescribedarchitecture is illustratedin Figure1.

1.4.1. Topology. In thecurrent prototype,theconnectionof
objectsto the surface is achieved by direct touchof metal
contacts1 placedin acertaintopology.

On the surface, the contactshave the form of strips or-
ganized in columns, while on the objects they are repre-
sentedin small round pads placedin a circle, as shown
in Figure2. In order to support a given type of network,
a certainnumberof connections arerequired(for example
a bidirectionalserialconnection requiresthreeconnections
for ground, transmitandreceive), resultingin a smalleror
bigger circle in which thepads areplacedfor differentde-
vices.

1.4.2. Scalability thr ough Tiling. To monitor eachof
the strips of the surface a certain amount of electronics
is needed. Implementing this circuitry in onecentralised
pieceof hardwarewouldmakethesystemvery inflexible to
changes. Henceto keepthesystemscalable,thesurfaceis
dividedup into smallerpartscalledtiles, controlled by tile
controllers.

Eachtile controller includesa small microprocessorto
monitor thestripsanddetectobjectsautonomously, aswell
ascircuitry for eachstrip to sendandreceive a low bit-rate
signal,necessaryfor the processof detectingdevicesand
determining thetypeof connectionthey need.

1Theobject andthesurface could alsobeconnectedin otherways,us-
ing capacitive [10] or inductivecoupling, but while it is planned to address
thesepossibilities later, it is not within thescopeof this paper.



Figure 2. Example Layout for Chosen Topol-
ogy

A control bus permanently connectsall tiles to the sur-
facemanager. This bus is implementedusing I 	 C bus, a
standard originally developedby Philips [4]. I 	 C is a syn-
chronous,multi-drop, wired-andbus andwaschosen,be-
causeit specifiesbusarbitration aswell asframing of pack-
etsandis readilyavailablein many microprocessors.

Using thecontrol bus, thesurfacemanager controls the
tiles by sendingmessagesconcerning the connectionand
disconnectionof strips, as well as the synchronizationof
thetiles,whichis important for theprocessusedby thetiles
to detectnew objects.

1.4.3. The Data Busses.All thedatabussesareconnected
from themanager to eachtile, enabling thetiles to connect
objects to the functions they desireandmanaging thedata
traffic from andto thedevices.

Sincemultipleobjectsmight shareadatabus,thebusses
insidethesurfacemustbemulti-dropbusses.Currently two
typesof dataconnectionsare implemented. For low bit-
ratedevicesan I 	 C bus is usedagain,while for high bit-
ratedevices,B-LVDS [2] is used.B-LVDS usesdifferential
signallingto decreasethesensitivity to noisecoupling into
thesignal.LVDS waschosen, becauseit only specifiesthe
physicalsignallevels,hencegiving theopportunity to com-
paredifferent framing andarbitration schemes.

In orderto offer morebandwidth, multiple instancesof
this busareimplemented,which alsoallows a limited way
to guaranteequalityof servicefor devices.

1.4.4. The Object. For the object, the samesystemcom-
ponentsneedto be replicated. Theobjectonly hasoneset
of pads,so no tiling is necessary. Hencethe objectman-
ager, which givestheobject accessto thedatabusandex-
changescontrol messageswith its counterparton the sur-
face,might be implementedin thesameunit astheobject
padcontroller, thecomponent which monitors theobject’s
pads.

Figure 3. Networked Surfaces Prototype

Figure3 shows a photoof the implementedprototype,
showing the surfacetiles and their controllers, as well as
objecthardwareperformingthefunctionsof bothcontroller
andmanager. ThesurfacemanagerPCI cardis alsoshown.

2. Networked SurfaceObjects

2.1. Connection and Disconnection

Oneof thenovel andinterestingproblemsin implement-
ing NetworkedSurfaceslieswith thehighly dynamicnature
of thenetwork topology. Connectionanddisconnection can
occuratany time,causinganobjectto beaddedor removed
from thenetwork.

It is important to connect objects to the network as
quickly aspossible,in order to reducethe latency between
thetime theobjecttouches thesurfaceandthestartof data
transfer. For example,a userplacinga PDA on thesurface
shouldnotbekeptwaitinglongbeforetheirPDA couldstart
“synchronising”.

