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ABSTRACT

In this paper, we propose a penalized ℓ1 minimization al-
gorithm for reconstructing a time-varying signal based on
compressive sensing (CS) principles. The time-varying sig-
nal can be seen as a sequence of slow-changing frames. In the
proposed algorithm, all frames of the sequence are sampled at
an equal rate, which makes the encoder simpler than frame-
categorized methods. We introduce a specialized Fréchet
mean of the target frame and several adjacent frames as the
penalty vector to make the algorithm close to ℓ0 minimiza-
tion. We prove that the specialized Fréchet mean is a good
approximation of the target frame for a sequence of slow
time-varying signals. Experimental results demonstrates the
superior reconstruction quality of the proposed algorithm.

1. INTRODUCTION

Most practical signals of interest have a sparse representation
if they are transformed into a suitable basis. The transformed
signal can then be compressed, but this wastes resources as
most of the sampled information is discarded after compres-
sion. Compressive sensing (CS) leverages the compressibility
of the signal by directly acquiring a smaller quantity of ran-
dom linear measurements that contain a little redundancy in
the information level. Thus, CS appears to be an excellent
approach for applications in which data acquisition is expen-
sive such as imaging at non-visible wavelengths and sampling
made by wireless sensor nodes.

Recently, CS has been studied for recovering a sequence
of time-varying sparse signals from linear measurement vec-
tors. This problem arises in the application of environment
monitoring by a wireless sensor network using CS video,
where the images are taken by a CS camera, for example, a
single pixel camera [1] or a random lens imager [2]. There are
also related scenarios such as real-time magnetic resonance
imaging and channel equalization in communications [3].
Several reconstruction approaches have been proposed for
solving the problem of recovering time-varying signals. One
natural method involves jointly sampling the sequence and
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then recovering the sequence at once using higher dimension
transformation [4]. This method leads to a large increase
in the computational complexity. An alternative method is
sampling each frame independently and then recovering the
sequence frame by frame. Side information obtained from
the first frame, the prior frame or the key frame, can be used
to decrease the number of measurements required for recov-
ering the following frames [5–8] or reduce the reconstruction
time [3]. However, this method requires the encoder to have
the ability to differentiate the key frames in the sequence.

Motivated by the fact that fewer measurements are needed
for exact reconstruction with ℓ0 minimization than with ℓ1
minimization [9], we propose a penalized CS framework
where a prior estimation of the sparse representations is used
to make ℓ1 minimization close to ℓ0 minimization. The pro-
posed solution differs from the other side information based
methods mentioned previously in two aspects. First, although
all those methods use side information to improve the perfor-
mance, the first frame and the key frame in our solution are
not necessarily identified and sampled more than the other
frames. Second, those methods update the side information
using the knowledge of the key frame or the reconstruction
result of the previous frame. However, we derive the side
information from several adjacent frames. Our penalized CS
framework can be viewed as being similar to the updating
step of the iteratively reweighted ℓ1 minimization algorithm
(IRL1) [9] where a weight vector is defined by the outcome
of the previous iteration and is updated in each iteration. We
propose to use a specialized Fréchet mean of several adjacent
frames as the penalty vector, and our method only needs to
solve the ℓ1 minimization once for each frame.

2. PENALIZED ℓ1 MINIMIZATION USING PRIOR
ESTIMATION

Suppose that we observe T measurement vectors of a se-
quence of time-varying sparse signals, which can be written
as

yt = Φtft + et, (1)

where t = 1, . . . , T is the time index of each frame, ft ∈
RN is the tth signal vector, yt ∈ RM (M ≪ N) is the tth



measurement vector, Φt ∈ RM×N is a matrix and et ∈ RM is
a noise vector. We assume each signal can be transformed to a
sparse version xt ∈ RN of the form xt = ΨHft, where Ψ ∈
RN×N is the orthonormal sparsifying matrix. The vector ft
can then be written in terms of a sparse representation xt as
ft = Ψxt. Consequently, the vector of observations yt can
also be written as follows:

yt = ΦtΨxt + et = Atxt + et, (2)

where At = ΦtΨ. The classical CS approach to recover xt

involves solving the following ℓ1 minimization:

