
What You See Is What I Saw: Applications of

Stateless Client Systems in Asynchronous CSCW

           S. F. Li A. Hopper
Computer Laboratory Department of Engineering
University of Cambridge University of Cambridge
Cambridge CB2 3QG, UK Cambridge CB2 1PZ, UK
   sfl20@cl.cam.ac.uk          ah@orl.co.uk

Abstract

Thin-client systems are becoming favourable in today’s
computing, as today’s working environment tends to be
mobile and ubiquitous. Stateless-client systems not only
conform to the thin-client paradigm, but also extend to
free the client completely from preserving any system
state. In the stateless-client systems, the application
processing takes place in the server, only changes to the
user interface are sent to the client. Therefore, the client
can connect to and disconnect from the server arbitrarily
from different endpoints, and every time it connects, it
receives the user interface with exactly the same state as
when the system was last accessed. This technology of
preserving all system state in the server and sending only
the user interface to the client in the form of pixel images
has motivated us to incorporate it in our CSCW
(Computer Supported Cooperative Work) tools to support
asynchronous as well as synchronous collaboration. Our
paper will focus on how we make use of the stateless-
client systems to support asynchronous CSCW on the
World-wide Web by recording the changes to the user
interface during a work session and replaying the session
for any collaborative participant who is temporally
separated. The recorded medium is a stream of
rectangles containing pixel data of the user interface.
Experiments show that the new lossless medium in
general consumes less storage space than required by an
equivalent lossy MPEG (Moving Picture Experts Group)
video.

1. Introduction

The first client/server revolution chain-sawed mainframe
applications into client and server pieces where the client
managed the user interface and the server managed the
shared resources. In [1], Orfali et al. predicted that during
the second revolution, when client/server computing
evolved from the Ethernet era to the intergalactic era, the
clients and the servers that ran on the LAN (Local Area

Network) would roam the intergalactic WAN (Wide Area
Network). Today we see Web clients, in the form of Java
applets, roam the Internet. To ensure client mobility, it is
import that the clients remain thin in size so that they are
Internet download-able. However, code mobility alone
does not guarantee mobile computing. We need
somewhere to maintain the computing state, and this is
done in the server. The new trend of client/server
computing is to move as much computation and state
information from the client to the server as possible to
keep the client thin to such a degree that the client
requires minimum human resources to develop and
minimum hardware resources to run. In other words, the
clients become stateless. ORL’s (Olivetti and Oracle
Research Laboratory) VNC (Virtual Network Computing)
[2], Citrix WinFrame [3] and Microsoft’s Terminal
Server code-named Hydra [4] are examples of such
stateless client systems.

Now that the client is reduced to simply present rather
than to manage the user interface, it brings us benefits
such as low total cost of ownership, zero administration
[4], etc. It does not take us long to incorporate this new
technology in our CSCW tools. We experimented sending
a desktop user interface to several clients simultaneously
to enable workspace and application sharing in a work
session. We also recorded changes to the user interface
during the session and replayed for participants who
worked at a different time to enable work session
reviewing [5]. In this paper, we focus on how we extend
ORL’s VNC system to support asynchronous CSCW. In
Section 2, we will describe the protocol upon which the
VNC system is built; in Section 3, we’ll explain how we
perform recording and replaying of a work session.
Section 4 will present the results of our applications.
Finally in Section 5, we’ll compare our work with similar
work carried out at other research sites.

2. The RFB (Remote Frame Buffer) protocol



The protocol underlying the VNC system is the RFB
protocol [2, 6]. This is a client/server protocol for remote
access to the GUI (Graphical User Interface) of
windowing systems. The remote endpoint where the GUI
is displayed and where the user interacts with the GUI is
called the RFB client and the endpoint where the GUI is
generated or where the frame buffer originates is the RFB
server.

The RFB client sends keyboard and mouse events to the
RFB server, as well as regular requests to update its frame
buffer.

