
The Design and Implementation of a High-Speed User-Space Transport
Protocol

Glenford Mapp and Steve Pope
Olivetti & Oracle Research Laboratory

24a Trumpington Street
Cambridge UK

CB2 1QA

Andy Hopper
Computer Laboratory

University of Cambridge
New Museum Site
Pembroke Street
Cambridge UK

CB2 3QG

Abstract

Audio and video are fast becoming an integral part of new com-
puting environments. These media have transport requirements
which differ from the normal bursty computer traffic. There
is therefore a need to explore transport protocols that can pro-
vide different qualities of service. User-space implementations
of such protocols are particularly interesting because they can
be easily tested and refined. This paper discusses the design
and implementation of a high-speed user-space protocol called
A1. Its preliminary performance in an ATM environment is
presented and compared with an efficient kernel implementa-
tion of TCP/IP.

Motivation

The Olivetti & Olivetti Research Laboratory (ORL) has a long
tradition of research into high speed networks and multime-
dia applications [Hopper90], [Wray94]. These applications
have different transport requirements which can be met by a
transport protocol which offers various qualities of service. The
Xpress Transport Protocol (XTP) [Strayer92] can provide such
functionality and preliminary performance of the SandiaXTP
implementation [Strayer94] was reported in [Mapp95].

SandiaXTP uses a daemon process which implements the pro-
tocol and it was felt that its performance could be improved
by a user-space implementation. However this effort high-
lighted certain issues that were more fundamental to the design

of transport protocols which could only be explored with the
development of a new transport protocol. This paper discusses
the design and implementation of a user-space transport proto-
col called A1.

Observations on Transport Protocols

In transport protocol processing the receiver generally has more
work to do than the sender. Thus reducing receiver processing
should be a main goal of protocol design. Two obvious ways
of addressing this issue is to make the receiver as dumb as pos-
sible and to provide the receiver with as much information as
possible, even though this could increase the processing time
of the sender.

As an illustration of the latter approach, consider the area of re-
transmission. Let us suppose that we want to tell the receiver
that a packet has been retransmitted by setting a bit in its header.
This obviously requires the checksum of the packet to be re-
computed the first time it is retransmitted. However, if retrans-
mission rates are very low and checksumming is fast, this over-
head is worthwhile if it improves the performance of the re-
ceiver.

Latency is a critical issue for multimedia applications. Many
transport protocols introduce added latency by too readily
buffering data. A good example is the situation where the flow
control window is full. Most protocols will buffer some amount
of data until the window is opened again. However, for multi-
media applications that would like the receiver to have the most



current data as soon as possible, it may be preferable to throw
away the data and wait for the next item of data from the hard-
ware. In these situations it would be better for the transport pro-
tocol to signal to an application that its flow control window is
full and let the application take appropriate action.

When designing transport protocols, it is essential to take into
account the interaction between transport protocols and op-
erating systems. This is particularly true in user-space pro-
tocol design. When the process is finally scheduled there
may be several packets waiting to be processed. If the
protocol supports bidirectional communications, these pack-
ets may consist of data sent by the remote end as well
as acknowledgements(ACKs) and/or negative acknowledge-
ments(NACKs) packets indicating that data packets sent by the
local end have been received correctly at the remote end or
some packets have been corrupted or lost. Most transport pro-
tocols would simply process these packets sequentially. This
may not be the optimal approach.

If the local end is transmitting multimedia data and would like
to maintain low jitter, then it would be beneficial to process the
control packets such as ACKs and NACKs first. In the case of
ACKs, this may open the flow control window allowing appli-
cations transmit data immediately. If data is being sent reliably
then valuable buffer space held by already transmitted packets
waiting for acknowledgements to arrive can be freed immedi-
ately. In the case of NACKs, the lost or corrupted data could be
transmitted immediately, improvingoverall performance. Such
priority treatment can also be extended to retransmitted packets
if they are clearly identified.

Existing transport protocols do not consider the issues outlined
above.