Lessobvious is the importanceof disconnection speed.
Quickdisconnectiondetectionallows thesurfacepadsused
by anobjectto bemadequickly availablefor another con-
nection. Oneparticular casewherethis is important is if a
connectedobject is moved slightly, so that the object still
spansmany of the samesurfacepads,but is moved suffi-
ciently that theobject-to-surface-padmapping is no longer
valid. In this case,the time-to-reconnectionfor the object
dependsonboththeconnectiondelayandthedisconnection
delayso that thepadsareavailablefor reconnection. One
example of this would bea userwith a notebook computer,
who movesit slightly to show a colleague someresultson
thescreen,but would not expect to losetheir network con-
nectionfor asignificantamount of time.

2.1.1. Connection Details. As previously mentioned, the
networkedsurfaceconsistsof many tilesconnectedto asin-
glesurfacemanager. Theuseof many tiles promotesscala-
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bility, aseachtile is responsible for handshakingwith new
objects for its own portion of the surface,andthe surface
managerdoesnotneedto directlycontrol eachsurfacepad.
Figure4 shows thehandshakingprotocol.

In order to handshake,thetileseachsend“beacon” mes-
sageson eachsurfacestrip periodically, cycling through
eachstrip in turn. When an object detectsa beacon, it
“asks” for oneof the functions it requires, which the tile
thenmarks asin “standby”mode. In thestandbymode, the
tile sendsmodified“standbybeacons” periodically on the
strip, but thesebeacons specifywhich function wasasked
for, sootherobjectsreceiving thisbeaconwill notattemptto
usethesamestrip. After theobjecthasreserved onepadfor
eachfunction it requires, it startsresponding to “standby”
beacons with a “connect” message,andthe tile andobject
bothconnectthepadto theappropriatefunction.

This procedure sounds suitablefor the connection pro-
cessas-is,but it is actuallyflawedin thatthereis nowayfor
disconnectionto bedetected,sincethetiles do nothave the
capability to monitor thefunction busses.A connectedpad
would therefore remainso indefinitely. Therefore,thefirst

thingthatanobjectmustdoafterit is connected,is to notify
theSurfaceManager (usingits newly acquirednetwork) of
its existenceandalsoinforming it about thetiles andstrips
on thosetiles throughwhich it is in contact.

Furthermore,to guardagainstasituationwheretile pads
areconnectedbut thesurfacemanager is not informed,due
to bus error, disconnection, a malicious object, or other
means,the tiles aremadeto time out connectedstripsand
returnthemto a handshaking state,unlessa connectionis
“confirmed” by thesurfacemanager on thosestrips.In this
way, the connections processis maderobust - the surface
managermustexplicitly takeresponsibility for anobjectbe-
fore thestripsit is usingareconfirmed.

2.1.2.DisconnectionDetails. In general, disconnectioncan
bedetectedin oneof two ways. Firstly, it canbedetected
usinghardware-basedmethods, in caseswheredisconnec-
tion resultsin differentbehaviour to amerelyidle state.For
example,anincoming power line mayno longerbedriven.
Secondly, disconnection canbedetectedusing“soft” meth-
ods over a network, whereby “ping” messageswould be
sentif nocommunicationoccurredover asettime,anddis-
connectionwould be detectedif the ping werenot replied
to.

While thefirst methodis by definitionfaster(it resultsin
an asynchronous notificationassoonasdisconnectionoc-
curs),on the surfaceit is not possibleto usethis method
sincethe surfacemanager is potentially providing at any
time for many objects all sharingaccessto function busses,
andit would not be ableto infer the disconnectionof any
particular object from thebusbehaviours.Therefore,onthe
surfaceside,the “soft” approachmustbe taken. However,
thisdoesnotimposeoverheadonthenetworks,since“ping-
ing” onlyneedoccurif theobjectwereotherwiseidle; if the
objectwereusingthe network, the user-level objectregis-
trar couldsimply spy on thepacketspassingandnotethat
thatobjectis still connected.

On the object side, disconnection detection could be
achieved using either method, and in particular if an ob-
ject wererequestingpower asa function, this would be a
very goodcandidatefor hardware-baseddisconnection de-
tection.

2.2. Differ ent Networks for Differ ent Devices

It is theaimof theNetworkedSurfacephysicallayer, in-
cluding thetiles andobjectcontrollers,to provide “generic
wires” to thelayerabove, i.e. to provide physical transmis-
sion links which aregeneric,in the sameway that a bun-
dle of wires might be usedas a phonecable,an ethernet
cable,or a power line. The handshaking processexists to
ensurethatthecorrectsurfacewires,the“function busses”,
are connectedto the correct object wires. This is a very



powerful feature,allowing, for example, re-useof exactly
the sametechnology for a completelydifferentsetof ser-
vices,for example a user’s deskmight require a USB-like
peripheralbus,whereasa conferenceroom tablemight use
thegeneric wiresfor aninter-computernetwork to connect
theusers’notebookcomputers.