Upon request, the RFB server sends frame buffer updates
to the RFB client. A frame buffer update message has the
following format:

Type No. of rectangles Rectangle 1 Rectangle n⋅⋅⋅⋅⋅⋅

Figure 1a. Frame buffer update message

Figure 1b. An update rectangle (raw encoding)

X coordinate Y coordinate Width Height Encoding Pixels

• The Type specifies the message type, i.e. frame buffer
update in this case (Figure 1a).

• The No. of rectangles specifies the number of
rectangles contained in this update message. A frame
buffer update consists of a sequence of rectangles,
each representing a rectangular area of the frame
buffer. Together, these non-overlapping rectangles
cover the frame buffer area which has been changed
since the last update (Figure 1a).

• An update rectangle uniquely identifies a rectangular
area of the frame buffer by specifying the X, Y
coordinates of its upper-left corner, and its width and
height. Encoding specifies the encoding scheme the
pixel data contained in the rectangle will follow. In
the case of raw coding (i.e. no encoding at all), Pixels
is an array of bytes containing the pixel values within
the rectangle in the scan-line order, i.e. from left to
right and from top to bottom (Figure 1b).

The RFB protocol is a generic protocol, which is
independent of hardware platforms, operating systems or
windowing systems and can be implemented in
programming languages such as Java or C/C++.

3. Our applications

In our applications, we make use of the RFB (Remote
Frame Buffer) protocol to support work session
reviewing. This is a two-stage process, which involves
recording the work session during synchronous
collaboration and replaying it at a later stage for
asynchronous collaboration.

3.1  Recording

Recording of a work session is achieved by seamlessly
placing a proxy server between the RFB client and the
RFB server [5]. This proxy server can intercept, store and
forward messages between the RFB client/server without
changing either of them. To facilitate future replaying, the
frame buffer update messages are time-stamped and
saved to a log file. The log file contains a sequence of
records shown in Figure 2.

          

File pointer

Time stamp

Frame buffer update

File pointer

Time stamp

Frame buffer update

……

……

Record i

Record i+1

Figure 2. Records in the log file

Each record has three attributes, the file pointer, the time
stamp and the frame buffer update message. The file
pointer always points to the previous record in the
sequence; the time stamp records the time at which the
following message is saved; and the frame buffer update
message is the original message sent by the RFB server to
the RFB client during the work session. The order of the
messages sent by the RFB server is maintained in the log
file.

The rectangles in the frame buffer update messages
contain absolute pixel values. These rectangles are
sufficient for replaying but insufficient for rewinding. As
the new pixel value replaces the old in the frame buffer,
the latter will be lost and no longer recoverable unless we
trace back to the nearest past rectangle that contains this
pixel. To support VCR-like control (i.e. fast forward,
rewind, play, stop etc.) in a more efficient way, we
convert these rectangles so that they contain relative pixel
values (or delta values) instead before they are stored.
Such conversion can be easily done with the XOR
(Exclusive OR) operator. For example, if the old value is
the byte 01010101 and the new value 00001111, the
relative value or delta value can be calculated as
01010101 XOR 00001111 = 01011010. With
the help of the delta value, during replaying we can
calculate the new value from the old: 01010101 XOR
01011010 = 00001111; and during rewinding we
can recalculate the old value from the new: 00001111
XOR 01011010 = 01010101.

3.2  Replaying



The replaying of the work session is performed in a tool
called the Reviewer. A screen snapshot of the Reviewer
running as a Java applet in the Netscape Web browser is
shown in Figure 3.

    
Figure 3. Work session review on the Web

The Reviewer provides the user with VCR-like control
(i.e. fast forward, rewind, play, stop etc.) of the recorded
session. It communicates through sockets with a Review
Server that manages the session log files. The Review
Server is responsible for tracing the time-stamped frame
buffer update messages forward and backward (Figure
2.), and for sending these messages, together with their
corresponding time-stamps, to the Reviewer in the correct
sequence. This sequence depends on whether the update
requests sent by the Reviewer are for replaying or
rewinding. Like the RFB client (also known as the
Viewer), the Reviewer just displays the frame buffer
updates received, except that the update messages now
come from the Review Server rather than the RFB server
and require simple calculations to convert delta pixel
values to absolute values. With the time-stamps, the
Reviewer can replay the messages at the same rate as
when they were recorded. These time-stamps will be
ignored during fast forwarding or rewinding. Due to the
security restrictions, the Reviewer, when running as an
applet, cannot open sockets to a computer other than the
one from which the applet is downloaded [7]. Therefore,
we encapsulate our multi-threaded Review Server in an
HTTP (Hyper Text Transfer Protocol) server which
processes HTTP requests from the Web user for applet
downloading and connects the applet to the Review
Server after downloading is completed.

