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Abstract

CLAN (Collapsed LAN) is a high performance
user-level network targeted at the server room. It
presents a simple low-level interface to applica-
tions: connection-oriented non-coherent shared mem-
ory for data transfer, and Tripwire, a user-level pro-
grammable CAM for synchronisation. This simple
interface is implemented using only hardware state
machines on the NIC, yet is flexible enough to sup-
port many different applications and communications
paradigms.

In this paper we describe the CLAN network, and
contrast our design with other user-level networks
whose network interface is sufficiently complicated
that implementations require an embedded processor.
These interfaces are often tailored to a particular class
of applications, and layering disparate interfaces over
the low-level network substantially degrades perfor-
mance.

We show how CLAN is used to support a number
of standard transports and middleware: MPI, VIA,
TCP/IP and CORBA. In each case we demonstrate
performance that approaches the underlying network.
For TCP/IP we present our initial results using an in-
kernel stack, and describe the architecture of our pro-
totype Gigabit Ethernet/CLAN bridge, which demul-
tiplexes Ethernet frames directly to user-level TCP/IP
stacks via the CLAN network. For VIA we present
a software implementation with better latency than a
commercial VIA NIC implemented on ASIC technol-
ogy.

�David and Kieran are both jointly funded by a Royal Com-
mission for the Exhibition of 1851 Industrial Fellowship, and
AT&T Laboratories-Cambridge.

1 Introduction

As the line speed of local area networks reaches a gi-
gabit per second and beyond, the overhead of software
on the host system is increasingly becoming the limit-
ing factor for performance. At high message rates the
processing time is dominated by network overheads,
at the expense of the application, and can lead to per-
formance collapse.

The overhead is due to a number of factors[1] in-
cluding copying data between buffers, protocol pro-
cessing, demultiplexing, interrupts and system calls.
In addition to the processor time taken, these activities
have a detrimental effect on the cache performance of
the application.

One solution that addresses these problems isuser-
level networking, wherein applications communicate
directly with the network interface controller (NIC),
bypassing the operating system altogether in the com-
mon case. The NIC typically has direct access to ap-
plication buffers, eliminating unnecessary copies. In
some cases the network provides a reliable transport,
which simplifies protocol processing.

A variety of user-level network interfaces have
been developed[2, 3, 4], each supporting a particular
communications paradigm. For example, SCI[5] has
largely been used to support shared-memory scientific
clusters, and Arsenic[6] supports processing of TCP
and UDP streams. Other communication interfaces
can be built as layers of software above the raw net-
work, but this typically incurs significant additional
overhead when the two interfaces are dissimilar.

One approach to supporting multiple network in-
terfaces is to use a programmable NIC. Myrinet[4]
is a gigabit class user-level accessible NIC which in-
corporates a processor. A number of communica-
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tions interfaces have been built using Myrinet, in-
cluding MPI[7], the Virtual Interface Architecture
(VIA)[8, 9], VMMC-2[10] and TCP/IP[11]. How-
ever, at any one time all communicating nodes must
be programmed to support the same model.

The CLAN network presents a single, low-level
network interface that supports communication with
low overhead and latency, high bandwidth, and effi-
cient and flexible synchronisation. In this paper we
show how this interface supports a range of disparate
styles of communication, without sacrificing the per-
formance of the raw network.

MPI, VIA and CORBA are implemented as user-
level libraries, requiring no privileged code or mod-
ifications to the network. We present an in-kernel
IP implementation, and also describe the architec-
ture of our Gigabit Ethernet/CLAN bridge, which de-
multiplexes Ethernet frames directly onto user-level
TCP/IP stacks via the CLAN network.

2 The CLAN Network

CLAN is a high performance user-level network de-
signed for the server room. Key aims of the project in-
clude support for general purpose multiprogrammed
distributed systems, and scalability to large numbers
of applications and endpoints. An overview of the key
features of the network follows:

At the lowest level the communications model is
non-coherent distributed shared memory (DSM). A
portion of the virtual address space of an application
is logically mapped over the network onto physical
memory in another node. Data is transferred between
applications by writing to the shared memory region
using standard processor write cycles. A buffer in
a remote node is represented by an Remote Direct
Memory Access (RDMA) cookie, the possession of
which implies permission to access that buffer.

