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A Fréchet Mean Approach for Compressive Sensing
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Abstract—Compressive sensing leverages the compressibility of
natural signals to trade off the convenience of data acquisition
against computational complexity of data reconstruction. Thus,
CS appears to be an excellent technique for data acquisition
and reconstruction in a wireless sensor network (WSN) which
typically employs a smart fusion center (FC) with a high
computational capability and several dumb front-end sensors
having limited energy storage. This paper presents a novel signal
reconstruction method based on CS principles for applications
in WSNs. The proposed method exploits both the intra-sensor
and inter-sensor correlation to reduce the number of samples
required for reconstruction of the original signals. The novelty
of the method relates to the use of the Fréchet mean of the
signals as an estimate of their sparse representations in some
basis. This crude estimate of the sparse representation is then
utilized in an enhanced data recovering convex algorithm, i.e.,
the penalized ℓ1 minimization, and an enhanced data recovering
greedy algorithm, i.e., the precognition matching pursuit (PMP).
The superior reconstruction quality of the proposed method is
demonstrated by using data gathered by a WSN located in the
Intel Berkeley Research lab.

I. INTRODUCTION

W IRELESS sensor networks (WSN) provide a flexible
way to monitor the physical parameters of the envi-

ronment through the deployment of a large number of sensor
nodes (SN). There are three important challenges in WSNs,
specifically network lifetime, computational capability and
bandwidth constraints. The first two challenges result from
the size and cost limitation of SNs, while the third challenge
is due to the physical character of the wireless channel.

Compressive sensing (CS) is a new sampling paradigm,
which leverages the compressibility of signals to reduce the
number of samples required for reconstruction and have been
applied to a wide range of applications [1]–[3]. Using the
CS technique as the data acquisition approach in WSNs can
significantly reduce the energy consumed in the process of
sampling and transmission through the network, and also lower
the wireless bandwidth requirements for communication.

The traditional approach to measure environmental informa-
tion in WSNs, e.g., temperature, humidity, light and sound, is
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to uniformly sample and then report to the fusion center (FC).
It is important to note that the actual physical environmental
information is compressible not only in the time domain, due
to the presence of intra-signal correlation, but also in the
spatial domain, due to inter-signal correlation. However, it is
in general difficult to conceive efficient compression schemes
that account for both temporal and spatial correlation, duo to
the distributed architecture of WSNs [4]. Various distributed
coding techniques have been proposed in the literature [5]–[7],
where SNs blindly compress their data with respect to others
to reduce the communication cost in WSNs. However, the FC
requires knowledge about the global correlation structure, or
the capability to correctly track the correlation structure using
some predictive model, to reconstruct the original data. This
together with the fact that the signal correlation structure may
change over time is difficult to be achieved in practice.

The conventional CS approach is based on the acquisition
of a reduced number of samples via random projections in
the time domain, and so no post compression process is
required [8], [9]. There have been various generalizations of
the conventional CS framework to scenarios where a group of
signals exhibit both intra-signal and inter-signal correlation as
in a WSN. For example, an extension of the conventional CS,
named distributed CS [10], has been proposed to reconstruct a
group of signals acquired by different SNs in a WSN, where
these signals are assumed to satisfy some joint sparsity models.
In [11], [12], the spatial signals obtained from different SNs
are reconstructed using conventional CS with the assumption
that the spatial sparsifying basis is known. This is difficult
to be fulfilled when the global correlation structure varies in
time. In [13]–[15], the authors propose to reconstruct a time
sequence of signals one by one, using previous reconstruction
results to enhance the current reconstruction. This method
requires the encoder to have the ability to recover the first
signal of the time sequence. In other words, one SN is required
to sample at a higher rate than the other SNs, which leads to
a shortened life time of that SN. In [16], the authors propose
a data gathering method to reduce the communication cost
of WSNs by using CS principles for inter-signal correlation.
However, this method does not exploit the intra-signal corre-
lation of each signal.