The Reviewer can playback the session according to a
selected resolution. If the user selects a lower resolution
than full screen, only a subset of the pixels in the screen
image (or frame buffer) will be displayed. For example,
the user can choose to display one pixel from every 2×2
pixel square in the screen image reducing the image width
and height by a factor of 2 respectively. By doing so, the
user will be able to browse through work sessions with

trade-offs between the transmission bandwidth required,
the display area available, and the details of the session.

To speed up the playback, the Reviewer can retrieve the
log file to its local disk by means of, say the FTP (File
Transfer Protocol) and then replay the session locally by
reading directly from the retrieved file. However, Java
applets cannot read or write files on the Web user’s disk
for security reasons [7], so the Reviewer has to run as a
Java or C/C++ application if a local replay is desirable.
Future releases of Java will provide more flexibility on
security controls.

4. Experiments

To evaluate our applications, we designed three tasks for
recording and replaying.

• In task 1, the user types 10 lines of “Hello World” in
the vi editor.

• In task 2, the user presses “1+2+…+10=” in the
calculator, and drags the calculator to a new location
after the result of the calculation appears.

• In task 3, the user launches a Netscape browser with
the geometry 600×400, then goes to the bookmarked
AltaVista search engine page and searches for the
word “CSCW”. Once the search results start to
appear, the user presses the “Page Down” key to
view the list of the first 10 matches.

The clock on the screen is ticking while the user performs
the above tasks.

The table below shows the performance statistics of the
applications. During all the tasks, the servers including
the RFB server, the proxy server and the Review Server
are all executing on a UNIX workstation at ORL. And for
each task, we run a local test and a remote test. In the
local test, the clients including the Viewer and the
Reviewer run as Java applications on a second UNIX
workstation at the same site. While in the remote test,
they run as Java applets within a Netscape Web browser
on a Windows NT workstation from the Computer
Laboratory of Cambridge University. The results are
obtained by taking the average of three consecutive trials.

The Record Size shows the amount of data (in megabytes)
transmitted from the RFB server to the RFB client and
stored by the proxy server during the task sessions. The
pixel data transmitted and recorded follows raw encoding,
i.e. no compression scheme is applied. The Record Time
is the time (in seconds) taken by the user to complete the
tasks. The Replay Time is the time required for the user to
replay the recorded sessions in the fast forward mode.

Quite predictably, in the remote tests it takes longer to
complete the same tasks than in the local tests, as the



Task 1 Task 2 Task 3
Local Remote Local Remote Local Remote

Record Size (Mbytes) 0.99 0.87 0.62 0.54 4.63 3.59
Record Time (Sec) 39 41 25 55 100 150
Replay Time (Sec) 14 39 12 50 27 100
X Time (Sec) 29 17 45
MPEG Size (Mbytes) 2.62 3.50 4.99

Table 1. Performance statistics
network connection between the client and the server is
slower. However, the size of the data transmitted and
recorded in the remote tests appears to be smaller. This is
because the RFB client is adaptive to its computing
environment, i.e. when it detects a slower connection, it
sends less update requests to the RFB server. In other
words, there exists a trade-off between the network
bandwidth and the granularity of the frame buffer
updates.