However, the CLAN network is not intended to
support the traditional DSM communications model.
Instead, the shared memory interface is used as the
low-level data transfer layer on which higher-level
communications abstractions are built. The network
also supports point-to-point message-based commu-
nication, which is currently used for connection man-
agement. The NIC provides a programmable DMA
engine to off-load data transfer from the CPU.

2.1 Simple data transfer

By way of example, we present the implementation of
a simple message passing protocol. The Distributed
Message Queue is based on a circular buffer in the
address-space of the receiver, as illustrated in Fig-
ure 1. The sender writes a message through its map-
ping onto the receive buffer, at the position indicated
by the write pointer (write_i ). The write pointer
is then incremented modulo the size of the buffer,
and the new value copied to the remote address-space
(lazy_write_i ).

read_iwrite_i

lazy_write_i

Q
ueue entries

lazy_read_i

Remote
aperture

TripwireHost
memory

ReceiveSend

Figure 1: A Distributed Message Queue

The receiver compares its lazy copy of the write
pointer with the read pointer to determine whether or
not the queue is empty. Messages are dequeued by
reading them from the buffer, then incrementing the
read pointer, and copying its new value to the sender.

Transferring small messages in this way consists of
just a few processor write instructions, and hence has
very low overhead.

2.2 RDMA cookie-based communication

In some cases, it is possible to arrange for the applica-
tion to read received data directly from in the circular
buffer (in-place). Other programming interfaces re-
quire data to be delivered to application-level receive
buffers, which requires an additional copy.

This copy can be avoided if the sender is informed
of the location of the receive buffers in advance. To
achieve this, the receiver sends RDMA cookies for
its buffers to the sender using a distributed message
queue, known as acookie queue. The sender retrieves
an RDMA cookie from the cookie queue, and uses it
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Figure 2: RDMA cookie-based data transfer.

as the target for a DMA transfer. This is illustrated in
Figure 2.

2.3 Synchronisation

On the receive path, data is placed in an application’s
buffers asynchronously, without the intervention of
the CPU. This minimises overhead, but means the ap-
plication has no way to determine that a message has
arrived other than by polling memory locations ex-
plicitly.

Other networks have solved this problem in one of
two ways: by being able to request that an interrupt
be generated when a particular region of shared mem-
ory is accessed, or by using some form of out-of-band
synchronisation messages.

The CLAN NIC provides a novel solution: thetrip-
wire[12]. A tripwire is an entry in a content address-
able memory (CAM) which matches a particular ad-
dress in an application’s address space. The address of
each memory location that is accessed via the network
is looked-up in the CAM, and when there is a match
the application receives a notification. If the appli-
cation is blocked waiting for such a notification, an
interrupt is generated and the application is resched-
uled.

Tripwires are programmed directly by user-level
applications, and are set on locations that correspond
to protocol specific events. For example, when us-
ing the distributed message queue above, the receiver
sets a tripwire onlazy_write_i , and receives a
notification whenever a new message is placed in the
queue. If the receiver is blocked waiting for a new
message, it will be rescheduled. Similarly the sender
can block waiting for space in the queue by setting a
tripwire on lazy_read_i .

This is a flexible and fine-grained solution to the
synchronisation problem. With tripwires, synchroni-
sation is orthogonal to data transfer, and decoupled

from the transmitter. This greatly simplifies the hard-
ware implementation. A tripwire can be associated
with control signals as above, or alternatively with in-
band data.

2.4 Event handling

The NIC generates a variety of events, including
DMA completion, out-of-band message arrival and
tripwire events. Any of these can be directed to
an asynchronous event queue[13]. This is a shared
memory data structure, which allows events to be de-
queued at user-level with very low overhead. Once an
event has been enqueued it is blocked, so the queue
is not susceptible to overflow. The CPU overhead of
event delivery isO(1) with respect to the number of
events registered with the queue.

2.5 Prototype implementation

The prototype CLAN NICs are based on off-the-
shelf parts, including an Altera 10k50e FPGA clocked
at 60 MHz, a V3 PCI bridge (32 bit, 33 MHz)
and HP’s G-Link optical transceivers with 1.5 Gbit/s
link speed. We have also built a five port worm-
hole-routed switch, again using FPGAs, and a non-
blocking crossbar switch fabric. A bridge to Gigabit
Ethernet is at the debug stage.

The tripwire synchronisation primitive is imple-
mented by a content addressable memory, supporting
4096 tripwires in the current version. Tripwires are
managed by the device driver, and when an tripwire
fires an interrupt is generated. The interrupt service
routine delivers an event to the application, and wakes
any processes waiting for the event.

