
APPLICATIONS OF STATELESS CLIENT SYSTEMS IN
COLLABORATIVE ENTERPRISES

SHENG FENG LI
Computer Laboratory, University of Cambridge, Cambridge CB2 3QG,UK, sfl20@cl.cam.ac.uk

QUENTIN STAFFORD-FRASER
The Olivetti & Oracle Research Laboratory, Cambridge CB2 1QA, UK, qsf@orl.co.uk

ANDY HOPPER
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK, ah@eng.cam.ac.uk

Key words: Internet/Intranet Computing, Computer Supported Cooperative Work (CSCW), Client/Server

Abstract: This paper identifies the current difficulties faced by the IT professionals working for collaborative
enterprises and explains how we exploit and extend the so-called stateless client systems to support those
individuals in cooperative work. Stateless client systems are the software tools that separate the display
interface from the application logic in windowing systems. They embed a client/server architecture, where
the server executes all applications and the client simply presents the frame buffers or screen images to the
user and accepts user input. Since the entire system state is preserved in the server, the client becomes
stateless. By providing these stateless clients with suitable coordination mechanism, we enable
geographically separated users to share workspaces and applications in a work session. And by recording the
messages flowing between the client and the server, we enable temporally separated users to search for and
playback previous work sessions to share knowledge and experience.

1. INTRODUCTION

Teamwork is regarded as an important
attribute in a successful organisation and
organisations may collaborate to form strategic
alliances. The IT professionals working for
technology-intensive enterprises are facing
great difficulties in supporting the ever-growing
system infrastructure and customer base. Since
they may or may not share the same
terminology with their customers ranging from
novices to experienced users, the text
descriptions of a concept by either side, whether
in a spoken form or in a written form, can be
incomplete, inconsistent, and incomprehensible.
Most of the time, a look at each other’s screen
is more illustrative than a thousand words.
Therefore, providing appropriate visual cues for
collaborative work such as remote teaching will
enhance the performance of geographically

separated users. On the other hand, problems
reported by one customer may also be
experienced by the others; solutions provided
by one professional may be reused later on.
Knowledge and experience, if not documented
properly, will be lost or forgotten. So managers
need to keep a record of known problems and
existing solutions to avoid unnecessary
reengineering. Providing appropriate visual
cues in these records again plays an important
role in encouraging temporally separated users
to share knowledge and experience.

We envisioned a system that can separate
the display interface from the application logic
so that the applications can be installed and
executed at one site, but their screen images can
be transferred across the network to be
displayed at a remote site and saved for future
reference. These screen images provide
valuable visual cues to users who share
workspaces and applications, and to users who

share knowledge and experience. The VNC
(Virtual Network Computing) developed at
ORL (Olivetti and Oracle Research Laboratory)
has made such a separation a reality
(Richardson, 1998). Built on any windowing
system, the tool breaks it into client/server
pieces, where the applications run on the server
and the screen images are displayed at the
client. It transfers frame buffers or screen
images in units of rectangles containing pixel
data from the application server to the display
client and transfers user events such as
keystrokes from the display client to the
application server. In (Li, 1998a), we extended
VNC by multicasting the screen images to
multiple users and merging the user events from
them to support synchronous collaboration; we
also recorded the screen images for future
replay to support asynchronous collaboration.
In this paper, we further investigate the
potentials of the VNC system for CSCW and
discuss our extensions to a greater width and
depth. In Section 2, we will describe the
protocol upon which the VNC system is built;
in Section 3, we’ll explain how we extend the
system with suitable coordination mechanism to
support collaborative work. Section 4 will
present the performance results of our system
and its extensions, and finally in Section 5,
we’ll cover the related work at other research
sites.

2. VIRTUAL NETWORK
COMPUTING (VNC)

When Oracle shipped the Network
Computers in 1996, it brought us cheaper
computing by keeping all the applications on
the server and allowing them to be downloaded
to and executed at the client (Halfhill, 1997).
The VNC system pushed this idea to an
extreme by moving the execution of
applications to the server as well. When the
applications are executed at one site, their frame
buffers or screen images can be transferred
across the network to be displayed at a remote
site. Without changing any windowing systems,

VNC runs on their platforms and breaks them
into client/server pieces, namely the VNC
server, the VNC client and the VNC protocol
that connects the previous two. The VNC server
executes all applications and generates the
frame buffer. The VNC client displays these
frame buffers and accepts user input. And the
VNC protocol defines the mechanism that
transfers the frame buffers from the server to
the client and the user events from the client to
the server. Thus the VNC makes the
client/server computing model even more
network-centric with the thinnest possible client
(i.e. the stateless client).