For comparison, we have recorded the tasks using the
equivalent MPEG video, and the results are as listed in
the last two rows of Table 1. The X Time is the time taken
by the same user to complete the same tasks on a local X
display and the MPEG Size is the size of the resulting
MPEG stream generated by an MPEG encoder [16]. Our
frame buffer has a width of 796 and a height of 576
pixels, the subsampling ratio is 4:1:1, the frame rate is in
the range of 5 to 15 fps (frames per second) and the
MPEG encoder parameters are set to their corresponding
default values [16]. In general, our recording consumes
less storage space than required by the equivalent MPEG
video and the savings depend on the complexity of the
scenes. When the screen images are not complex, as in
Task1 and Task2, our medium can save up to 80% of the
storage space.

We observe that it takes a longer time to complete the
tasks with our applications than with a local X display,
sometimes three times as much (Table 1). This is partially
because of the heavy traffic involved between the RFB
client/server, and partially because of the slow drawing
mechanism of the Java programming language [6]. When
the network bandwidth between the RFB client/server is
guaranteed, when the speed of Java increases in the later
versions, and when we apply various compression
schemes to the pixel data, our performance will improve.
The RFB client (i.e. the Viewer) implemented in C has
already approached the X display performance, as it takes
the user 28, 19 and 46 seconds to complete the three tasks
respectively.

5.  Related work

CSCW (Computer Supported Cooperative Work) systems
can be classified according to the time/space matrix [8].
They are often referred to as either synchronous or
asynchronous (same time/different time), and either
colocated or remote (same place/different place).

The majority of the CSCW systems supporting shared
workspace and applications operate in the synchronous
mode, determined by the WYSIWIS (What You See Is
What I See) paradigm [10]. They require the real-time
presence of all the participating individuals. However, a
significant portion of the collaborative activities in
practice occurs in an asynchronous manner. This is due to
the fact that globally distributed teams may work in
different time zones and colocated groups may work in
shifts [9]. The additional difficulties of sharing workspace
and applications asynchronously can be reduced by
recording and replaying the collaborative session for
absent participants, so that they can review the work done
in order to continue the incomplete task. The video
technology seems to be a natural choice for recording and
replaying. Our applications differ from this traditional
technology in the following ways:

• Video capture requires extra devices such as
cameras, video capture cards, etc. Although these
devices are becoming more integrated with
computers, they are not ubiquitous, i.e. not all the
workstations are equipped with them. In our
applications, both the Viewer and the Reviewer can
be downloaded to and executed within a Web
browser, and the recording and replaying can be
performed ubiquitously and seamlessly without extra
devices, hence answering to Robert Johansen’s call
for “any time, any place” support [11].

• Video technology is widely used in CSCW systems
such as video conferencing (synchronous
collaboration) [12] and video mail (asynchronous
collaboration) [13], however, in the context of
workspace and application sharing, the technical
limitations of video taping computer screens make
the screen very difficult to read during playback [14].
Our applications adopt the idea of screen capture
rather than video capture and the resulting medium is
a stream of rectangles containing pixel data of the
screen images.

• Although Hiroshi Ishii et al. identified video as the
most powerful medium for fusing a variety of
traditionally incompatible workspaces to create an
open shared workspace [14], our workspace and
application sharing is purely computer-based,
therefore we can take advantage of the spatial and
temporal correlation of the frame buffers. Most of the
time when user interactions take place, only a small
area of the screen is affected, so that we only need to



record the area which has been changed since the last
screen update, hence keep the data recorded to its
minimal. Our experiments show that our medium
with lossless encoding consumes less storage space
than required by an equivalent MPEG video with
lossy compression.

• Video technology alone only supports viewing of the
workspace and applications, it does not support
remote operations. After replaying the session, we
may want to access and control the same workspace
and applications seen in the recording to carry on the
work. In our applications, the synchronous and the
asynchronous collaborations are integrated: we use
the Reviewer for replaying (asynchronous
collaboration) and the Viewer for remote operations
(synchronous collaboration). These operations (e.g.
key presses), when saved, can be used to
automatically index a recording, to provide searching
facilities during playback for queries such as “what
happened last time when the user typed the command
xterm?”