The V3 PCI bridge chip includes an integrated
DMA engine, which can only be programmed with
a single request at a time, and generates an interrupt
after each transfer. The interrupt service routine then
starts the next DMA request. This causes a large gap
between each DMA request, which severely limits
DMA performance for small and medium sized mes-
sages. An improved DMA engine is planned for the
next version of the NIC.

The format of data packets on the wire resembles
that of write bursts on a memory bus. The header
identifies the target node and address of the first word
of data. The amount of data in the packet is not en-
coded in the header, but is implicit in the data which
follows. The packet can thus be split at any point,
and a new header generated for the trailing portion.
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Conversely, consecutive packets that represent a con-
tiguous transfer can be merged into a single packet by
a switch or receiving NIC.

Because the packet length is not encoded in the
header, the NICs and switches can begin to emit pack-
ets as soon as data is available, rather than waiting
for an entire packet. This contributes to the low la-
tency of the CLAN network. The switch exploits the
ability to split packets to prevent large packets from
hogging an output port unfairly. No maximum packet
size is enforced, so the network operates as efficiently
as the traffic patterns allow. If congestion is encoun-
tered, small packets are likely to be merged, leading
to larger packets and higher efficiency.

Flow control is rate-based on a per-hop basis, with
flow control information passed in-band with the data.
This ensures that the source rate can be adjusted in a
timely fashion to prevent buffer overruns in the re-
ceiver. The NICs and each switch port have just 512
bytes of buffer space. Errors are currently detected
using parity.

2.6 Scalability

The data path in the CLAN NICs and switches is sim-
ple compared with other technologies which run at the
same line speed. It is implemented entirely as hard-
ware combinatorials and state machines, and runs at
full speed on three year old FPGA technology. We
have recently completed a design to run at3Gbit=s,
also using an FPGA. These factors indicate that the
network model is likely to scale to significantly higher
line speeds, if necessary with integration.

The maximum number of endpoints that can be
supported in a user-level network is usually lim-
ited by per-endpoint resource in the NIC. In CLAN
NICs, per-endpoint resource just consists of incom-
ing and outgoing aperture mappings and tripwires, so
a large number of endpoints can be supported rela-
tively cheaply.

3 Baseline Performance

3.1 Test configuration

The test system consisted of a pair of off-the-shelf
PC systems connected through a CLAN switch. Each
node was a 650 MHz Intel Pentium III system with
256 MB SDRAM and 256 KB cache, running an un-
modified Linux 2.4.6 kernel. Except where otherwise
stated, all performance results given in this paper were
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Figure 3: Raw bandwidth vs. message size.

measured using this configuration. The error in the
graphs is too small to represent with error bars.

3.2 Latency and bandwidth

Application to application latency for single word
programmed I/O (PIO) writes was measured by tim-
ing a large number of ping-pongs (100000). The me-
dian round-trip time was5:6�s, with 98.6% below
5:7�s. Measurement with a logic analyser showed
that the switch contributed:8�s in each direction.

The bandwidth was measured by streaming a large
amount of data through the distributed message queue
described in Section 2.1, using a 50 KB buffer. The
results are shown in Figure 3. All data is touched on
both the transmit and receive side.

For small messages DMA performance is limited
by the V3 bridge’s DMA engine – which has high
overhead and a high turn-around time between re-
quests.. The kink between 64 and 128 bytes is due
to an optimisation in the DMA driver, where PIO is
used for small messages.

PIO gives excellent performance with low overhead
for small messages, but is limited by the PC I/O sys-
tem to less than 400 Mbit/s. Using an Alpha 21264
system are we able to saturate the network, achiev-
ing up to 960 Mbit/s with PIO, and half bandwidth
is available with messages of just 100 bytes. With the
improved DMA engine in the next iteration of the NIC
we expect DMA performance to approach this curve.

4 MPI

MPI is the defacto-standard communications inter-
face for parallel scientific computing, and is widely
implemented and used. It has been designed to be
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efficient on a variety of architectures, from shared-
memory multiprocessors to networks of workstations.
The interface is based on message passing, and in-
cludes primitives for both point-to-point communica-
tions and a variety of collective operations, including
multicast.