In this paper, we focus on a scenario where signals detected
by a group of SNs have not only intra-signal correlation but
also significant inter-signal correlation owing to some global
factors and spatial correlations. Consequently, we propose a
Fréchet mean based CS approach which together with CS
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principles leverages both intra-signal and inter-signal correla-
tion to efficiently collect and/or reconstruct highly correlated
signals in WSNs. In particular, the approach leads to a higher
reconstruction quality for a certain target number of samples,
or conversely, to a lower number of samples for a certain target
reconstruction quality. Our contributions can be summarized
as follows:

• We propose a method to estimate the sparse signal
representation by calculating a Fréchet mean, or more
importantly, a sparse Fréchet mean. This can be married
to traditional sparse recovery algorithms to reduce the
number of samples required for reconstruction. We also
derive an upper bound of the sparse Fréchet mean esti-
mation error to cast further insight onto the problem.

• We propose a penalized ℓ1 minimization algorithm where
the sparse Fréchet mean is used appropriately to make
ℓ1 minimization close to ℓ0 minimization, since fewer
measurements are needed for exact reconstruction with
ℓ0 minimization than with ℓ1 minimization [17].

• We propose a Fréchet mean enhanced greedy algorithm,
called precognition matching pursuit (PMP), where the
sparse Fréchet mean is used to estimate the support, i.e.,
the nonzero positions, of the sparse representation.

The advantage of our method is demonstrated by recovering
data gathered by a WSN at the Intel Berkeley lab [18].

The following notation is used. Italic upper-case letters
denote numbers, boldface upper-case letters denote matrices,
boldface lower-case letters denote column vectors, and cal-
ligraphic upper-case letters denote support sets. The super-
scripts (·)T and (·)† denote the transpose and pseudoinverse
of a matrix, respectively. rank(·) denotes the rank of a
matrix. xi denotes the ith element of x. {Xk} and {xk}
(k = 1, 2, . . . ,K) denote a group of matrices and vectors,
respectively. J̄ denotes the complement of set J . Now supp x
denotes the set of nonzero elements of the vector x and
supp(x, S) denotes the set of the S largest elements of the
vector x. By xJ = M, we mean that the elements of vector
x whose indexes are in set J are set to be equal to M. ∥x∥0
denotes the ℓ0 norm, i.e., the number of nonzero elements
of the vector x. ∥x∥1 =

∑
i |xi| denotes the ℓ1 norm of the

vector x. ∥x∥2 =
√∑

i x
2
i denotes the ℓ2 norm of the vector

x.

II. WSN SIGNAL ACQUISITION BASED ON COMPRESSIVE
SENSING

A. Conventional Compressive Sensing

Consider a WSN scenario where a single SN acquires a
certain signal to be sent to and reconstructed by a FC, based
on conventional CS principles. In particular, the SN monitors
a discrete signal f ∈ RN with a discrete representation x ∈ RN

on some basis Ψ ∈ RN×N, so that f = Ψx. The signal is said
to be sparse over the basis when ∥x∥ℓ0 ≤ S ≪ N.

The SN obtains a vector of measurements y ∈ RM(S <
M ≪ N) via random projections, which typically involves a
multiplication with a random sensing matrix Φ ∈ RM×N as
follows:

y = ΦΨx+ n = Ax+ n, (1)

where n ∈ RM denotes the measurement noise and A =
ΦΨ ∈ RM×N.

In general, it is not possible to recover the signal rep-
resentation x from the signal measurements y, because (1)
represents an underdetermined system of linear equations.
However, if x is known to be sparse, (1) is solvable under
some conditions [8], [9]. The recovery procedure corresponds
to the solution of the optimization problem given by:

min
x̂

∥x̂∥0, s.t. ∥Ax̂− y∥2 ≤ ϵ, (2)

where ϵ > 0 is an estimate of the measurement noise level,
or, in order to bypass the fact that such a problem is NP-hard,
the optimization problem given by:

min
x̂

∥x̂∥1, s.t. ∥Ax̂− y∥2 ≤ ϵ. (3)

Note that the ℓ1 minimization problem in (3) represents a
convex relaxation of the ℓ0 minimization problem in (2).