However, supporting these disparate networks raises
problems, both at the link layer and above. Firstly, the
surfacemanager’s object registrationdaemonmustbeable
to receive messagesfrom objectsonall availablenetworks,
otherwiseobjects will not beableto registerandtheir pads
will time out. Secondly, thesurfacemanager mustbeable
to communicateon eachof the networks it provides,and
musthave thecapacityto simultaneously handle traffic on
all thesenetworks. Finally, muchof the traffic will not be
for thesurfacemanager, sothesurfacemanagermustactas
gateway router for all objectson thesurface.

In order to provide for the various possiblefunction
busses,two classesof functionality canbe identified: IP-
capable andnon-IP-capable. Theformerwould befor, say,
notebook computers using the surfaceas a meansfor ac-
cessingtheinternet. Thelatterwould include PDA’s which
establishserial connectionsin order to synchronise their
contents. Oneinterestingfeatureis that whethera partic-
ular bus is marked IP-capable or non-IP-capable neednot
necessarilydepend on thephysical bus type. For instance,
RS-232is commonly usedfor PDA synchronisation, but it
is alsousedwith SLIPasa link layerfor IP.

For IP-capable networks, traffic mustbe transported to
andfrom the IP stackon the surfacemanager, which will
takecareof thenecessaryrouting.

For non-IP-capable links. the object simply wants to
be connected directly to a particular application which
“knows” how to talk to it. In orderto achieve this, theob-
ject’s datastreamcanbemadeto appearat a “virtual serial
port” on the surfacemanager. Alternatively, by using IP
tunneling, the datastreamcould appear asa virtual serial
port on anothermachine(for example, thephysically clos-
estworkstationto theobject).

3. SurfaceManager Implementation

Thesurfacemanageris implementedasaLinux personal
computercontaining a customPCI card,a softwaredevice
driveranda user-level softwaredaemon.

3.1. Hardware

A customPCIcardis responsiblefor sendingandreceiv-
ing thedatato andfrom thesurface,via thecontrol bus to
thetiles aswell asvia thevarious databusses.A blockdia-
gramof thePCI cardcanbeseenin Figure5.
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3.1.1. PCI Card Overview. In order to beaddressableon
thePCIbus,abridgechip is used,whichtranslatesPCI bus
accessesintoaccessesonalocalbus.Thelocalbusconfirms
to thei960busstandard[6].

Thelocalbusis masteredby thebridgechipandhasone
otherparticipant,a field programmable gatearray(FPGA).
This FPGA contains the logic necessaryto interfacewith
thelocalbusand, moreimportantly, one“module” for each
implementedbus in thesurface2. TheFPGAconfiguration
is implementedin Verilog,ahighlevel description language
for programmablelogic.

Using a dedicatedbridgechip in combination with an
FPGAhasthetwo advantagesof offering a reliableimple-
mentation for the PCI bus on oneside,while at the same
time giving maximumflexibility for the implementationof
the logic controlling the busseson the surface. The latter
point is vital to be able to researchandcomparedifferent
coding andframing methods for the LVDS bussesaswell
asbeingableto doothermeasurements.

TheFPGAalsoconnects to thecomponentsto drive the
differentbusses.In thecaseof theI 	 C busthis circuit only
consistsof two pull-up resistors,sincethe I 	 C protocol is
entirely implemented inside the FPGA. In the caseof the
LVDS busses,onetransceiverchipperbusis needed.

3.1.2. FPGA Modules. TheFPGAdecodesa certainrange
of thei960 addressspaceandsubsequently dividesthis ad-

2N.B. Weuse“module” to describethecontrollogic for onebus,asdis-
tinct from theVerilog keyword “module”, which is similar to a procedure
declaration.
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dressrangefurther into “pages” to accessthevariousmod-
ules;uptoeightmodulescanbeaddressedinsidetheFPGA.

In orderto allow anefficient implementationof thesoft-
ware driver for the PCI card, all the modules inside the
FPGAfollow thesamelayout.

Eachmodule consistsof threecomponents.A block di-
agram of a typicalmodule is shown in Figure6.