min
x̂t

∥x̂t∥ℓ1 s.t. ∥Atx̂t − yt∥ℓ2 ≤ ϵ, (3)

where ϵ > 0 relates to an estimate of the noise level.
We assume that the sparse representations change slowly

during the observing time of the sequence. Reconstructing
the sequence of signals independently is not an efficient way
as inter-frame correlation is not exploited. With this idea in
mind, we propose a penalized CS framework using a prior es-
timation x̃t ∈ RN of the representation as a penalty vector in
the ℓ1 minimization algorithm. Our solution can be expressed
as:

min
x̂t

∥∥∥∥ x̂t

pt

∥∥∥∥
ℓ1

s.t. ∥Atx̂t − yt∥ℓ2 ≤ ϵ, (4)

where ∗
∗ denotes array division and pt ∈ RN is the penalty of

the tth frame with elements pt,i = |x̃t,i| + ρ (i = 1, . . . N).
Here, ρ is a positive parameter to ensure that the algorithm is
well-defined.

The motivation of the approach relates to the fact that the
ℓ1-norm

∥∥∥ x̂t

pt

∥∥∥
ℓ1

in (4) is a better approximation to the ℓ0-

norm than the ℓ1-norm ∥x̂t∥ℓ1 in (3) is because
∥∥∥ x̂t

pt

∥∥∥
ℓ1

≈
∥x̂t∥ℓ0 for a good prior estimate pt. Consequently, one ex-
pects the algorithm in (4) to outperform the algorithm in (3),
in terms of higher estimation quality for a certain number of
linear measurements, or, alternatively, a lower number of lin-
ear measurements for certain estimation quality. Successful
implementation of the penalized CS algorithm depends on the
quality of the estimation x̃t of the actual sparse representation
xt.

3. PRIOR ESTIMATION OF TIME-VARYING
SPARSE SIGNAL: A FRÉCHET MEAN APPROACH

As the sparse representation changes slowly over time, a nat-
ural idea is to use some form of the mean of several adja-
cent frames as an approximation. However, it appears that
we cannot compute the mean vector directly without know-
ing explicitly the sparse representations. Instead, we propose
to use the specialized Fréchet mean as a prior, which can be
acquired by solving an ordinary least squares problem.

The Fréchet mean x̃ of K adjacent frames yk, k =
1, . . . ,K, is defined as follows:

x̃ = argmin
x̃

K∑
k=1

λkd
2(x̃,yk,Ak), (5)

where λk > 0 is the contribution weight of the kth frame and

d(x̃,yk,Ak) = ∥Akx̃− yk∥ℓ2 . (6)

is a Euclidean distance function. In view of equation (2),
we can also rewrite the distance function as d(x̃,yk,Ak) =
∥Akx̃−Akxk − ek∥ℓ2 .

The Fréchet mean minimizes the sum of weighted squared
distances between the observations and prediction. The
weights allow for the possibility of some frames contributes
more than other to the value of the Fréchet mean. For exam-
ple, consider the reconstruction of some target frame by using
a higher weight on the target frame than on other previous
frames we expect to acquire a more accurate estimation of the
sparse representation of the target frame. This is then used as
prior estimate in the previous ℓ1 minimization algorithm to
improve performance.

We compute the specialized Fréchet mean defined in (5)
and (6) by solving the following optimization problem:

x̃ = argmin
x̃

∥∥∥Âx̃− ŷ
∥∥∥2
ℓ2
, (7)

where the extended sensing matrix Â and the extended mea-
surement vector are given by Â =

[√
λ1A

H
1 · · ·

√
λKAH

K

]H
and ŷ =

[√
λ1y

H
1 · · ·

√
λKyH

K

]H
. If rank(Â) = N , (7)

turns out to be an ordinary least squares problem, where the
solution can be written explicitly as x̃ = (ÂHÂ)−1ÂH ŷ or
computed by a conjugate gradient (CG) algorithm [10]. Con-
sequently, for a sequence of independently generated random
matrices Ak, at least K =

⌈
N
M

⌉
frames are needed in the

calculation of the prior estimation of a target frame.