4.1 Implementation

Our port of MPI is based on the LAM[14] imple-
mentation, which runs over the standard BSD socket
interface. All collective operations are implemented
in terms of point-to-point connections. We have re-
placed the standard socket calls with a user-level
socket library that provides the same semantics. Our
socket library is based on the distributed message
queue described in Section 2.1.

CLAN U/L
sockets

MPI/LAM

Operating system

Application

D/driver

CLAN NIC

mapping
User-level

Figure 4: The architecture of CLAN MPI.

The round-trip time for small messages using
MPI_Send() and MPI_Recv() is 15�s. This
compares with19�s for MPI-BIP[7] using Myrinet
hardware, and33�s for MPI over FM over the
Emulex cLAN 1000[15].

To demonstrate a real application, we chose a stan-
dard n-body problem. It is representative of the appli-
cations that can be solved with loosely coupled net-
works of processors, yet is not perfectly parallelisable
(so is a good indicator of network performance).

Figure 5 shows the speed-up achieved using two
nodes. We compare MPI over Fast Ethernet, Giga-
bit Ethernet (3c985), CLAN kernel-level IP (see Sec-
tion 6.1) and CLAN MPI. This problem is latency
constrained for small numbers of particles, so MPI
over CLAN at user-level does substantially better than
MPI over TCP/IP. CLAN MPI has very low overhead,
so will also give improved performance to applica-
tions that are not sensitive to latency.
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Figure 5: MPI n-body calculation speed-up using two
nodes.

5 Virtual Interface Architecture

The Virtual Interface Architecture is an industry
standard[16] for user-level networking. Its scope is
to describe an interface between the NIC and soft-
ware on the host, and an application programming
interface[17]. The intention is that vendors develop
and market devices that implement this specification,
such as Emulex’s cLAN 1000[18].

Alternatively, VIA can be provided on existing net-
works by emulating the API in software. M-VIA[19]
consists of a user-level library and loadable kernel
module for Linux, and supports VIA over Ethernet.
A third approach is to use an intelligent NIC. In-
tel’s proof-of-concept[8] implementation and Berke-
ley VIA[9] both use Myrinet[4].

5.1 VIA data transfer

In the standard send/receive data transfer model,
a sending process enqueues descriptors for source
buffers by callingVipPostSend() , which returns
immediately. The send operation completes asyn-
chronously, and the application can poll for comple-
tion by callingVipSendDone() , or block waiting
for completion withVipSendWait() .

Similarly the receiving process posts descrip-
tors describing buffers to the receive queue using
VipPostRecv() . These descriptors are completed
when data is delivered into the buffers, and the ap-
plication synchronises usingVipRecvDone() and
VipRecvWait() .

To support applications that manage multiple con-
nections, notifications of completed requests from a
number of VIA endpoints can be directed to acom-
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pletion queue. The application can poll the comple-
tion queue (VipCQDone() ), or block waiting for
events (VipCQWait() ). The returned value indi-
cates which endpoint the descriptor completed on, and
whether it was a send or receive event.

5.2 Implementation

We have implemented the VIA API as a user-space
software library over CLAN. The architecture is sim-
ilar to that of our MPI implementation, shown in Fig-
ure 4. The functionality we have so far includes the
send/receive data transfer model, polling and block-
ing modes of synchronisation, completion queues and
all three reliability levels. This is sufficient to pro-
vide source-level compatability for many VIA appli-
cations.

5.2.1 Data transfer

Basic data transfer is illustrated in Figure 6. The re-
ceiving application posts a receive descriptor to an
endpoint (1) usingVipPostRecv() . The segments
within the descriptor are mapped to CLAN RDMA
cookies, and passed to the remote endpoint via a
cookie queue, as described in Section 2.2. Control
is returned to the application immediately.

Transfer
Queue

Queue
Cookie

1

2

VI

VI

Send Receive

Control

Receive
descriptors

Data
3

4

Figure 6: VIA data transfer.

Some time later (2), the sending application posts
a send descriptor. The cookie queue is interrogated
to find the RDMA cookies for the receive buffers,
and one or more DMA requests are made to transfer
the application data directly from the send buffers to
the receive buffers (3). A second message queue, the
transfer queue, is used to pass meta-data (including
the size of the message) and control from the sender
to the receiver (4).

Data transfer itself happens asynchronously when
the DMA requests reach the front of the DMA queue.
Alternatively, the data can be transferred by PIO,
which has lower overhead and latency for small mes-
sages. This requires a memory mapping onto the re-
mote receive buffer, which is relatively expensive to
set up, and so a cache of such mappings is maintained.