One of the widely used conditions that guarantees the
successful reconstruction of x via solving (3) is the restricted
isometry property (RIP).

Definition 1 (RIP): A matrix A of size M × N is said to
satisfy the RIP of order S with restricted isometry constant
(RIC) δS ∈ (0, 1) as the smallest number such that

(1− δS)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δS)∥x∥22 (4)

holds for all x with ∥x∥0 ≤ S.
In the absence of measurement noise, it is established in [19]

that any sparse signal with support size no larger than S can
be exactly recovered by solving (3) (with ϵ = 0 which implies
y = Ax̂) if the RIC satisfies δ2S <

√
2 − 1. In the presence

of measurement noise, it is also established in [19] that the
reconstructed vector x̂ is a good approximation to the original
signal representation x, if x is sparse or nearly sparse.

Most of the reconstruction algorithms proposed in the litera-
ture can be classified into two categories: convex optimization
algorithms and greedy algorithms. Generally speaking, convex
optimization algorithms [20], [21] provide higher reconstruc-
tion performance in terms of number of measurements re-
quired than do greedy algorithms. However, greedy algorithms
are also very attractive owing to their low computational
complexity. In particular, some greedy algorithms such as
Compressive Sampling Matching Pursuit (CoSaMP) [22] and
Subspace Pursuit [23] deliver reconstruction performances
which are very close to performances of convex optimization
based approaches.

B. Correlated Compressive Sensing (CCS)

Consider now a WSN scenario where K densely placed SNs
acquire signals to be sent to and individually reconstructed by
a FC (see Fig. 1). In particular, it is assumed that the signals
sensed by these SNs exhibit both intra-sensor correlation and
inter-sensor correlation. This correlated sensing model occurs
for example in WSN applications that involve monitoring of
various physical parameters, such as temperature, humidity,
light intensity and air pressure. Global factors, e.g., the sun
and prevailing winds, could result in the high correlation
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Fig. 1. A WSN with densely placed SNs. The adjacent SNs have highly
correlated temperature values represented by colors.

between signals sensed by different SNs, that leads to physical
parameters compressible in both the time and space domains.

The kth SN monitors a discrete signal fk ∈ RN with a
discrete sparse representation xk ∈ RN on some sparsifying
basis Ψ ∈ RN×N so that fk = Ψxk, where ∥xk∥0 ≤ S. The
kth SN also obtains a vector of measurement yk ∈ RMk(S <
Mk ≪ N) by calculating random projections with a randomly
generated matrix Φk ∈ RMk×N as follows:

yk = ΦkΨxk + nk = Akxk + nk, (5)

where nk ∈ RM
k denotes the measurement noise and Ak =

ΦkΨ ∈ RMk×N. The aim of correlated compressive sensing
(CCS) is to leverage the intra-signal and inter-signal cor-
relation of the signals in order to reduce the total number
of SN samples (or random projections) to meet some target
reconstruction performance.

III. PRIOR ESTIMATION OF CORRELATED SPARSE
SIGNALS: A FRÉCHET MEAN APPROACH

The key idea, in view of the fact that the physical signals
sensed by different SNs exhibit high correlations that leads to
similar sparse representations [10], is to infer a crude estimate
of some sparse representation directly from the measurements,
that can be leveraged to improve the signal reconstruction
algorithms at the FC. In particular, we propose to exploit
the Fréchet mean, or more importantly, the sparse Fréchet
mean to estimate the sparse representation directly from the
measurements prior to signal reconstruction.