Similar to our applications, Lotus ScreenCam [15] uses
dynamic screen captures to create movies for training and
customer support. It delivers instructions and procedures
with the exact visual cues that illustrate what to do, hence
the concept of WYSIWYD (What You See Is What You
Do). However, a work session can only be recorded and
replayed on Windows platforms even though StreamCam,
a streaming server technology from the same company,
enables the movie playback directly from a Web page.
Our approach is more generic, i.e. we can record a Unix
session and replay it on a Windows PC or vice versa.

6. Conclusion

In this paper, we have presented a new medium, i.e. the
stream of rectangles containing pixel data of the screen
images, generated by a Stateless Client System known as
the VNC. With this medium, we can record and replay a
work session to enable reviewing involved in
asynchronous collaboration, introducing the concept of
What You See Is What I Saw.

Acknowledgement

Sheng F. Li is sponsored by a CASE grant from the
Engineering and Physical Sciences Research Council
(EPSRC) and the Olivetti and Oracle Research
Laboratory (ORL). Andy Hopper is the professor of
Communications Engineering and the director of ORL.
The authors would like to thank Quentin Stafford-Fraser,
Tristan Richardson and Sai-Lai Lo for their support, and
Stuart Wray and Antony Rowstron for their comments.

Reference

[1] R. Orfali, D. Harkey and J. Edwards. “Intergalactic
Client/Server Computing”, Byte, April, 1995

[2] T. Richardson, Q. Stafford-Fraser, K. R. Wood and A.
Hopper, “Virtual Network Computing”, IEEE Internet
Computing, Vol. 2 No. 1, January/February 1998

[3] “ICA Technical Paper”, Citrix Systems, Inc.,
http://www.citrix.com/technology/icatech.htm, March 1996

[4] “Microsoft Windows NT ‘Hydra’ and Windows-based
Terminals”, Microsoft Corporation, http://www.microsoft.
com/ntserver/info/hydra.htm, September 1997

[5] S. Li and A. Hopper, “A Framework to Integrate
Synchronous and Asynchronous Collaboration”, IEEE
Seventh International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WET ICE’98), IEEE Computer Society Press, June 17-19,
1998.

[6] K. R. Wood, T. Richardson, F. Bennett, A. Harter and A.
Hopper, “Global Teleporting with Java: Toward Ubiquitous
Personalised Computing”, IEEE Computer, vol. 30, no. 2,
February, 1997

[7] M. Morrison, et al., “Java 1.1 Unleashed Third Edition”,
Sams.net Publishing, ISBN 1-57521-298-6, page 187-188,
1997

[8] Francois Fluckiger, “Understanding Networked
Multimedia”, Prentice Hall, ISBN 0-13-190992-4, page
113-114, 1995

[9] I. Gorton, I. Hawryszkiewycz and K. Ragoonaden,
“Collaborative Tools and Processes to Support Software
Engineering Shift Work”, BT Technology Journal, vol. 15,
no.3, July 1997

[10] W. Reinhard, J. Schweitzer, G. Völksen and M. Weber,
“CSCW Tools: Concepts and Architectures”, IEEE
Computer,  vol.27, no.5, May 1994

[11] J. Grudin, “Computer-Supported Cooperative Work:
History and Focus”, IEEE Computer, vol.27, no.5, May
1994

[12] T. King, “Pandora: An Experiment in Distributed
Multimedia”, Olivetti and Oracle Research Laboratory
Technical Report 92-5, Proceedings of Eurographics, 1992

[13] S. Wray, T. Glauert and A. Hopper, “The Medusa
Applications Environment”, Olivetti and Oracle Research
Laboratory Technical Report 94-3, Proceedings of the
International Conference on Multimedia Computing and
Systems, Boston, MA, May 1994

[14] H. Ishii and N. Miyake, “Toward An Open Shared
Workspace: Computer and Video Fusion approach of
TeamWorkStation”, Communications of the ACM, vol. 34,
no.12, December 1991

[15] “Lotus ScreenCam”, Lotus Development Corporation,
http://www.lotus.com/products/screencam.nsf, July 1997

[16] A. Hung, “PVRG-MPEG CODEC 1.1”, Portable Video
Research Group, Stanford University, November 1993