A further benefit of PIO for small messages is
that data transfer happens during the application’s
scheduling time slice, rather than when theNIC
chooses to schedule the transfer, as for DMA. Appli-
cations that have delay sensitive traffic can use PIO to
ensure timely delivery of messages, even when com-
peting with large transfers. Thus the operating sys-
tem’s process scheduling policy also manages net-
work access. Jitter introduced by the network is very
small (at most20:5�s per hop), so good quality of
service can be achieved with a real-time scheduler.

5.2.2 Synchronisation

Send synchronisation is trivial, and merely involves
determining whether the DMA requests associated
with a descriptor have completed. This information
is provided by the CLAN DMA interface.

The completion of an incoming message is indi-
cated by the arrival of a message in the transfer queue.
For the non-blockingVipRecvDone() method this
can be detected by inspecting the transfer queue. To
support blocking receives (VipRecvWait() )a trip-
wire on the transfer queue is used as described in Sec-
tion 2.3.

The VIA completion queue is implemented using
the CLAN asynchronous event queue. When an end-
point’s receive queue is associated with a completion
queue, a tripwire is attached to the transfer queue, and
configured to deliver events to the event queue. To as-
sociate an endpoint’s send queue with a completion
queue, DMA completion events are directed to the
event queue.

5.2.3 Flow control

If the cookie queue is found to be empty when a
send descriptor is posted, then the receive buffers have
been overrun, and VIA specifies that the data should
be dropped. This condition is detected without any
data being transmitted across the network, so the net-
work is not loaded with data that cannot be delivered.

To avoid packet loss, applications have to build
flow control on top of VIA. To get good performance,

6



flow control information must be timely, and this can-
not be achieved if it is being multiplexed over the
same channel as bulk data. To address this, Emulex
VIA provides non-standard interfaces for communi-
cating out-of-band information with low latency.

In our implementation, an application may config-
ure an endpoint to queue-up send descriptors until
corresponding receive buffers are posted. This is pos-
sible because the sending application receives a notifi-
cation when a message is placed in the cookie queue.
This extension to the standard improves performance,
simplifies application code considerably, and requires
no additional non-standard primitives.

5.2.4 Protection

Due to lack of space on the FPGA, our prototype
NIC hardware currently lacks full protection on the
receive path. Having given a remote process access
to a buffer it is not possible to revoke access. This
means that a faulty or malicious node that goes in be-
low the level of VIA can overwrite data in an applica-
tion’s receive buffers after the receive descriptor has
completed, which could cause the application to mis-
behave. Proper protection will be available in a future
revision of the NIC.

5.3 Performance

In this section we compare the performance of our im-
plementation of VIA with that of an existing commer-
cial implementation: the Emulex cLAN 1000. The
Emulex NIC is a 64 bit, 33 MHz PCI card, with a sin-
gle chip implementation and 1.25 Gbit/s link speed.
We did not have access to an Emulex switch for these
tests, so the Emulex NICs were connected back-to-
back. The system setup and benchmark programs for
the two systems were identical.

Since many distributed applications require reliable
communications, the reliability level used in these
tests wasreliable delivery. To prevent receive buffer
overrun, the test applications used credit-based flow
control. For CLAN VIA we present separate results
for PIO and DMA data transfer for clarity (although
by default we switch between the two dynamically).

The latency for small messages was measured by
timing a large number of round-trips. This value in-
cludes the time taken to post a send descriptor, process
that descriptor, transfer the data, synchronise with
completion on the receive side and make the return
trip. The results are given in Table 1.

Bytes CLAN CLAN Emulex
transferred (DMA) (PIO) cLAN 1000

0 10.7 8.5 12.6
4 14.5 11.6 14.5
40 15.5 12.1 18.3

Table 1: Round-trip time for VIA (�s).
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The small message latency for CLAN VIA (PIO)
is the lowest by some margin, despite the fact that the
CLAN NICs are connected by a switch, whereas the
Emulex NICs are connected back-to-back. Without a
switch, the CLAN VIA (PIO) round-trip time is just
6:7�s. For comparison, M-VIA report latency over
Gigabit Ethernet of38�s[20], and Berkeley VIA over
Myrinet report46�s[9].