A. Fréchet Mean Estimation

The Fréchet mean of K sparse representations can be
obtained from the measurements as follows:

x̃ = argmin
x̃

K∑
k=1

λkd
2(Akx̃,yk), (6)

where λk > 0 denotes the contribution weight of the kth
signal and d(Akx̃,yk) denotes the distance function between
the vector Akx̃ and yk.

The definition of the distance function should consider two
aspects: i) it should be meaningful; and ii) it should lead to a

simple solution of the optimization problem in (6). Therefore,
we define the distance function as follows:

d(Akx̃,yk) = ∥Akx̃− yk∥22 . (7)

Consequently, the Fréchet mean can be obtained by solving
the optimization problem:

min
x̃

∥∥∥Âx̃− ŷ
∥∥∥2
2
, (8)

where the extended sensing matrix Â ∈ R(
∑K

k=1 Mk)×N

and the extended measurement vector ŷ ∈ R
∑K

k=1 Mk

are given by Â =
[√

λ1A
T
1 , · · · ,

√
λKA

T
K

]T
and ŷ =[√

λ1y
T
1 , · · · ,

√
λKy

T
K

]T
respectively.

The Fréchet mean can be seen as a minimization of the sum
of the squared Euclidean distances in low-dimensional spaces
between the measurements and the common sparse represen-
tation. The weights λ1, . . . , λK control the emphasis given to
particular SN measurements. For example, if λ1 = . . . = λK,
equal emphasis is given to the measurement vectors in the
calculation of the Fréchet mean. In contrast, if λk > λi

(i ̸= k), greater emphasis is given to the kth measurement
in the calculation of the Fréchet mean. This could lead to a
better estimate of the kth sparse representation.

The solution of the ordinary least squared optimization
problem in (8) is given by:

x̃ = (ÂHÂ)−1ÂH ŷ, (9)

if rank(Â) = N. This rank condition requires that∑K
k=1 Mk ≥ N for randomly generated sensing matrices Φk

(k = 1, . . . ,K).

B. Sparse Fréchet Mean Estimation

It is more appropriate to consider a sparse version rather
than the conventional version of the Fréchet mean as the
estimate of the sparse signal representation in view of the
fact that the signals are sparse. The sparse Fréchet mean
˜̃x corresponds to the solution of the following optimization
problem

min
˜̃x

∥∥∥Â˜̃x− ŷ
∥∥∥2
2
, s.t.

∥∥∥˜̃x∥∥∥
0
≤ S. (10)

One common method to derive an approximate solution to
the NP-hard problem in (10) involves the replacement of the
ℓ0 norm by the ℓ1 norm. This gives rise to the optimization
problem:

min
˜̃x

∥∥∥Â˜̃x− ŷ
∥∥∥2
2
, s.t.

∥∥∥˜̃x∥∥∥
1
≤ S̃, (11)

where S̃ > 0 represents the constraint on the ℓ1 norm of the
Fréchet mean, which can be solved using the least-absolute
shrinkage and selection operator (Lasso) [24] in polynomial
time. A simpler method, which we propose to circumvent the
high computational complexity associated with large dimen-
sions, involves the determination of the sparse Fréchet mean
˜̃x directly from the Fréchet mean x̃, by forcing all but the S
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largest components in absolute value of the Fréchet mean to
be equal to zero, i.e.,

˜̃xi =

{
x̃i i ∈ supp(x̃, S)
0 i /∈ supp(x̃, S) . (12)
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Fig. 2. Comparison of the sparse signal with the Fréchet mean. From top to
bottom: (a) the sparse signal x, (b) the Fréchet mean x̃ in (8), (c) the sparse
Fréchet mean ˜̃x given by (12) and (d) the sparse Fréchet mean given by (11).
The sparse representation x contains 10 nonzero components, all of which
are ±1 spikes. The Fréchet mean is calculated from 11 sparse representations
with λk = 1 (k = 1, . . . , 11). All the representations are measured using
i.i.d. random Gaussian matrices (M1 = . . . = M11 = 100 and N = 256).