3.1. Estimation error

We aim to investigate the error between the target frame esti-
mate given by the specialized Fréchet mean and the real target
frame. Before presenting our results, we first give the defini-
tion of the restricted isometry property (RIP) [11] which is a
widely used tool for analyzing random projections. Formally,
a matrix A of size M ×N is said to satisfy the RIP of order
S with restricted isometry constant (RIC) δS ∈ (0, 1) as the
smallest number such that

(1− δS)∥x∥2ℓ2 ≤ ∥Ax∥2ℓ2 ≤ (1 + δS)∥x∥2ℓ2 (8)

holds for all x with ∥x∥ℓ0 ≤ S.
Theorem 1 Consider the measurement model yk =

Akxk + ek, k = 1, . . . ,K, where the matrices Ak have



RIC δS,k. Fix the integers S1, S2 and the positive num-
bers λk, k = 1, . . . ,K. If ∥xk∥ℓ0 ≤ S1, k = 1, . . . ,K,
∥xk1 − xk2∥ℓ0 ≤ S2, k1, k2 ∈ {1, . . . ,K} and ∥ek∥2ℓ2 ≤ ϵ2,
k ∈ {1, . . . ,K}. Then

∥x̃− xt∥2ℓ2 ≤
K∑

k=1

C1,k ∥xt − xk∥2ℓ2 +C2,kϵ
2, t = 1, . . . ,K

(9)
where Q = S1 +(K − 1)S2, C1,k =

λk(1+δS2,k)

λt(1−δQ,t)
and C2,k =

λk+
λt
K

λt(1−δQ,t)
.

Proof: As the specialized Fréchet mean x̃ is the point that
minimizes the sum of squared distances to all the other points,
we have

K∑
k=1

λk ∥Akx̃− yk∥2ℓ2 ≤
K∑

k=1

λk ∥Akxt − yk∥2ℓ2 . (10)

Then, according to the RIP (8) and the inequality (10), we can
derive

∥x̃− xt∥2ℓ2 ≤ 1

1− δQ,t
∥At(x̃− xt)∥2ℓ2

≤ 1

1− δQ,t
∥Atx̃− yt∥2ℓ2 +

∥et∥2ℓ2
1− δQ,t

≤ 1

1− δQ,t

K∑
k=1

λk

λt
∥Akx̃− yk∥2ℓ2 +

ϵ2

1− δQ,t
,

(11)

and

∥Akxt − yk∥2ℓ2 ≤ ∥Ak(xt − xk)∥2ℓ2 + ∥ek∥2ℓ2
≤ (1 + δS2,k) ∥xt − xk∥2ℓ2 + ϵ2.

(12)

Then, from the inequality (10), (11) and (12), we can deduce
that

∥x̃− xt∥2ℓ2 ≤
K∑

k=1

λk(1 + δS2,k)

λt(1− δQ,t)
∥xt−xk∥2ℓ2+

(
λk + λt

K

)
ϵ2

λt(1− δQ,t)
.

(13)
Remark: Theorem 1 gives the upper bound of the squared

pairwise Euclidean distance between the specialized Fréchet
mean and a target frame. The bound is tight in the noiseless
case ϵ = 0 and all frames considered are same, i.e. xk = xt.
In this case, the specialized Fréchet mean is equal to the tar-
get frame. If the signal changes slowly over time, then the
squared estimation error bound is equal to a sum of weighed
distances between the target frame and other frames plus a
noise term. For example, suppose δS2 = 0.4, δQ = 0.5,
λk = 1, λt = 2, ϵ2 ≤ 0.001∥xt∥2ℓ2 and the Euclidean dis-
tance between the target frame xt and any of the K − 1 = 4
adjacent frame xk satisfies ∥xt − xk∥2ℓ2 ≤ 0.01∥xt∥2ℓ2 , then
the Euclidean distance between the the Fréchet Mean and the
target frame satisfies ∥x̃− xt∥2ℓ2 ≤ 0.06∥xt∥2ℓ2 . Note that the
real error will be smaller than the bound given in Theorem 1.