Protocol Design Decisions for A1

In this section some fundamental issues in the design of a trans-
port protocol are discussed and the design decisions taken for
A1 are presented.

• Block vs Byte Processing: Protocols like TCP and XTP
are implemented as a stream of bytes in which each byte in
the stream can be identified as a individual entity. Whilst
this may be good for a protocol whose main purpose is
to provide a reliable bytestream, a block-based approach
may be more appropriate where the transport protocol pro-
vides differing qualities of service, because for many mul-
timedia applications receiving a corrupted set of bytes is
usually of little consequence to their overall operation.
Since checksums in most transport protocols are done on
blocks of data and not on individual bytes, if a block is cor-
rupted during reliable transfer the entire block will have to
be retransmitted anyway. In addition we can easily con-
struct a reliable bytestream from a block-based protocol.

A1 is implemented using blocks rather than bytes.

• Selected Retransmission: Selective retransmission was
adopted as the mechanism for data recovery rather than us-
ing the go-back-n approach used in TCP. This is because
it was felt that only packets that were actually lost or cor-
rupted should be retransmitted. Multimedia applications
send large amounts of data and retransmission can easily
overload switches and routers.

• Explicit Round-Trip Time Measurements: The round-
trip time, the time taken to send data and get a response,
should be explicitly measured on a periodic basis. This
is an important parameter as it controls how quickly the
receiver can respond to certain requests from the sender.
In this protocol we assign a special packet called a SYNC
packet to periodically measure round-trip time on a trans-
port connection.

• End-to-End Flow Control: For multimedia applications
which can require large amounts of buffering, end-to-end
flow control is required to prevent buffer overload at the
receiver. This means that the windowing flow control
mechanisms at the transport level must take into account
packets that have been processed by the protocol but have
not been consumed by the receiver.

• Support for Multicast: The ability to multicast data to
several endpoints is becoming a much desired feature in
transport protocols. Where possible, transport protocols
should take advantage of multicast facilities offered by the
underlying network layer. However it was also felt that
there should be support for multicast at the transport level
where data is simply replicated on individual connections
which make up the multicast group.

QoS Support in A1

A1 provides a number of QoS parameters including the aver-
age and burst rates for sending and receiving, the priority of
the connection and whether checksumming and/or retransmis-
sion is required. An application can also specify the size of the
largest message it will send and the size of the largest message
it is willing to receive as well as the maximum number of mes-
sages that it would like to have outstanding at any time. This is
used to calculate the size of the flow control window.

The QoS support that a transport layer can offer depends to a
large extent on the characteristics of the underlying networks.
It is essential therefore to be able to obtain the QoS being of-
fered by the network and to be able to translate these into trans-
port parameters and vice-versa. Presently some QoS parame-
ters are defined for ATM and are slowly being implemented.
RSVP [Zhang93] is also being deployed by the IP community
and though it allows dynamic changes to the quality of service,



the actual time taken to effect these changes may be too slow
for multimedia applications.

In view of these uncertainties, we have tried to minimize the
need to involve the network layer when dynamically chang-
ing the QoS on a stream. When the connection is being set
up the maximum QoS parameters that the endpoints will use
are calculated. These parameters are submitted to the underly-
ing network. Once these parameters have been agreed then the
QoS may be dynamically changed at the transport layer with-
out going to the network once the change is within the agreed
bounds. If the maximum parameters are exceeded the network
layer must be explicitly consulted or the transport layer could
close the connection and reopen a new connection with a higher
quality of service.

To keep the protocol simple, it was decided not to support end-
to-end QoS negotiation at connection setup. The receiver can
change the maximum QoS parameters in a limited way but must
abandon the connection if the QoS parameters are very different
between the sender and the receiver.