Fig. 2 gives an example of the use of Fréchet mean and the
sparse Fréchet mean. We generate K = 11 correlated sparse
representations xk (k = 1, . . .K) with N = 256 coefficients of
which 246 are zero and 10 are ±1 random spikes as shown
in the sub-figure (a) of Fig. 2. The inter-signal correlation in
this experiment is modeled by generating 9 common spikes
and 1 innovation spike. Random Gaussian matrices of size
100 × 256 are used as the equivalent sensing matrices Ak

(k = 1, . . .K). The Fréchet mean shown in the sub-figure (b)
is calculated with the parameters λk = 1 (k = 1, . . .K), which
leads to a common Fréchet mean for all sparse representations.
The sparse Fréchet means in the sub-figures (c) and (d) are
calculated with the parameters λk = 1 (k = 1, . . .K) by using
(12) and (11) respectively. We note that the sparse Fréchet
means are closer to the sparse representation of a randomly
selected signal (out of the K = 11 signals) than is the Fréchet
mean, owing to to the fact that the sparsity constraint leads
to the small estimation errors being equal to zeros. We also
highlight that the sparse Fréchet mean only acts as a crude
estimate of the sparse signal. Further refinements require the
integration of the sparse Fréchet mean with sparse recovery
algorithms (see Section IV).

C. Estimation Error

An important consideration relates to the squared error
between the sparse Fréchet mean estimate of the sparse repre-
sentation and the exact sparse representation. This is unveiled
by the following Proposition.

Proposition 1: Consider the measurement model yk =
Akxk +nk (k = 1, . . . ,K), where the matrices Ak have RIC
δS,k. Fix the integers S, Sd and the positive numbers λk (k =
1, . . . ,K). If ∥xk∥0 ≤ S (k = 1, . . . ,K), ∥xk1 − xk2∥0 ≤ Sd

1

(k1, k2 ∈ {1, . . . ,K}) and ∥nk∥22 ≤ ϵ2 (k = 1, . . . ,K). Then
the sparse Fréchet mean in (10) satisfies∥∥∥˜̃x− xk′

∥∥∥2
2
≤

K∑
k=1

C1,k ∥xk′ − xk∥22+C2,kϵ
2 (k′ = 1, . . . ,K),

(13)

where C1,k =
λk(1+δSd,k)

λk′ (1−δ2S,k′ )
and C2,k =

λk+
λ
k′
K

λk′ (1−δ2S,k′ )
. The

sparse Fréchet mean in (12) satisfies∥∥∥˜̃x− xk′

∥∥∥2
2
≤

K∑
k=1

C1,k ∥xk′ − xk∥22 + C2,kϵ
2 + C3,k ϵ̃

2

(k′ = 1, . . . ,K),
(14)

where C3,k = λk

λk′ (1−δ2S,k′ )
and ϵ̃2 ≥

∥∥∥Ak(˜̃x− x̃)
∥∥∥2
2

(k=1,. . . ,K).
Proof: We first consider the sparse Fréchet mean in (10).

Since ˜̃x solves the optimization problem in (10), where the
sparsity level of ˜̃x is equal to the sparsity level of xk (k =
1, . . . ,K), then we have

K∑
k=1

λk

∥∥∥Ak
˜̃x− yk

∥∥∥2
2
≤

K∑
k=1

λk ∥Akxk′ − yk∥22 , (15)

for any k′. Therefore, according to the RIP in (4), the triangle
inequality, the inequality in (15) and the assumptions, we can
derive through the following chain of inequalities that∥∥∥˜̃x− xk′