4. ALGORITHM

The pseudo-code for penalized ℓ1 minimization for a se-
quence of signals is described as follows:

Algorithm 1 Reconstruction procedure
Input: A time sequence of measurement matrices At (t =

1, 2, . . .), a time sequence of measurement vectors yt (t =
1, 2, . . .), K positive weights λk (k = 1, . . . ,K), an esti-
mate of the noise level ϵ and a positive parameter ρ;

Output: An estimate time sequence of signal vector x̂t (t =
1, 2, . . .).

Process: For t > 0, do
1. Compute the specialized Fréchet mean x̃t by consid-

ering yt and K − 1 adjacent measurement vectors
with weights λk;

2. Compute the penalty pt = |x̃t|+ ρ;

3. Compute xt = argminx̂t

∥∥∥ x̂t

pt

∥∥∥
ℓ1

s.t. ∥Atx̂t − yt∥2ℓ2 ≤
ϵ.

For the first frame, the adjacent frames could be the next
K−1 frames. For other frames, their adjacent frames could be
former frames or later ones. The weights λk (k = 1, . . . ,K)
are required as the input to the algorithm, which can be sim-
ply given the same value. An interesting approach is to use
different weights to take account of the time-varying nature
of the sequence of signals.

Fig. 1. A sequence of crack images and the normalized
squared Euclidean distances of wavelet coefficients between
adjacent frames.



(b)(a) (c) 

Fig. 2. Reconstructed result of the 8th crack image. (a) Tradi-
tional ℓ1 minimization with M

N = 0.3; (b) Proposed algorithm
with M

N = 0.2; (c) Proposed algorithm with M
N = 0.15

5. EXPERIMENTAL RESULTS

In this section, we test the reconstruction performance of
the proposed algorithm with a sequence of crack images,
which are taken by a sensor camera for the purpose of mon-
itoring bridge condition. As shown in Fig 1(a), there are
8 frames, each of size 32 × 32 pixels. We calculate the
Daubechies wavelet ”db1” coefficients xt of each frame at
level 2, and then plot the normalized squared Euclidean dis-

tance
∥xt−xt+1∥2

ℓ2

∥xt∥2
ℓ2

between any pair of adjacent frames in

Fig 1(b). We note that the sparse representations of the se-
quence are quite close in the Euclidean space, which verifies
the assumption of a slow time-varying sparse signal.

The M ×N sensing matrices Φt (t = 1, . . . , 8) are gen-
erated independently with i.i.d. Gaussian entries N (0, 1

M ).
In Fig 2, we compare the proposed algorithm with traditional
ℓ1 minimization. For the reconstruction of the tth image of
the sequence, we let K = 8, λt = 7 and λk = 1 (k =
1, . . . , 8; k ̸= t), which makes the target frame have a higher
impact than other frames in the calculation of the Fréchet
mean. We note in Fig 2 that the proposed penalized ℓ1 min-
imization outperforms the traditional CS algorithm by visual
comparison. We achieve similar performance for the other
images of the sequence which are not shown here due to the
limited space.

Fig 3 shows the accuracy of reconstruction using the
signal-to-noise ratio (SNR) ∥xt∥ℓ2

∥xt−x̂t∥ℓ2
, where x̂t is the recon-

structed vector. In this experiment, the number of measure-
ments are reduced to 15% of the original except for the first
frame of the Modified-CS [6], which has 50% measurements.
We calculate the SNR by averaging over 200 experiment tri-
als. The proposed method and the Modified-CS have similar
performance except for the first frame. The Modified-CS al-
gorithm requires specific notification of the key frames while
the proposed method does not. Thus, the proposed method
can be applied in situations where the encoder is ignorant
concerning the locations of the key frames.

6. CONCLUSIONS

In this paper, we study the problem of reconstructing a time-
varying signal with a small number of linear incoherent mea-
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Fig. 3. Comparing the proposed algorithm with traditional CS
and the Modified-CS algorithm.

surements. We proposed a penalized ℓ1 minimization algo-
rithm for reconstruction that even uses fewer measurements
than does the traditional CS method. We use a specialized
Fréchet mean as the penalty vector, which is shown to be close
to the original signal. Experiments demonstrate the advantage
of our method in the reconstruction of a sequence of images.
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