Thefirst componentalwaysconsistsof asmallreadonly
memory (ROM), containing up to eightbytesof data.This
ROM describesthetypeof themodule,including additional
parameters. If no module is present in a particular page,
this ROM readsaszeros. Hence,by reading the ROM at
thebeginning of eachpage,thedriver candetermine which
modules arecurrently implementedinside the FPGA and
thereforewhatfunctionsthatparticularsurfaceprovides.

Thesecondcomponentof themodulesthattransmitand
receive data is occupied by two first-in-first-out (FIFO)
buffers,onefor eachdatadirection.

This component includes the addressesto accessthe
memories aswell aslogic to decode necessarycommands
relatedto theFIFOs,for example to clearthem,or to read
how muchspaceis left in eitherof the FIFOs. Also, the
FIFO componenthasthe ability to generateinterrupts de-
pending on how full or emptythebuffersare,andincludes
logic to enableor disabletheseinterruptsaswell asto spec-
ify thelevelsat whichtheinterrupts aregenerated.

The third component,called the “engine” component,
generally consistsof oneor morestatemachines, respon-
sible for sendingand receiving the dataon the particular
bus. Depending on theparticularbus type this component
varies widely in complexity.

As explained, the datatransmittingmodulescangener-
ate multiple interrupts. However, our implementational-
lows only a single interrupt to be raisedon the PCI bus
through the PCI bridge, andhence a specialsystemmod-
ule is needed, to combine the interruptsfrom all the other
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modules. This module deviatesfrom thedescribedlayout.
It doesnotrequireany FIFOsandso,while thefirst compo-
nentagaindescribes this module’s type,its secondcompo-
nentprovidesthe capabilityto maskinterrupts from com-
pletemodulesin a centralizedplace.

Using the modulesdescribedabove, a minimal FPGA
configuration consistsof one interrupt module, one I 	 C
module for thesurfacecontrol bus,anotherI 	 C moduleas
databusfor low bit ratedevicesandoneLVDS-modulefor
highbit ratedevices.

3.2. Software

This section covers the implementation of software-
basedcomponentsof the Networked Surfacesprototype,
namelya Linux device driver, a Linux user-level daemon.
The link-layer arbitration and addressing(both software-
implemented)arethenpresentedin further detail.

3.2.1. Flexible Dri ver. Thesurfacemanager softwareis in
somewaysamirror imageof thesurfacemanagerhardware.
Whereasthe PCI card’s function is to take every type of
incoming traffic andmultiplex it ontotheinternal PCI bus,
the driver software’s function is to take that genericdata,
anddeliver it to theappropriatedestination. Figure7 shows
ablockdiagramof thesoftware.

In keepingwith the“generic wires” concept, thesurface
manager softwareis designedto copewith any typeof net-
worked surface. Insteadof allocatingdatastructuresfor
theprecisenetworkson theprototypePCI card,thedevice
driver dynamically detectsthe networks availableandsets
up structures basedon that information,which is provided
in the“ROM” componentof eachmodule in thePCI card.
The codeanddatastructuresthat communicatewith each
module type(I 	 C, LVDS,etc)is termedan“engine” to mir-



ror thelike-named component in thePCIFPGA,with which
it communicates.

Finally, thereis the questionof wherethe surfacedata
is transmittedto or received from. This is relatedto theis-
sueof whethera busis of theIP-capable or non-IP-capable
network typementionedpreviously. Thesecategoriesmap
neatly into Linux “network” and “character” device cate-
gories,anddatastructuresfor managing theappropriateone
of these“destinations” areinstantiatedfor eachbuson the
surface(the choiceagainbeingdictatedby the PCI ROM
“bustype” field.

3.2.2. Object Registration and Tile Control. In addi-
tion to the datapathoutlinedabove, the surfacemanager
mustprovide control functions for the surface, namelyfor
tile control andfor objectregistration purposes.While this
could alsobedonein kernel space,alongsidethedatatrans-
fer functionsof the device driver, a different solutionis to
usea user-spacedaemon for this purpose,which hasbeen
termedsurfaced to bein line with standard Linux nam-
ing (e.g. nfsd, inetd). This solutionis “safer”, as the
crashing of a user-spaceprogramdoesnotbring thesystem
to ahalt,memory leakscanberecoveredby closingthepro-
gram, andLinux canpre-emptively multitask the daemon
with otherapplications.

For tile control functions,surfaced simply usesthe
PCI card’s tile control bus, which is presentedasa Linux
characterdevice,to sendandreceivecontrol messagesfrom
the tiles. For object registration, surfaced usesioctl’s
to bypassthe Linux networking stackwhencommunicat-
ing with IP-capable objects,andit communicatesdirectly
with non-IP-capable objectsusingcharacterdevices. Fur-
therwork may involve theconstruction of a UDP/IP inter-
faceto surfaced.

