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On the Use of Unit-Norm Tight Frames to Improve

the Average MSE Performance in Compressive

Sensing Applications
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Abstract—This letter considers the design of sensing matrices
with good expected-case performance for compressive sensing
applications. By capitalizing on the mean squared error (MSE)
of the oracle estimator, whose performance has been shown to act
as a benchmark to the performance of standard sparse recovery
algorithms, we demonstrate that a unit-norm tight frame is the
closest design - in the Frobenius norm sense - to the solution of a
convex relaxation of the optimization problem that relates to the
minimization of the MSE of the oracle estimator with respect
to the sensing matrix. Simulation results reveal that the MSE
performance of a unit-norm tight frame based sensing matrix
surpasses that of other standard sensing matrix designs in various
scenarios, which include sparse recovery with basis pursuit de-
noise (BPDN), the Dantzig selector and orthogonal matching
pursuit (OMP). This also has important practical implications
because a unit-norm tight frame based sensing matrix can be
designed very efficiently.

I. INTRODUCTION

C
OMPRESSIVE sensing deals with the recovery of

a high-dimensional sparse vector from a lower-

dimensional linear measurement vector [1], [2]. We consider

the standard measurement model given by:

y = Φf + n, (1)

where y ∈ R
M is the measurement signal vector, f ∈ R

N

is the original signal vector, n ∼ N (0, σ2I) ∈ R
N is a white

Gaussian noise vector, and Φ ∈ R
M×N (with M < N) is a mea-

surement matrix with unit norm columns, i.e., ‖φj‖ℓ2 = 1. We

assume that the original signal is sparse in some orthonormal

basis, i.e.,

f = Dx, (2)

where D ∈ R
N×N is a matrix that represents the orthonormal

basis and x ∈ R
N is a sparse representation of f ∈ R

N, i.e.,

‖x‖ℓ0 ≤ S. We also assume a random signal model where

the distinct support patterns of the same sparsity level in the

sparse representation of the original signal occur with equal

probability.

The prevailing method used to reconstruct the sparse vector

x from the measurement vector y involves solving a ℓ1
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minimization problem, which acts as a convex relaxation of a

ℓ0 minimization problem, given by [1], [2]:

min
x̂

‖x̂‖ℓ1
subject to: ‖ΦDx̂− y‖ℓ2 ≤ ǫ,

(3)

where ǫ ≥
√

Mσ2.

A number of conditions have been put forth in order to

establish successful reconstruction in this class of underdeter-

mined sparse recovery problems as well as study the quality

of the sensing matrices and recovery algorithms. For example,

the null space property represents a necessary and sufficient

condition for sparse recovery [1]. The restricted isometry

property (RIP) also represents a sufficient condition for sparse

recovery [2]. Another common method to measure the quality

of a sensing matrix, which is not computationally intractable

as the null space property and the RIP, is the mutual coherence

given by:

µ = max
1≤i,j≤N,i6=j

|ψi,j |, (4)

where Ψ = DTΦTΦD denotes the coherence matrix of ΦD

and ψi,j denotes the element in ith row and jth column of Ψ.

These conditions are mainly used to address the worst-case

performance of sparse recovery [3]–[5]. However, the actual

reconstruction performance in practice is often much better

than the worst-case performance, so that this viewpoint can

be too conservative. In addition, the worst-case performance

is a less typical indicator of quality in signal processing ap-

plications than the expected-case performance. This motivates

the design of sensing matrices with adequate expected-case

performance. In [6], Elad proposes an iterative algorithm to

minimize the t-averaged mutual coherence. In [7], Duarte-

Carvajalino and Sapiro propose an algorithm to iteratively

optimize both the sensing matrix and the basis simultaneously.

Xu et al. consider the equiangular tight frame (ETF) as their

target design and proposed an iterative algorithm to make the

sensing matrix approach that design [8]. The sensing dictionar-

ies for optimal expected-case performance of the thresholding

algorithm are characterized in [9], where probability plays a

critical role.

In this letter, we investigate the quality of a sensing matrix

with respect to the mean squared error (MSE) performance

of the oracle estimator [3], whose performance has been

shown to act as a benchmark to the performance of various

common sparse recovery algorithms. Since the minimization

of the oracle estimator MSE with respect to the sensing
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matrix is a non-convex optimization problem, we adopt convex

relaxation techniques that enable us to show that a unit-

norm tight frame is the closest design in the Frobenius norm

sense to the solution of the relaxed problem. The superior

reconstruction quality of a unit-norm tight frame based sensing

matrix, which can be very efficiently constructed within at

most N − 1 iterations each requiring O(MN) operations [10],

with respect to other sensing matrix designs is illustrated in

various practical scenarios.

