
QoS-Based Transport

Glenford Mapp and Steve Hodges
Olivetti & Oracle Research Laboratory
Old Addenbrooke’s Site
24a Trumpington Street
Cambridge
CB2 1QA
UK
{gem,sh}@orl.co.uk

Abstract
This paper looks at transport services required by applications and proposes
using a QoS vector to specify all transport requirements. These ideas have
been pursued in the design and development of a new transport protocol
called A1. Preliminary performance results for A1 over ATM are presented
and compared with an efficient kernel implementation of TCP/IP.

Keywords
Transport Protocols, Quality of Service, User-space Protocols

1 MOTIVATION

Support for quality of service (QoS) - though much talked about - has been
rarely implemented in computing environments. Recent developments are
changing this outlook. The first is the emergence of Asynchronous Transfer
Mode (ATM) which can support QoS on a per-connection basis. The second is
the adoption and deployment of RSVP [Zhang93] by the IP community which
allows applications to specify QoS parameters on individual flows. The third
impetus has been the WinSock2 application programming interface which
supports QoS on socket connections. This paper examines the issue of provid-
ing realistic QoS support to applications at the transport layer. In contrast
to the efforts above, a top-down approach is adopted in which application
requirements form the main driving force behind the design.

2 QOS AND APPLICATIONS

Ideally an application programmer should not have to know the properties
of a particular transport protocol and whether it is suitable for a given ap-
plication. Instead it would be more appropriate if applications specified all

c©IFIP 1997. Published by Chapman & Hall



2 QoS-Based Transport

their transport requirements as a QoS vector which is then mapped by the
system to a specific transport protocol and appropriate operating parameters.
This would be beneficial in many ways. Firstly, new transport protocols can
be seamlessly added to the system without the need to inform application
programmers and there would be no need to recompile or relink programs.
Secondly, the transport requirements of an application may be mapped to
several protocols on a given site. The system may choose a given transport
protocol based on the requirements of the application, the types of networks
to which it is connected and the transport protocols available at remote sites.

The ability to dynamically change the quality of service on a transport
connection is becoming a much desired feature of transport services [Pope97].
However, it may be preferable not to involve the network every time there is
a change in QoS. When a connection is being set up, the maximum QoS is
determined and these parameters are submitted to the network layer. Once
these parameters have been agreed the QoS can be changed at the transport
layer without notifying the underlying network if the proposed change is less
than or equal to the agreed maximum. A transport QoS vector is proposed
below.

typedef struct qos {
uchar sort
uchar coptions
ushort max alloc
uint max data r
uint max data t
uint max data inrate
uint max data inburst
uint max data outrate
uint max data outburst
uint max latency
uint max jitter

} MAXQOS, *pMAXQOS;

The sort field specifies the priority of this transport connection with regard
to other connections in the system. The coptions field is a bit field that is
used to set the properties of the connection. The properties are:

DATA CHECK :- checksum the data on this connection
RETRAN :- ask for a retransmission if data is lost or corrupted
MBP :- preserve message boundaries
RJ :- restrict jitter: explained below
FASTCLOSE :- close when the other end wants to close
UNI :- data transfer in one direction only



QoS and Applications 3

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000 16000

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Send Block Size (bytes)

AAL5 ATM

CLIP

A1 RETRANS

A1 RAW

Figure 1 Throughput Measurements

For applications sending messages to each another, setting the MBP bit en-
sures that receivers get each individual message separately. The FASTCLOSE
option is used to quickly terminate a connection once the other side has indi-
cated that it would like to close the connection. The UNI option indicates that
all data transfer will occur in one direction only. For some applications, getting
the most recent data to the remote end as soon as possible is of paramount
importance. In the Restrict Jitter mode, the message at the head of the receive
buffer queue is deleted to provide space for incoming data when the queue is
full. So the receiver gets the most current data even in overload conditions.

The max alloc field specifies the maximum number of outstanding mes-
sages that the application would like to have pending while max alloc r and
max alloc t specify the maximum receive and transmit message sizes respec-
tively that the application expects to deal with. These parameters are used
to allocate the necessary buffers for the connection and to set the flow control
window size. The next four parameters set maximum values for the rate and
burst in the inward and outward directions. For a normal connection, both
rate-based and windowing flow controls are specified. In the restrict jitter
mode, there is no windowing flow control - though rate-based control is en-
forced.



4 QoS-Based Transport

3 THE A1 TRANSPORT PROTOCOL

To test some of the ideas presented in this paper, a user-level transport proto-
col, called A1, which supports different qualities of service was designed and
implemented. Some preliminary performance results are given below. The
tests were done using two Pentium Pros (199 bogomips/256M) connected
via an ATML Virata Switch using Efficient Networks, ENI-155 Mbits/s PCI
adaptor. Both machines were running Linux 2.0.25 with Werner Almesberger’s
Linux-ATM release 0.26. For the A1 implementation 40-byte E164 addressing
was used. The tests consist of sending a large amount of data but using block
sizes up to 16K in length and measuring the throughput of the system.

Figure 1 shows the results for raw AAL5 SVC, classical TCP/IP or CLIP
over ATM and A1 with and without retransmission. For the AAL5 mea-
surements, a switched virtual circuit was set up, using the ATM UBR QoS
traffic class. A 1Gbyte burst was sent and the throughput was measured for
a 100 Kbyte sample. The plot shows a rather linear rise in throughput to 135
Mbits/s with the knee of the curve appearing at a block size of 1.7Kbyte. For
CLIP a 10 Gbyte stream was used with the average throughput measured over
the whole stream. This test program was compared with and gave identical
results to ttcp. The same test program was used to drive A1. For CLIP, a
throughput of 130 Mbits/second was achieved.

For A1 with retransmission (A1 RETRANS) the throughput was measured
over a 1Gbyte stream. A 9Kbyte network block size was selected to make a
valid comparison with CLIP. The graph slowly climbs to about 111Mbits/s
with a fall as the send block size exceeds the network block size. With A1
without retransmission (A1 RAW), the throughput climbs on a similar curve
to A1 RETRANS but continues upward to about 130 Mbits/s before falling
once the send block size reaches the network block size and then rising again
to a level close to the raw ATM throughput.

4 CONCLUSIONS

We think that the approach taken in this paper will lead to better transport
services.

REFERENCES

[Pope97] S. Pope and P. Webster. Qos Support for Mobile Computing. In
this volume, 1997.

[Zhang93] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource ReSerVation Protocol. IEEE Network,
September 1993.