3.2.3. Dynamic Addr essing. In order for any objectto be
usedon any NetworkedSurface,a globally uniqueaddress
will berequired, suchasthe48-bit ethernet MAC address.
However, usinganaddressof this lengthin every packet is
notefficient,whenconsideringhow many objectsonecould
conceivablyputona singlenetworkedsurface.

Becauseobjectsareregisteredwith theSurfaceManager
immediately onconnection, this registrationprocesscanbe
usedto assigna short “sessionaddress” to objects,which
they would useandrespondto during that periodof con-
nection. In the prototypesystem,an8-bit addressis used.
Theobjectstill needsagloballyunique IP addressfor com-
municationwith Internet hosts.

Whenan objectis connectedto an IP-capable network,
thesurfacemanagerupdatesits IP routing tablesin order to
provide routing servicesfor thatobject.

For objectsmoving round in a singlesubnet, thesurface
managercanuse“proxy ARP” methodsin ordertomakethe
object “appear” on thatsubnet,so thatotherfixedhostson

thatsubnet areunawarethatthereis anextra“hop” required
to getto thatobject.

For mobile objects,it mayprovenecessaryto useMobile
IP [7] toprovideconnectivity for anobjectonaforeignNet-
workedSurfaces;in thiscase,thesurfacemanagerwouldbe
anidealplaceto executethe“foreignagent”componentof
Mobile IP.

3.2.4. B-LVDS Link Layer. As discussed,in theprototype
system,high bandwidth devices (i.e. IP-capable devices)
will usebussesemploying theB-LVDS modulation system.
Themodulationsystemitself providesno addressingor ar-
bitration functions. This mustbe done in software,andis
performedby thedevicedriver’s B-LVDS “engine”.

The packet format usedis very simple - a byte for the
dynamic addresslisted above, a byte for a packet “type”,
andthena variablenumber of databytes.Thereis no error
detection, asthis is expectedto bedone at higherlayersin
theprotocol stack.

For arbitration, various formsof implicit grantsystems,
suchascarriersensingandcollisiondetection(CSMA/CD)
wererejectedin favour of anexplicit grantsystem,similar
to tokenbus. This is becausethereis anobviouscandidate
for acentralisedbusmanageronNetworkedSurfacebusses,
namelythesurfacemanager, which is awareof all thepar-
ticipantson the bus (a highly dynamic quantity), andcan
thereforeappropriatelyassignbandwidth.

Thismodelcomprisesanexplicit grant messagefromthe
surfacemanager to eachobjectin turn, to which theobject
either replieswith a datapacket, or with a “grant reply”
messageindicatingno data. This also allows the surface
manager to trackdisconnection of objects,usinga timeout
for the object to eithersenddataor a grant reply. Since
themodelinvolvespassingof thetokenbackto thesurface
manager betweeneachobject,theterm“tokenstar” is used
to describethearbitration system.

4. Measurements

Though the current prototype is still undergoing devel-
opment, preliminary measurementshave beencarriedout
to validatethepracticability of theproposeddesign.

This sectionpresents initial measurementsin two areas.
Firstly, the time taken for an object to establisha connec-
tion with thesurfaceis measured. Secondly, thebandwidth
availableontheB-LVDS databusis explored.

4.1. Connection Measurements

As explainedearlier, connectiontakesplacein two dis-
tinct phases.Thefirst phaseinvolvesexecutionof thehand-
shakingprotocol betweenthe tile and object controllers.
The secondphaseinvolves registrationof the objectwith
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Figure 8. Handshaking Timing Measurements
(1 cycle = 112.5ms)

the surfacemanager. Handshaking is expectedto take by
far thelarger shareof time.

In order to make anestimateof theexpectedhandshak-
ing durations, it is notedthat the tiles operatein “cycles,”.
Due to the handshaking protocol detailspresented earlier,
anerror-freehandshake is predictedto take threecycles.

Thecycle time is setat 112.5ms,this beingthetime for
one tile to spendapproximately 4.7ms for eachof its 24
strips. The time per strip is determined by the processing
and communicationtime demands of the prototype hard-
ware.

In orderto test this behaviour, an objectwasplacedat
variousrandompositionsonatile. Ideally, theobjectwould
beplacedonthesurfaceanda timerstartedsimultaneously,
however this is difficult to achieve without the use of a
means of detectingthe placement (suchas pressuresen-
sors).