More details of the VNC system and its
protocol can be found in (Richardson, 1998;
Wood, 1997). Here, we only emphasise two
types of messages that are exchanged between
the VNC client/server: the user event message
and the frame buffer update message. We
intercept and manipulate these messages
extensively in our extensions to support
collaborative work.

When the VNC client receives input such as
keystrokes and mouse clicks from the user, it
sends the users event messages to the server for
processing. The user event can be either a key
event or a pointer event, as illustrated by Figure
1a and 1b:

• The up/down flag indicates whether a key is
pressed or released, and in most of the cases,
the key carries its corresponding ASCII
value (Figure 1a).

• The button mask specifies the state of the
mouse buttons, i.e. whether they are pressed
or released; the x position and the y position
identify the current location of the mouse
pointer (Figure 1b).

When the VNC server receives the request
for screen update from the client, it sends the
frame buffer update messages to the client for
displaying. The message format is shown in
Figure 1c and 1d.

• The no. of rectangles specifies the number
of rectangles contained in this update
message. A frame buffer update consists of
a sequence of rectangles, each representing
a rectangular area of the frame buffer.
Together, these non-overlapping rectangles1

cover the frame buffer area which has been
changed since the last update (Figure 1c).

• An update rectangle uniquely identifies a
rectangular area of the frame buffer by
specifying the x, y coordinates of its upper-
left corner, and its width and height. The
encoding specifies the encoding scheme the
pixel data contained in the rectangle will
follow. In the case of raw encoding (i.e. no
encoding at all), pixels is an array of bytes
containing the pixel values within the
rectangle in the scan-line order, i.e. from
left to right and from top to bottom (Figure
1d).

But why rectangles? Why not triangles, or
circles etc.? First of all, the rectangle is a
graphical primitive that is simple to specify.
Only four integers are required to specify a
rectangle, i.e. the x, y coordinates of its upper-
left corner, its width and its height, while
triangles are more complicated. Secondly, a
screen update usually affects only a small area
of the frame buffer. Only this area needs to be
transferred and it can be covered by a number
of non-overlapping rectangles, while circles
cannot cover the area in a mutually exclusive
and collaboratively exhaustive way. Thirdly,
pixels in rectangles can be presented
continuously in a scan-line order, while in

1 The original VNC protocol does not require that the
rectangles contained in the frame buffer update message
be non-overlapping, however, our recording and
playback mechanism enforces such a condition.

triangles or circles, it’s difficult to present
pixels without extra calculation or specification.
And finally, most of the widgets (e.g. windows
and icons etc.) in windowing systems have a
rectangular shape. Therefore, it’s natural to
have rectangles as our basic data unit for
transferring frame buffers. These rectangles
form a continuous stream at real time.

3. SYSTEM ARCHITECTURE
AND FUNCTIONALITY

The VNC client and server communicate
through socket connections. We extend the
client/server architecture by placing a proxy
between the two components to intercept and
manipulate the message streams. The proxy is
where we provide the coordination mechanism
to the clients to support cooperative work.

As depicted in Figure 2, our proxy consists
of a number of surrounding modules and a
central cooperation manager. For each VNC
server, there is a Proxy Client Module (PCM)
that pretends to be a VNC client and intercepts
the frame buffer update messages. And for each
VNC client, there is a Proxy Server Module
(PSM) that pretends to be a VNC server and
intercepts the user event messages. These
messages will be routed to the central
Cooperation Manager (CM) for manipulation.
The CM multicasts the messages from the VNC
server to the multiple collaborative VNC clients
via their corresponding PSMs and merges the
messages from the VNC clients to the shared
VNC server via its corresponding PCM. While
at the same time, it stores the messages to the
log files.

Up/down flag Key

Figure 1a. User event message (key)

Figure 1b. User event message (pointer)

Button mask X position Y position

No. of rectangles Rectangle 1 Rectangle n⋅⋅⋅⋅⋅⋅

Figure 1c. Frame buffer update message

Figure 1d. An update rectangle (raw encoding)

X coordinate Y coordinate Width Height Encoding Pixels

3.1 Coordination

The Cooperation Manager monitors and
coordinates the activities of the surrounding
modules. It provides the coordination
mechanism through the following access
primitives or method invocations:

• Register This method allows the
modules to register themselves in the CM’s
Module Table after they start to execute.
The CM keeps track of all the modules
currently connected to it.