The bandwidth achieved for various message sizes
is given in Figure 7. Data is ‘touched’ on both the
send and receive side. For messages up to 128 bytes,
CLAN VIA (PIO) has the highest throughput. CLAN
VIA (DMA) performs poorly for small messages due
to the high overhead of the V3’s DMA engine.1 The
kink between 64 and 128 bytes is due the DMA opti-
misation described in Section 3.2.

We have also measured maximum transaction rates
with a server application that simply acknowledges
each message it receives. With about 15 clients
Emulex VIA saturates at 150,000 requests per sec-
ond. The same application implemented over the raw
CLAN network is able to process 460,000 requests
per second – a three-fold improvement.

1See Section 2.5.
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5.4 Analysis

That CLAN VIA has lower latency (and comparable
bandwidth) than an ASIC implementation designed
specifically for VIA is suprising. Profiling shows that
posting send and receive buffers has very low over-
head for the Emulex cLAN 1000: about:6�s. This
suggests that performance is limited by high overhead
in the NIC. We suspect that the NIC has an embed-
ded processor, which may be limiting performance for
small messages.

6 TCP/IP

Although an increasing number of applications are
making use of high performance interfaces such as
MPI and VIA, the vast majority of distributed appli-
cations continue to use TCP sockets.

6.1 Kernel level IP

The simplest way to support IP networking is to
use existing support in the operating system. We
have written a low-level network device driver for the
Linux kernel that works in a similar manner to clas-
sical IP over ATM[21]. In our case, IP packets are
tunneled over a CLAN connection.

When an IP packet is first sent to a particular host, a
CLAN connection is established and used to transmit
subsequent packets. Our initial implementation used
a distributed message queue (Section 2.1) to transfer
the data. When data arrives in the receiving host, a
tripwire generates an interrupt, and the interrupt ser-
vice routine schedules a ‘bottom half’ which passes
the data down into the standard networking subsys-
tem.

The use of the distributed message queue has two
disadvantages: (1) the receive buffer has a fixed size
and (2) data has to be copied from the receive buffer
into the kernel’s socket buffers. This was improved
upon by using RDMA cookie-based data transfer, as
described in Section 2.2. Each host allocates a pool
of socket buffers, and sends RDMA cookies for these
buffers through a cookie queue to the other host. Data
is transferred by DMA directly from socket buffers in
the sender to socket buffers in the receiver in a simi-
lar manner to our VIA implementation. In Figure 6
the send and receive buffers are now kernel socket
buffers.
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6.1.1 Performance

We have measured the performance of this implemen-
tation using the standard TTCP benchmark. Figure 8
shows the results for CLAN IP and a Gigabit Ethernet
network using the 3Com 3c985 adapter. The 3c985 is
a programmable NIC with two on-board processors.
Interrupt coalescing and check-sum offload are used
to reduce overhead on the host processor. For both
networks, the Linux kernel was configured to allow
large receive windows, and 256 KB of socket buffers
were used. The 3c985 results were obtained with
9 KB (jumbo) frames, and the CLAN results with an
8 KB MTU.

This configuration exposes the weaknesses of our
prototype NIC. Performance is limited by the high
overhead of DMA transfers, and we take many more
interrupts on the receive side than the 3c985. The
3c985 also benefits from check-sum offload. Despite
this, performance for the two networks is very simi-
lar up to about 512 byte messages, above which both
saturate with CLAN IP slightly faster.

Network Test Ping RTT (�s) Error (�s)

CLAN IP normal 78 10
flood 54 10

3c985 normal 196 37
flood 216 19

Table 2: Round-trip time for ping over CLAN IP and
Gigabit Ethernet.

We measured the round-trip time using the standard
‘ping’ command. The results given in Table 2 are av-
eraged over 100 pings for ‘normal’ pings (with 1 sec-
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ond gaps), and over many thousands of pings for the
flood ping.

6.2 Accelerating TCP/IP

The performance of the in-kernel TCP/IP support de-
scribed above is limited by the high overhead of the
TCP stack. One solution is to offload some of the
protocol onto the NIC, as is done by the 3c985. In
the Arsenic[6] project, the NIC demultiplexes incom-
ing data directly into application-level buffers, and
the TCP stack is executed at user-level. Overhead is
substantially reduced, and a further improvement is
gained by using a zero-copy interface. Trapeze/IP[11]
also offloads the check-sum calculation and provides
a zero-copy socket interface.