The User Interface

The user interface provides applications with a socket-like in-
terface to A1. An application first asks for a socket and then
binds the socket to an address and a maximum quality of ser-
vice. Addresses in A1 are 64-bit entities and at the moment
comprise a 32-bit host number and a 32-bit port number. An ap-
plication can connect to an endpoint by invoking the add sink
call specifying the address to which it wants to be connected.
When adding the first sink, applications can specify the initial
quality of service that will be used which might be different
from the maximum QoS specified in the bindcall. One can mul-
ticast a connection by simply invoking another add sink call.
Applications can then send data or receive data. When send-
ing data applications can specify whether they wish to take their
own action when the flow control window is full or whether
they would like to be blocked until the window is opened again.
Applications can dynamically change the quality of service by
issuing a setqos call. When the applications are finished they
close the socket which then shuts down the connection.

Most user interface calls have a 32-bit status field which is used
to indicate several pieces of information to the application in-
cluding the start and end of messages, whether the other side
has closed, whether the network has aborted the connection and
whether the application has exceeded the agreed flow control
window size and/or rate. There is also a QoS pending indica-
tor which indicates that a QoS change is about to occur and
there is another indicator which informs the application when
the change has actually occurred.

=3in./impl.ps

Figure 1: Implementation Architecture

=3in ./throughput.ps

Figure 2: Throughput Measurements

Implementation

Every connection in the A1 protocol has an associated thread
called a satisfy thread which is created when the application
adds the first sink or does a listen. Each connection is repre-
sented by a context structure which contains a pthread mutex
and a condition variable to ensure proper interaction between
the application and the satisfy thread.

The overall architecture for our implementation is given in Fig-
ure 1. There is no thread switching involved in sending data.
The application thread simply grabs the mutex, does the rele-
vant processing and then invokes the send call in the network
interface. For receiving, the satisfy thread is notified by the OS-
dependent layer when packets have arrived or when a timeout
has occurred. If packets have arrived, it processes them and un-
blocks the application if it is waiting to receive data.

The context structure also contains two packet queues for re-
ceiving packets. ACKs, NACKs and retransmitted packets are
placed on a high priority queue and are processed first. Data
packets and SYNCs packet are queued on the other queue and
are processed after the packets in the high priority queue have
been dealt with.

Buffers are provided by the network interface and are repre-
sented by a structure which indicates the actual size of the
buffer and where it is located in memory. There is also a pointer
to the start of the data of interest within the buffer and its length.
Therefore by adjusting these two fields it is possible to point dif-
ferent layers of the protocol stack to their relevant area of pro-
cessing as packets are moved up and down the stack. There is
also a pointer to a free function which is called when all the lay-
ers are finished with the buffer. This returns buffers to the rel-
evant buffer queue.

Preliminary Performance

We report on some preliminary performance tests for A1. The
tests were done using two Pentium Pros (199 bogomips/256M)
connected via an ATML Virata Switch using Efficient Net-
works, ENI-155 Mbits/s PCI adaptor. Both machines were run-
ning Linux 2.0.25 with Werner Almesberger’s Linux-ATM re-



=3in ./latency.ps

Figure 3: Latency Measurements

lease 0.26. For this implementation, 40-byte E164 addressing
was used. The first test consists of sending a large amount of
data but using block sizes up to 16K in length and measuring
the throughput of the system.

Figure 2 shows the results for raw AAL5 SVC, classical
TCP/IP or CLIP over ATM and A1 with and without retrans-
mission. For the AAL5 measurements, a switched virtual cir-
cuit was set up, using the ATM UBR QoS traffic class. A
1Gbyte burst was sent and the throughput was measured form
a 100 Kbyte sample. The plot shows a rather linear rise in
throughput to 135 Mbits/s with the knee of the curve appear-
ing at a block size of 1.7Kbyte. For CLIP a 10 Gbyte stream
was used with the average throughput measured over the whole
stream. The CLIP plot shows the throughput for small block
sizes which exceed those for raw ATM because of the effect
of TCP batching up small writes. The knee of the throughput
curve occurs at 1.2Kbyte blocks and 130 Mbits/s.