• Remove This method allows the
modules to remove themselves from the
Module Table before they exit from the
system.

• Route This method allows the
modules to send messages to other modules
in the system. The CM maintains a Route
Table that specifies the destination modules
for messages sent by each source module.

• Record This method allows the
modules to record the messages sent by
them. The recording is performed by the CM
and stored in the log files.

• Request This method allows the Proxy
Server Modules to request the floor for their
corresponding VNC clients. After a VNC
client obtains the floor, the CM only routes
the user events coming from this particular

client and our system enters the supervision
mode, i.e. only this supervising client can
operate the shared work session while the
rest of the collaborative clients can only
view the session.

• Release This method allows the Proxy
Server Modules to release the floor for their
corresponding VNC clients. When the VNC
client releases the floor, our system returns
to its normal mode and the collaborative
clients can share the view and the control of
the remote work session.

• Reconnect This method allows the Proxy
Client Module to switch to a new VNC
Server. When this method is invoked, the
PCM closes the connection with the current
VNC Server and reconnects to a new server.
The collaborative clients can now decide
whose server is to be shared and
dynamically switch between various
homogeneous and heterogeneous servers in
a shared work session

Apart from the above methods that are
invoked by the connected modules, the CM also
facilitates a simple notification service to the
clients. It acts as a session server where the
user-related states such as the number of
participants are centralised. When there is a
change of the shared states, it will notify all the
participating clients via their corresponding
Proxy Server Modules.

Figure 2. Proxy Modules and Cooperation Manager

Regarding the log files, there are two types:
one records the frame buffer update messages,
the other records the user event messages. Both
messages are time-stamped when they are
recorded. These time-stamps serve as
synchronisation points in the message
sequences. Figure 3 shows the layout of the two
log files.

The log file of frame buffer update
messages alone is sufficient for the playback of
a recorded session. An asynchronous VNC
client can read these messages from the file in
the same way that the synchronous VNC client
does from the socket. The log file of user event
messages is required solely for the automatic
construction of the index table that maps events
or groups of events to the synchronisation
points in the log file of frame buffer update
messages. In this way, we can seamlessly index
the recorded session by events such as key
words. To speed up the search for key words
during playback, we also insert optional
checkpoints to the log file of frame buffer
update messages. A checkpoint is a frame
buffer update message that contains the pixel
data for the entire frame buffer. While
searching for the key words, the asynchronous
VNC client reads in the nearest checkpoint and
retrieves a full screen image, then it goes
through the recorded session from there with a
number of screen updates until the requested
screen is found.

3.2 Cooperation

We support cooperation in both the
synchronous and the asynchronous mode. In the
synchronous mode, our proxy enables the
sharing of workspaces and applications by
multicasting the frame buffer update messages
to the multiple collaborative users and merging
the user event messages to the shared work
session. As the result, the users simultaneously
share the view and the control of the
workspaces and applications (Figure 4). The
proxy also provides support for user awareness
and floor control. Our work session exemplifies
the calling-in model (i.e. the participants call
into the session to indicate their interest in
joining), with which awareness applications
work well (Patterson, 1996). When a new user
enters the work session, an existing user
departs, or one of the users obtains or releases
the floor, the proxy will notify all the
participating individuals to update their user
interfaces and promote the impression of
working together. The floor control allows
users to share the work session without access
conflicts. It dynamically grants collaborating
users with temporal permissions (or floors) to
guarantee mutually exclusive operations on the
shared workspaces and applications. Our
extended system can support various floor
control policies, for example, the chair
guidance policy (Dommel, 1997), where the IT
professional is the arbiter over the usage of the
floor.

File pointer

Time stamp t1

Frame buffer update

File pointer

Time stamp t2

Frame buffer update

……

……

Figure 3. The log files of frame buffer update messages (left)
and user event messages (right)

User event

Time stamp t1

User event

User event

Time stamp t2

User event

……

……

Synch point at t1

Synch point at t2

In the asynchronous mode, the log files
provide the users with the recorded media. The
users can retrieve and replay previous work
sessions to share knowledge and experience.
Our VNC client, running in its asynchronous
mode, provides VCR-like control and allows
users to play, stop, fast forward and rewind a
recorded session like playing back a video tape.
It also facilitates searching forward and
backward for events such as key words. For
example, while replaying the work session as
depicted in Figure 5, the user will be able to
search for the word “hello” typed in the vi
editor by someone who worked in the session
previously. The screen that displays this word
will be fetched and presented in a way similar
to word searching in a word processor
document.