Theexperiment therefore involvedplacinganobjecton
the surface,but disablinghandshaking until a button was
pushed. The useof a button allowed a timer to be started
simultaneouslywith handshaking.

Two timesweremeasuredfor eachconnection:thetime
from the button pressto a completed handshake, and the
time from a completedhandshake until registration was
complete. Ten measurements were taken for eachof five
random object placements on the surface, giving a total
samplesizeof fifty.

Figure8 shows a histogram of the handshaking times,
given in termsof tile cycles. The timesof the registration
phaseis not shown, asit wasconsistentlymeasuredbelow
7ms,andtherefore playslittle part in determining thecon-
nectiontime.

As expectedmostconnectionstakeplacewithin threecy-
cles.Somerequire oneadditional cycle,possiblydueto bit

errors during handshaking.
Thereis alsoanothergroup of connectionswhich is es-

tablishedin around 7 cycles. Thereis no obviousexplana-
tion for this group; furtherinvestigation is necessary.

Thekey resultof thesemeasurementsis thatin over80%
of casesthe objectwasconnectedin under half a second,
which is nota significantdelayasperceived by humans.

4.2. B-LVDS Data RateMeasurements

Testswerealsodonein order to obtainpreliminary mea-
surements of the available bandwidth of a B-LVDS data
channel.

For variousdataratesfrom 1 Mbit/s to 2.8Mbit/s, ping
packetsof different sizesweresentbetweenthe manager
andanLVDS object. 100pingsweresentfor eachexperi-
ment,andtheaverage ping time wasrecorded. Theresults
areshown in Table1.

Bit Rate PacketSize % Packet AveragePing
(Mbit/s) (bytes) Loss Time(ms)

1 80 0 1.9
1 530 0 10.1
1 2030 0 38.4
2 80 0 1.2
2 530 100 n/a

2.8 80 0 1.0
2.8 530 100 n/a

Table 1. Band widt h Experiment Results

The caseswithout packet lossshow that the datachan-
nelandprototypehardwarecopeadequatelywith thesedata
rates.However, thereareexperimentalfailuresfor 530byte
packetsat 2 Mbit/s and2.8Mbit/s, which canbeexplained
with a closerlook at thecurrent objectprototype.

Theobjectconsistsof a laptopusinga PCMCIA digital
I/O cardto createa bidirectionalinterfaceto theobjectpad
controller. This introducesa bottleneck, in that the PCM-
CIA interfaceusedhasbeenfound to beunableto keepup
with LVDS busspeedshigherthan1Mbit/s. This wascon-
firmed by examining the log files for the PCMCIA driver,
whichshows“FIFO empty”errorsfromtheobjecthardware
during thelossyexperiments.

However, small packets were transmittedwithout any
problem, becausethe LVDS object hardware includes a
FIFO to buffer packets,which is currently 127bytes.This
allowedthesmallpacketsto bewritten completelyinto the
hardwareat thestartof eachtransmission.

Higherbandwidthswerenotexploredbecauseof another
bottleneck, in that the object controller hardwaredoesnot
include an oscillator fastenough to receive dataat speeds



over2.8Mbit/s. Bothof thesebottlenecksarethesubjectof
furtherimprovements.

In summary, theseresultsshow thattheLVDS datachan-
nelcansupport bandwidthsof at least2.8Mbit/s withoutin-
troducingsignificant bit errors (i.e. therewerenobit errors
in 8000bytesof datasentat 2.8Mbit/s during this experi-
ment). Theresultsalsoconfirmthatprototypehardware is
currentlysubjectto bottleneckspreventinggeneralusageat
ratesover 1 Mbit/s.

5. Conclusions

Networked Surfaces provide mobile networking and
power without the useof wiring or radio. They offer the
useran intuitive andconsistentway of connectinga broad
range of devices,while simultaneously providing location
informationabouttheconnecteddevices.

Devicesconnect to theNetworkedSurfaceby negotiat-
ing with autonomoustiles using a handshaking protocol,
andsubsequently registering their presence with a Surface
Manager. TheSurfaceManageractsasbridgefrom thede-
vices to the internet,arbitratingaccessto the high speed
databussesusingthe “token star” schemepresented. The
Surface Manageris implementedasa Linux PCcontaining
a customPCI card,a kerneldevice driver anda user-level
daemon.

This implementation offersaflexible testbedfor contin-
uedresearchinto issuesfrom physical layermodulation to
transport layerhandling of frequent disconnections.
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