We use the notation: Italic upper-case letters denote num-

bers, boldface upper-case letters denote matrices, boldface

lower-case letters denote column vectors, and calligraphic

upper-case letters denote supports. The superscripts (·)T and

(·)−1 denote matrix transpose and matrix inverse, respectively.

‖·‖ℓ0 , ‖·‖ℓ1 , ‖·‖ℓ2 and ‖·‖F denote the ℓ0 norm, the ℓ1 norm,

the ℓ2 norm and the Frobenius norm of matrices, respectively.

The rank and trace of a matrix are denoted by rank(·) and

Tr(·), respectively. qi,j denotes the element of the ith row and

jth column of the matrix Q, and qi denotes the ith column

of the matrix Q. Q � 0 denotes that the matrix Q is positive

semi-definite. Finally, IN denotes the N × N identity matrix.

II. DESIGN OF THE SENSING MATRIX

We define the MSE in estimating a sparse random vector x

corrupted by a random Gaussian noise vector n as follows:

MSE(Φ) = Ex,n

(

‖F(ΦDx+ n)− x‖2ℓ2
)

, (5)

where F(·) denotes an estimator, and Ex,n(·) denotes expecta-

tion with respect to the joint distribution of the random vectors

x and n.

The calculation of the average MSE in (5) depends upon

the actual estimator. Consequently, to avoid the analysis of

a single or several practical sparse recovery algorithms such

as the basis pursuit de-noise (BPDN), the Dantzig selector,

and orthogonal matching pursuit (OMP), we capitalize on the

well-known oracle estimator that performs ideal least square

(LS) estimation based on prior knowledge of the sparse vector

support J ⊂ {1, . . . ,N} [3]. The oracle estimator MSE

incurred in the estimation of a sparse deterministic vector x in

the presence of a standard Gaussian noise vector n, according

to the model in (1), is given by [3]:

MSE
oracle
n (Φ,x) =En

(

‖Foracle(ΦDx+ n)− x‖2ℓ2
)

=σ2Tr
(

(

ET
JDTΦTΦDEJ

)−1
)

,
(6)

where En(·) denotes expectation with respect to the distribu-

tion of the random vector n, and EJ denotes the matrix that

results from the identity matrix by deleting the set of columns

out of the support J .

The rationale of this approach is also supported by the fact

that the oracle MSE coincides with the unbiased Cramér-Rao

bound (CBD) for exactly S-sparse deterministic vectors [11],

so that it represents the best achievable performance for

any unbiased estimator. Equally important, the oracle MSE

performance acts as a performance benchmark for the key

sparse recovery algorithms. For example, Ben-Haim, Eldar and

Elad [12] demonstrate both theoretically and numerically that

the BPDN, the Dantzig selector, the OMP and thresholding

algorithms all achieve performances that are proportional to

the oracle MSE.

Consequently, the average value of the oracle MSE is given

by:

MSE
oracle(Φ) = Ex

(

MSE
oracle
n (Φ,x)

)

= Ex

(

σ2Tr
(

(

ET
JDTΦTΦDEJ

)−1
))

= σ2
EJ

(

Tr
(

(

ET
JDTΦTΦDEJ

)−1
))

,

(7)

where Ex(·) denote expectation with respect to the distribution

of the random vector x, and we have used the fact that the

expectation with respect to the distribution of the random

vector x is equal to the expectation with respect to the

distribution of the support of the random vector x, due to

the use of the oracle. Note that the MSEn(Φ,x) and MSE(Φ)
emphasize that the MSEs depend upon the sensing matrix

and/or the deterministic parameters.

By defining Q = ΦTΦ, which represents the coherence

matrix of the sensing matrix, we now pose the optimization

problem:

min
Q

EJ

(

Tr
(

(

ET
JDTQDEJ

)−1
))

s.t. Q � 0,

qj,j = 1 (j = 1, . . . ,N),

rank(Q) ≤ M.