4. PERFORMANCE

Our applications of VNC have introduced a
trade off. We are trading off bandwidth for a
platform independent infrastructure in
collaborative enterprises. In this section, we
explain why such a trade off is acceptable by
measuring the bandwidth consumption of our
system with carefully designed experiments.

We designed three tasks to be performed by
two collaborative users who share workspaces
and applications (Figure 4) and converse with
each other orally during the tasks. The VNC
server and the proxy are executing on a UNIX

workstation at ORL. User1 runs the VNC client
as a Java application on a second UNIX
workstation at the same site with a 100Mbps
link to the servers. And user2 runs the client as
a Java applet within a Netscape Web browser
on a Windows NT workstation from the
Computer Laboratory of Cambridge University
with a 10Mbps link.

• In task 1, the users type 10 lines of “Hello
World” in the vi editor. User1 types the first 5
lines and user2 types the next 5 lines. This task
involves key events only.
• In task 2, user1 clicks “1+2+…+10=” in the
calculator, and user2 drags the calculator to a
new location after the result of the calculation
appears. This task involves mouse events only.
• In task 3, user1 launches a Netscape browser
with the geometry 600×400, then goes to the
book-marked AltaVista search engine page and
searches for the word “CSCW”. Once the
search results start to appear, user2 presses the
“Page Down” key to view the list of the first 10
matches. This task involves key and mouse
events, and image rendering.

The clock on the screen is ticking while the
users perform the above tasks.

The tables below show the performance
statistics of our system. The results are obtained
by taking the average of three consecutive
trials.

Figure 4. Sharing workspaces and applications Figure 5. Sharing knowledge and experience

We run two sets of tests. In the first set, the
frame buffers are transmitted and saved in
rectangles of pixel data without any encoding or
compression scheme (Table 1), while in the
second set, various encoding schemes are
applied to the pixel data (Table 2). The details
of the encoding schemes we use can be found in
(Richardson, 1998). The Size shows the amount
of data (in megabytes) transmitted from the
VNC server to the VNC clients and stored by
the proxy server during the task sessions. It
does not include the size of the initial whole
screen image transmitted and stored (which is
0.44 Mbytes if the data is not encoded) when
the user first signs into the work session. When
users first connect to a work session, they will
receive a whole screen image reflecting the
current state of the session. The following
frame buffer updates only cover the part of the
screen that is changed since the last update, and
their sizes are usually much less than the size of
the whole screen. The Time is the time (in
seconds) taken by the users to complete the
tasks, and the Peak Rate shows the data
transmission and recording rate at peak time.

Table 1. Performance statistics (raw encoding)
Task1 Task2 Task3

Size(MB) 0.40 0.10 2.86
Time(S) 46 73 187
Peak Rate(MB/S) 0.15 0.03 0.13

Table 2. Performance statistics (with encoding)
Task1 Task2 Task3

Size(MB) 0.03 0.06 0.77
Time(S) 45 39 118
Peak Rate(MB/S) 0.01 0.01 0.06

The transferring and storing of frame buffers
or screen images will inevitably increase the
bandwidth and storage consumption. Much
effort has been spent in reducing the bandwidth
and storage required. Since our workspace and
application sharing is purely computer-based,
we take advantage of the spatial and temporal
correlation of the frame buffers. That is to say,
most of the time when user interactions take
place, only a small area of the screen is

affected. So that we only need to transfer and
record the area that has been changed since the
last screen update, hence keep the data
transferred and recorded to its minimal. With
various encoding schemes for the pixel data
(Richardson, 1998), we observe that the
performance of the VNC client implemented in
C is gradually approaching that of the
traditional X terminal over our 100Mbps Local
Area Network. Some members of our
laboratory have been using the VNC system to
perform daily tasks for years now. In particular,
our Window NT users have been using VNC as
well as or instead of Hummingbird’s Exceed,
an X server running on Windows systems, to
access their X Windows sessions. We have
found that our system has an acceptable
performance in Local Area Network (LAN) and
it’s also useful for occasional work over Wide
Area Network (WAN), however, it’s too slow
to be usable with dial up links. In (Li, 1998b),
our experiments show that the new medium (i.e.
the stream of rectangles containing pixel data of
the screen images) with lossless encoding
consumes less storage space than required by an
equivalent MPEG video with lossy
compression, when the screen updates are not
too complex. Therefore we are convinced that,
in the near future, when multimedia
applications such as video-on-demand gain their
popularity, our idea of “frame-buffer-on-
demand” will naturally follow.