Within a local area network, an alternative is to
provide a fast path for TCP/IP traffic with a simpli-
fied stack that does not duplicate functionality in the
network. For example, the CLAN network is reliable
and guarantees in-order delivery, so check-sums, se-
quence numbers, timers and re-transmission are not
needed. The use of RDMA cookies for data transfer
provides implicit flow control, so management of the
TCP receive window could also be removed.

However, this approach is not an option where ap-
plications require TCP or the other end of the connec-
tion is not in the local network.

6.3 Gigabit Ethernet/CLAN bridge

SwitchBridge

CLAN

Gigabit
ethernet

Figure 9: CLAN server room architecture.

Although we can already bridge IP traffic between
Ethernet and the CLAN network by configuring a PC
appropriately, this solution does not scale well to the
high line rates experienced by large server clusters.
The Gigabit Ethernet/CLAN bridge will connect a
CLAN network to the outside world, as shown in Fig-
ure 9. Prototype hardware for the bridge has recently

been assembled, and is currently in the debug stage.
We briefly describe the architecture here.

Figure 10: The prototype Gigabit Ethernet bridge.

The main function of the bridge is to demultiplex
incoming TCP streams onto CLAN streams which
terminate in user-level applications. The IP and
TCP/UDP headers of incoming Ethernet frames will
be looked up in a CAM to identify the associated
CLAN stream. For TCP streams, the sequence num-
ber is inspected to determine where the packet data
should be delivered in the receive buffer. IP packets
that are not associated with a particular CLAN stream
will be delivered via a distinguished stream to the op-
erating system.

The TCP protocol stack is executed at user-level.
We have selected the lwIP[22] stack as the starting
point for our implementation, which is currently able
to exchange packets between CLAN hosts. On the
transmit side, complete IP packets are assembled in
the application and delivered via a CLAN stream to
a staging buffer in the bridge. The bridge will verify
key fields in the IP and TCP header, and then emit the
Ethernet frames.

7 CORBA

The Common Object Request Broker
Architecture[23] is a standard for object-oriented
remote procedure call. It simplifies distributed
computing by presenting applications with a very
high level abstraction of the network. CORBA
specifies a language independent object model, a
network protocol for invoking requests on objects,
and bindings to a variety of programming languages.

The ORB is responsible for providing reliable com-
munication, managing resources such as connections
and threads, and providing a number of services.
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These include management of objects’ life cycle,
naming, location (including transparent forwarding of
requests) and flow control.

7.1 omniORB

omniORB[24] is a CORBA implementation with
bindings for the C++ and Python programming lan-
guages, developed at AT&T Laboratories-Cambridge.
It has been certified compliant with version 2.1 of the
specification.

The ORB uses a thread-per-connection model on
the server side, which avoids context switches on
the call path. The transport interface[25] is flexible
and efficient, and transports over TCP/IP, ATM[26],
SCI[27] and HTTP (for tunneling through firewalls)
have been implemented. The architecture of an om-
niORB server with the CLAN transport is shown in
Figure 11.

(Un)marshalling

adapter
Ethernet

CLAN NIC

Object impl

Interface skel

D/driver D/driver

Operating system
mapping
User-level

transport
Socket

transport
CLAN

runtime
ORB

Figure 11: The architecture of omniORB.

7.2 CLAN transport

Data transfer is based on the distributed message
queue described in Section 2.1, with tripwires for syn-
chronisation. On the transmit side, the CLAN trans-
port provides a buffer which the marshalling layer
marshals a message into. When that buffer fills or the
request is completed, it is passed back to the transport
layer, where it is transferred into the remote circular
buffer either by PIO or DMA. Large chunks of data
are passed directly to the CLAN transport, and can be
transferred directly to the receiver without first being
copied into the marshalling buffer.

On the receive side the unmarshalling layer makes
requests to the transport layer for buffers containing
received data, specifying a minimum size. The CLAN

transport provides direct access to the receive buffer,
hence eliminating unnecessary copies. It is possible
that the data requested is non-contiguous in the circu-
lar receive buffer, so a small amount of space is re-
served immediately before and after the buffer, and
data copied there as necessary to provide a contigu-
ous chunk to the unmarshalling layer.

7.3 Threads and demultiplexing

omniORB’s thread-per-connection model has a num-
ber of drawbacks. The principle problem is that a
single connection may be serviced repeatedly at the
expense of others, until its thread’s time slice is ex-
hausted. In addition, a large number of threads are
needed if there are many connections, and a thread
switch is always needed between requests on differ-
ent connections. As the cost of the network transport
decreases, the impact of these defects becomes more
apparent.