(8)

This optimization problem, which up to a rotation leads

to the sensing matrix that optimizes the average MSE of the

oracle estimator, is non-convex due to the rank constraint,

and so is very difficult to solve. Therefore, we will adopt a

two-step procedure that involves: i) the determination of the

solution to a convex relaxation of the original optimization

problem, which ignores the rank constraint, that will be given

in Proposition 1; ii) the determination of the feasible solution

that is closest in the Frobenius norm sense to the solution to

the convex relaxed problem, that will be given in Proposition

2. This procedure does not necessarily produce the optimal

sensing matrix, but extensive simulation results demonstrate

that this design outperforms other designs in the literature.

Proposition 1: The solution of the optimization problem:

min
Q

EJ

(

Tr
(

(

ET
JDTQDEJ

)−1
))

s.t. Q � 0,

qj,j = 1 (j = 1, . . . ,N),

(9)

which represents a convex relaxation of the original optimiza-

tion problem in (8), is the N × N identity matrix IN.

Proof: Let s ≤ S be a positive integer. Let also

J t
s ⊂ {1, 2, . . . ,N} (t = 1, . . . , Ts) denote a support set

with cardinality s, where Ts =
(

N

s

)

= N!
s!(N−s)! . We let

ΨJ t
s
= ET

J t
s
DTQDEJ t

s
. We also let λ

J t
s

s ≥ . . . ≥ λ
J t

s

1 be

the eigenvalues of ΨJ t
s

. Let p(Js) denote the probability that

the support size is s.
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We now note that

Ts
∑

t=1

Tr
(

ΨJ t
s

)

= Tr

((

Ts
∑

t=1

EJ t
s
ET

J t
s

)

DTQD

)

= Tr

(

sTs

N
IND

TQD

)

= sTs.

(10)

By the arithmetic mean - harmonic mean inequality, it follows

that:

Ts
∑

t=1

s
∑

k=1

1

λ
J t

s

k

≥ (sTs)
2

∑Ts

t=1

∑s

k=1 λ
J t

s

k

=
(sTs)

2

∑Ts

t=1 Tr
(

ΨJ t
s

)
= sTs,

(11)

where one achieves the lower bound with λ
J t

s

k = 1 (k =
1, . . . , s; t = 1, . . . , Ts). This implies immediately that the

matrix Q = IN, which is consistent with the constraints,

minimizes:

EJs

(

Tr
(

(ΨJs
)
−1
))

=
1

Ts

Ts
∑

t=1

s
∑

k=1

1

λ
J t

s

k

, (12)

and hence also minimizes:

EJ

(

Tr
(

(ΨJ)
−1
))

=

S
∑

s=1

p(Js)EJs

(

Tr
(

(ΨJs
)
−1
))

. (13)

It is evident that the solution to the convex relaxation of

the original optimization problem is not feasible, because

rank(IN) = N > M. Therefore, we now propose to deter-

mine the M × N sensing matrix Φ whose coherence matrix

Q = ΦTΦ is closest to the N × N identity matrix IN.

Proposition 2: Any M × N unit-norm tight frame is a

solution to the optimization problem

min
Φ

∥

∥ΦTΦ− IN

∥

∥

2

F
s.t. ‖φj‖ℓ2 = 1 (j = 1, . . . ,N). (14)

Proof: Let us note, in view of the fact that

the set
{

Φ ∈ R
M×N : Tr

(

ΦTΦ
)

= N
}

contains the set
{

Φ ∈ R
M×N : ‖φj‖ℓ2 = 1, j = 1, . . . ,N

}

, that the solution

Φ∗ to the optimization problem

min
Φ

∥

∥ΦTΦ− IN

∥

∥

2

F
s.t. Tr

(

ΦTΦ
)

= N, (15)

is also a solution to the optimization problem (14) if and only

if ‖φj‖ℓ2 = 1 (j = 1, . . . ,N). By using the singular value

decomposition Φ = UΦRΦV
T
Φ, where UΦ ∈ R

M×M and

VΦ ∈ R
N×N are orthonormal matrices, and RΦ ∈ R

M×N is a

matrix whose main diagonal entries are the singular values of

Φ, and the off-diagonal entries are zeros, we pose the convex

optimization problem:

min
r1,1,...,rM,M

M
∑

k=1

(r2k,k − 1)2

s.t.

M
∑

k=1

r2k,k = N, rk,k ≥ 0 (k = 1, 2, . . . ,M).

(16)

which, in view of the fact that
∥

∥ΦTΦ− IN

∥

∥

2

F
=
∑M

k=1(r
2
k,k−

1)2 and Tr
(

ΦTΦ
)

=
∑M

k=1 r
2
k,k , leads to the solution of (15).