5. RELATED WORK

OK, we have sacrificed the bandwidth.
What have we got in return? In this section, we
explain why our trade off is worthwhile by
comparing our technology with the traditional
technologies.

The traditional systems that enable the
sharing of single-user collaboration-unaware
applications are generally based on the X
protocol. For example, the X Teleconferencing
and Viewing (XTV) from the University of
North Carolina at Chapel Hill and Old

Dominion University is a system for sharing X
Window applications synchronously among a
group of distributed users (Abdel-Wahab,
1991). The reliance of XTV on the X protocol
is conceptually at the same level as the reliance
of our extended system on the VNC protocol.
However, X protocol requires the display
platform to run a program called the X server.
As the result, XTV can only work under the X
Window System environment. The VNC
protocol is independent of the underlying
windowing system, as frame buffers can be
transferred across heterogeneous platforms.
Hence, the VNC clients are ubiquitous and can
share X Window applications on Windows-NT
platforms and vice versa. Furthermore, the
VNC protocol is much simpler because all the
system state is maintained on the server and the
client is completely stateless, which makes the
frame buffer update and the user event the only
two main types of messages in exchange.
Therefore we encounter fewer problems while
expanding the VNC system to enable
workspace and application sharing. Taking the
floor switching mechanism as an example, in
XTV, the floor can be switched only if there is
no pending reply for a request (Abdel-Wahab,
1994), while in our system there is no such
dependency, as neither the frame buffer update
nor the user event requires replies. In (Li,
1998a), we discussed the similarity and the
difference between XTV and our system
extensively.

Our applications provide the framework to
integrate synchronous and asynchronous
collaboration (Li, 1998a). We have compared
the synchronous mode of operations with XTV.
Here, we compare the asynchronous mode of
operations with traditional systems that support
the recording and replaying of computer work
sessions. Lotus ScreenCam (Lotus, 1997) uses
dynamic screen captures to create movies for
training and customer support. It delivers
instructions and procedures with the exact
visual cues that illustrate what to do. However,
a work session can only be recorded and
replayed on Windows platforms. Our platform

independent nature of the VNC protocol again
brings us the advantage, i.e. we can record a
Unix session and replay it on a Windows PC
and vice versa.

Apart from the VNC, other stateless client
or thin client systems also exist. Kanter
presented the so-called thin-client/server
computing model in (Kanter, 1998), using
Citrix Systems as an example. Built on the
Independent Computing Architecture (ICA)
protocol, which is conceptually similar to the
VNC protocol, the Citrix WinFrame allows
Windows-based applications to run at one
location and display the program’s user
interface somewhere else, even over low-
bandwidth connections. This system then leads
to Microsoft’s Window-based Terminal Server
code-named Hydra (Microsoft, 1997a), and
Citrix Systems’ add-on MetaFrame (formerly
known as pICAsso). Our system also conforms
to the thin-client computing model. We say that
our clients are stateless (the thinnest), because
unlike some other thin-client systems that may
manage some states locally at the client to
optimise for low-bandwidth situations, our
system maintains all the system states in the
server. With the stateless nature of the client,
mobile users can connect to and disconnect
from the work session arbitrarily, and every
time they reconnect, they see exactly the same
state as when the session was last accessed.

The thin-client systems described above can
be exploited and extended to support
collaborative work. Citrix WinFrame has a
feature called “shadowing”, which allows one
user to view the video, keystrokes and mouse
movements of another user’s session (Kanter,
1998). NetMeeting (Microsoft, 1997b) shares
the same protocol T.128 (formerly known as
T.SHARE) with Hydra. T.SHARE is also
conceptually similar to the VNC protocol. It
enables the multiple NetMeeting participants to
see the image of the shared applications. Unlike
WinFrame and NetMeeting that are closely tied
to Windows operating system, our system is
platform independent. We can share Windows

applications on Unix workstations and share X
Windows applications on PCs. We took our
system a step further to facilitate recording of a
synchronous session for asynchronous users,
and automatically index the recorded session
with user events to facilitate searching, hence
provide support for synchronous and
asynchronous collaboration in an integrated
manner.