Our solution is to adopt a hybrid thread-pool
model. A single asynchronous event queue gathers
tripwire events from multiple connections, and de-
multiplexes active connections onto available threads.
When more than one connection is active, it is neces-
sary to ensure that sufficient threads are runnable to
ensure concurrency is not limited if a thread blocks in
the up-call to the object implementation. However, if
a thread does not block, it is able to serve many re-
quests before a thread switch occurs.

7.4 Performance

In this section we present some early performance re-
sults. The round-trip time for small requests is given
in Table 3. The lowest latency reported to date is for
Padico[28] on Myrinet-2000 (a 2 Gbit/s technology),
which also uses omniORB. We also give results for
DCOM2 over VIA, taken from [29].

For omniORB we have also measured the maxi-
mum request rate when serving multiple clients. The
results are given in Table 4. For Fast and Gigabit Eth-
ernet, the ORB was saturated with six clients. The
request rate for omniORB over CLAN was greater
than 89,000 requests per second with just two clients.
Since each request does no real work, this provides
a measure of the total overhead of the ORB and net-
work transport on the server side, which is just11:2�s
per request.

2Object-oriented RPC for Microsoft platforms
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Hardware and interface RTT (�s)

CORBA Fast Ethernet 138
Gigabit Ethernet (3c985) 180
CLAN 22
Padico (Myrinet-2000) 20

DCOM Emulex cLAN 1000 VIA 70
Emulex VIA (polling) 40

Table 3: Round-trip time for small messages using
CORBA and DCOM.

Transport Requests per second

Fast Ethernet 19051
Gigabit Ethernet (3c985) 21564
CLAN 89148

Table 4: Requests per second for omniORB.

Previous studies have found that ORB overhead is
very high[30]. However, the results presented here
indicate that ORB overhead can be very low, and con-
siderable improvements are achieved with high per-
formance transports.

8 Future work

A revision of the CLAN NIC with a larger FPGA is
under development. This will allow us to implement
a number of improvements, including protected user-
level DMA, which will significantly reduce transmit-
side overhead. We will also be able to provide proper
protection on the receive path. The next major revi-
sion will move to 3 Gbit/s line speed. The Gigabit
Ethernet/CLAN bridge, and user-level TCP are under
active development.

MPI performance could be substantially improved
by implementing it directly over the raw network,
rather than the user-level socket interface. This would
allow zero-copy optimisations and reduce overhead.

A number of improvements are being consid-
ered for our CORBA implementation, including mar-
shalling messages directly into the receive buffer in
the remote application, and using DMA for large mes-
sages. The use of an alternative marshalling protocol
to GIOP may also provide some advantage.

9 Conclusions

In this paper we have described the CLAN network,
and shown that it’s simple, low-level interface sup-
ports a wide range of communications paradigms.
Each higher-level abstraction is built as a layer of soft-
ware, without additional support in the network, and
without sacrificing performance.

We have found that technologies with more com-
plex network interfaces and protocols are limited to
relatively low message rates by the processing re-
quirements on the NIC. We expect the simple hard-
ware model of CLAN to scale more easily to high line
rates.

Our MPI implementation has lower latency than
comparable interconnects, despite its simplicity. Fur-
ther improvements can be expected if MPI is imple-
mented directly over the raw network interface rather
than user-level sockets.

For both CLAN VIA and in-kernel TCP our imple-
mentations give comparable performance to ASIC so-
lutions that have been designed specifically for these
protocols. In each case the latency of the CLAN
implementation is significantly lower. Further, the
CLAN performance is expected to improve signifi-
cantly with the next iteration of the NIC and an im-
proved DMA engine.

We have also shown that a fully featured CORBA
ORB need not incur the high overhead it has often
been associated with. omniORB over CLAN achieves
transaction rates of over 89,000 requests per second
on our test system, without any modifications to ap-
plications.

There has been a trend away from PIO in user-level
networks (for example SHRIMP moved to a DMA
only model on Myrinet). This is likely to be because
it is difficult to manage in the NIC, due to data being
pushed rather than pulled. However, we have found
that the low latency and overhead of PIO for small
messages has been invaluable in the implementation
of application level protocols. The combination of
PIO for small messages, DMA to offload data trans-
fer and tripwires for synchronisation is a very flexible
and efficient model, with a simple scalable hardware
implementation.
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