Since the solution of (16) is r2k,k = N
M

(k = 1, 2, . . . ,M), it

Fig. 1. Comparison of the MSE of different sensing matrices using the oracle
estimator (N=200, M=100 and σ

2=1).

follows that any tight frame is the solution of (15). By proper

choice of VΦ, i.e.,
∑M

j=1 v
2
i,j = M

N
for ∀i ∈ {1, . . . ,N},

any unit-norm (i.e., ‖φj‖ℓ2 = 1 [13]) tight frame is also the

solution of (15) and thus the solution of (14).

This proposition, which also follows from the Welch bound

equality (WBE) sequences [14], establishes that a unit-norm

tight frame is the closest design to the solution of the convex

relaxation of the original optimization problem. Note that unit-

norm tight frames can be constructed within a finite number

of steps. For example, Davies and Higham’s algorithm [10]

generates a random unit-norm tight frame by performing N−1
rotations of a striped orthogonal matrix in at most O(MN)
operations. This represents a clear computational advantage

and consequently, provides an incentive to use unit-norm tight

frames based sensing matrices rather than sensing matrix based

on complex optimization approaches [6]–[8]. Note also that

an alternative way to prove Proposition 2, which has been

motivated by the optimization problem put forth by Duarte-

Carvajalino and Sapiro [7], is also provided in [15]. The

current problem differs from the problems in [7], [15] in

various important aspects: i) our optimization approach is

based on a metric with operational significance, the MSE,

whereas the optimization approach in [7], [15] is based on

mutual coherence; ii) our optimization approach applies to a

very general sparse model whereas the optimization approach

in [15] applies only to block-sparse models; and iii) our model

is applicable only to orthonormal dictionaries but the models

in [7], [15] are applicable to more general overcomplete

dictionaries.

III. PERFORMANCE EVALUATION

We now compare the MSE performance of a random unit-

norm tight frame based sensing matrix design to other sensing

matrix designs including a Gaussian random matrix with nor-

malized columns and matrices generated by three optimization

methods, namely, Elad’s algorithm [6], Sapiro’s algorithm [7]

and Xu’s algorithm [8]. We consider throughout the sensing

model in (1) with a fixed orthonormal basis consisting of

Gaussian random vectors.

Fig 1 illustrates the MSE performance of the oracle es-

timator for the various sensing matrices. We calculate the

MSE of the oracle estimator by averaging over 1000 different

realizations of the sparse vector support. We also plot a lower
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Fig. 2. Comparison of the MSE of different sensing matrices (M = 256, N = 512 and σ
2
= 10

−4).

Fig. 3. Histogram of the off-diagonal absolute values of the coherence matrix
(N=200 and M=100).

bound to the oracle MSE which, in view of Proposition 1,

is given by σ2
EJ Tr

(

(

ET
JDT INDEJ

)−1
)

= σ2S. It is

evident that the unit-norm tight frame based sensing matrix

outperforms all the other candidates, particularly, the random

Gaussian matrix, for all sparsity levels.

Figs 2 illustrates the MSE performance of different practical

estimators, namely, BPDN, Dantzig selector and OMP, for

the various sensing matrices. We calculate the MSE between

the original vector and the reconstructed vector by averaging

over 1000 experiment trials, where in each trial we generate

randomly a sparse vector with S randomly placed ±1 spikes

as well as a Gaussian noise vector. Once again it is evident

that the unit-norm tight frame based sensing matrix outper-

forms the other sensing matrices for all these reconstruction

algorithms. This superiority also justifies the use of the oracle

MSE to enable sensing matrix design.

Finally, Fig 3 presents the distribution of the absolute

values of the off-diagonal elements of the coherence matrices.

Note that the mutual coherence of the unit-norm tight frame

is not smaller than the mutual coherence of other sensing

matrix designs. This shows that mutual coherence is not the

most appropriate metric for the optimization of the average

performance in compressive sensing applications, as already

suggested in [6]. In contrast, we put forth a sensing matrix

design method that is based on a metric with direct opera-

tional significance, the MSE, which leads naturally to better

performance.

IV. CONCLUSION

In this letter, we propose the use of unit-norm tight frames

for compressive sensing applications. This has been justified

from optimization considerations, and has been shown to lead

to MSE performance gains when used in conjunction with

standard sparse recovery algorithms.
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