6. CONCLUSION

This paper describes how we exploit and
extend a stateless client system known as the
VNC (Virtual Network Computing) to support
collaborative work. We enable users to share
workspaces and applications synchronously and
to share knowledge and experience
asynchronously. To achieve this, we place a
proxy between the VNC client and server to
provide the coordination service. As the result,
the system state is maintained in the server, the
user state is managed in the proxy, and the
client remain stateless.

Our next stage of the project is for us to
create a knowledge pool using the recorded
sessions as the media to improve the sharing of
knowledge and experience among IT
professionals and their customers. This
knowledge pool will contribute to what Tanaka
refers to as the Meme Pool (Tanaka, 1996). The
users will be able to edit, publish, browse
through, and playback recorded sessions on the
World Wide Web (Berners-Lee, 1996). We
believe that the seamless recording of work
sessions and the visual cues provided by our
media will encourage users to share their
knowledge and experience.

ACKNOWLEDGEMENT
Sheng Feng Li is a Ph.D. student sponsored

by EPSRC and ORL, Quentin Stafford-Fraser is
a research engineer at ORL, and Andy Hopper
is the professor of Communications
Engineering and the director of ORL. We
would like to thank the STAR group of ORL

for supporting the project and Antony Rowstron
from the Laboratory for Communications
Engineering for his valuable comments.

REFERENCE

Abdel-Wahab, H. & Feit, M. 1991, “XTV: A Framework
for Sharing X Window Clients in Remote Synchronous
Collaboration”, Proceeding, IEEE Conference on
Communication Software: Communication for Distributed
Applications & Systems, Chapel Hill, North Carolina,
April, 1991
Abdel-Wahab, H. & Jeffay, K. 1994, “Issues, Problems
and Solutions in Sharing X Clients on Multiple Displays”,
Journal of Internetworking Research & Experience, 1994
Berners-Lee, T. 1996, “WWW: Past, Present, and
Future”, IEEE Computer, October, 1996
Dommel, H-P & Garcia-Luna-Aceves, J. 1997, “Floor
control for multimedia conferencing and collaboration”,
Multimedia Systems, no. 5, pages 23-38, 1997
Halfhill, T. 1997, “Cheaper Computing”, BYTE, April,
1997
Kanter, J. 1998, Understanding Thin-Client/Server
Computing, Microsoft Express, ISBN 1-57231-744-2,
1998
Li, S. & Hopper, A. 1998a, “A Framework to Integrate
Synchronous and Asynchronous Collaboration”, IEEE
Seventh International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WET ICE’98), IEEE Computer Society Press, June 17-19,
1998.
Li, S. & Hopper, A. 1998b, “What You See Is What I
Saw: Applications of Stateless Client Systems in
Asynchronous CSCW”, The Fourth International
Conference on Computer Science and Informatics
(CS&I’98), Research Triangle Park, North Carolina, Oct.
23-28, 1998.
Lotus 1997, “Lotus ScreenCam”, http://www.lotus.com/
products/screencam.nsf, July 1997
Microsoft 1997a, “Microsoft Windows NT ‘Hydra’ and
Windows-based Terminals”,
 http://www.microsoft.com/ntserver/info/hydra.htm,
September 1997
Microsoft 1997b, NetMeeting 2.0 Reviewers Guide, June
1997, http:// www.microsoft.com/netmeeting/
Patterson, J., Day, M. & Kucan, J. 1996, “Notification
Servers for Synchronous Groupware”, ACM 1996
Conference on Computer Supported Cooperative Work,
pages 122-129, http://www.lotus.com/research
Richardson, T., Stafford-Fraser, Q., Wood, K. & Hopper,
A. 1998, “Virtual Network Computing”, IEEE Internet
Computing, Vol. 2 No. 1, January/February 1998
Tanaka, Y. 1996, “Meme Media and a World-Wide Meme
Pool”, ACM Multimedia’96, Boston MA, USA, November
18-22, 1996
Wood, K., Richardson, T., Bennett, F., Harter, A. &
Hopper, A. 1997, “Global Teleporting with Java: Toward
Ubiquitous Personalised Computing”, IEEE Computer,
vol. 30, no. 2, February, 1997