The same test was done for A1 with retransmission (A1 RE-
TRANS), and the throughput was measured over a 1Gbyte
stream. A 9Kbyte network block size was selected to make a
valid comparison with CLIP. A flow control window size of 160
Kbytes was used. The graph slowly climbs to about 111Mbits/s
with a fall as the send block size exceeds the network block size.
This is due to the increased work of segmenting the payload into
two segments as the network block size is passed. CPU utiliza-
tion was observed to vary from 17% to a maximum of 45% at
the network block size.

With A1 without retransmission (A1 RAW), the throughput
climbs on a similar curve to A1 RETRANS but continues up-
ward to about 130 Mbits/s before falling once the send block
size reaches goes past the network blocksize and then rising
again to a level close to the raw ATM throughput. Some insta-
bility was observed and the window size had to be varied be-
tween 160 - 196 Kbytes.

The second test measured the latency of the AAL5, CLIP and
A1 RETRANS. It consisted of measuring half the round trip
time of 1000 user level “pings” with varying send block sizes.
The results are shown in Figure 3. The graph shows that la-
tency of A1 is greater than TCP and RAW AAL5 for small
packets but this decreases as the send block size increases.

Conclusions

The results are very interesting for several reasons. Firstly
the results for TCP/IP are impressive especially for small send
block sizes. This implementation benefits from recent exten-

sions to the protocol [Stevens94] as well as from running in the
Linux kernel. A1 results are very good because A1 is running
in user-space and yet manages to achieve significant through-
put and latencies well below 1 millisecond. The protocol has
not been tuned or optimised in any significant way. No assem-
bler routines were used in this implementation. These results
clearly show that a user-space protocol is able to achieve sig-
nificant performance and should help to debunk the idea that
tranport protocols must be run in the kernel in order to achieve
reasonable performance!

We are investigating the interaction between the satisfy thread
and the application to reduce the batching of data at very high
throughput rates. We are also interested in studying the be-
haviour of transport protocols on very fast (i.e. 1-100 Gbits/s)
links [Sterbenz95].

In closing we note that there has been an emphasis on the per-
formance of transport protocols [Jacobson93]. This is good but
we believe that the issue of functionality will in the future be as
important as performance.

Acknowledgements

We would like to thank Steve Hodges, Brendan Murphy, Martin
Brown and Andy Harter at ORL for many useful discussions
and Tim Strayer for his work on SandiaXTP which triggered
this effort.

References

[Hopper90] A. Hopper. Pandora – an experimental system
for multimedia applications. ACM Operating
System Review, April 1990.

[Jacobson93] V. Jacobson. A High-Performance TCP/IP
Implementation. In Gigabit-per-Second TCP
Wksp. Ctr. for Nat’l Res. Initiatives, March
1993.

[Mapp95] G.E. Mapp. Preliminary Performance Evalua-
tion of SandiaXTP on ATM at ORL. In PROMS
’95, Second Workshop on Protocols for Multi-
media Systems, October 1995.

[Sterbenz95] J.P.G. Sterbenz. Protocols for High Speed Net-
works: Life After ATM? In Protocol for High
Speed Networks IV, pages 3–18. Chapman &
Hall, 1995.

[Stevens94] W.R Stevens. TCP/IP, Illustrated, Volume 1. Ad-
dison and Wesley, 1994.



[Strayer92] W.T. Strayer, B.J. Dempsey, and A. C. Weaver.
XTP: The Xpress Transfer Protocol. Addison
and Wesley, 1992.

[Strayer94] T. Strayer, G. Simon, and R. E. Cline Jr. An
Object-Oriented Implementation of the Xpress
Transfer Protocol. XTP Forum Research Affil-
iate Annual Report, pages 53–66, 1994.

[Wray94] S. Wray, T. Glauert, and A. Hopper. The Medusa
Applications Environment. In International
Conference on Multimedia Computing and Sys-
tems, May 1994.

[Zhang93] Zhang, Lixia, S. Deering, D. Estrin, S. Shenker,
and D. Zappala. RSVP: A New Resource ReSer-
Vation Protocol. IEEE Network, pages 8–18,
September 1993.