∥∥∥2
2
≤ 1

1− δ2S,k′

∥∥∥Ak′(˜̃x− xk′)
∥∥∥2
2

≤ 1

1− δ2S,k′

∥∥∥Ak′ ˜̃x− yk′

∥∥∥2
2
+

∥nk′∥22
1− δ2S,k′

≤ 1

1− δ2S,k′

K∑
k=1

λk

λk′

∥∥∥Ak
˜̃x− yk

∥∥∥2
2
+

ϵ2

1− δ2S,k′

≤ 1

1− δ2S,k′

K∑
k=1

λk

λk′
∥Akxk′ − yk∥22 +

ϵ2

1− δ2S,k′

≤ 1

1−δ2S,k′

K∑
k=1

λk

λk′

(
∥Ak(xk′−xk)∥22+∥nk∥22

)
+

ϵ2

1−δ2S,k′

≤
K∑

k=1

λk(1+δSd,k)

λk′(1−δ2S,k′)
∥xk′−xk∥22+

ϵ2

1−δ2S,k′

(
1+

K∑
k=1

λk

λk′

)
.

(16)

We now consider the the sparse Fréchet mean ˜̃x in (12).
Since x̃ solves the optimization problem in (8) then

K∑
k=1

λk ∥Akx̃− yk∥22 ≤
K∑

k=1

λk ∥Akxk′ − yk∥22 , (17)

1This assumption arises from the fact that these sparse signals have
considerable inter-signal correlations.
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for any k′. Therefore, by following the previous procedure, we
can also derive through the following sequence of inequalities
that∥∥∥˜̃x− xk′

∥∥∥2
2
≤ 1

1− δ2S,k′

∥∥∥Ak′(˜̃x− xk′)
∥∥∥2
2

≤ 1

1− δ2S,k′

∥∥∥Ak′ ˜̃x− yk′

∥∥∥2
2
+

∥nk′∥22
1− δ2S,k′

≤ 1

1−δ2S,k′

(
∥Ak′ x̃−yk′∥22+

∥∥∥Ak′ (̃̃x−x̃)
∥∥∥2
2

)
+

ϵ2

1−δ2S,k′

≤ 1

1− δ2S,k′

K∑
k=1

λk

λk′

(
∥Akx̃− yk∥22 +

∥∥∥Ak(˜̃x− x̃)
∥∥∥2
2

)
+

ϵ2

1− δ2S,k′

≤ 1

1− δ2S,k′

K∑
k=1

λk

λk′

(
∥Akxk′ − yk∥22 +

∥∥∥Ak(˜̃x− x̃)
∥∥∥2
2

)
+

ϵ2

1− δ2S,k′

≤ 1

1− δ2S,k′

K∑
k=1

λk

λk′

(
∥Akxk′ − xk∥22 + ∥nk∥22

+
∥∥∥Ak(˜̃x− x̃)

∥∥∥2
2

)
+

ϵ2

1− δ2S,k′

≤
K∑

k=1

λk(1+δSd,k)

λk′(1−δ2S,k′)
∥xk′−xk∥22+

ϵ2

1−δ2S,k′

(
1+

K∑
k=1

λk

λk′

)

+
1

1− δ2S,k′

K∑
k=1

λk

λk′

∥∥∥Ak(˜̃x− x̃)
∥∥∥2
2
.

(18)

Proposition 1 gives the upper bound of the squared pairwise
Euclidean distance between the sparse Fréchet mean of the
sparse representations and a target sparse representation. The
bound (13) is sharp in the noiseless case ϵ = 0 and all signals
considered are the same, i.e. xk = xk′ (∀k, k′). In this case,
the sparse Fréchet mean is equal to the target signal. If the
signals are slightly different, then the squared estimation error
bound (13) is equal to a sum of weighed distances between
the target signal and other signals plus a noise related term.
Note that the additional term, i.e., C3,k ϵ̃

2, in the bound (14)
reveals the estimation error penalty due to the calculation of
the sparse Fréchet mean via (12).

IV. CORRELATED SPARSE SIGNAL RECONSTRUCTION
ALGORITHMS

We now leverage the availability of the Fréchet mean to
propose an enhanced convex algorithm, i.e., the penalized
ℓ1 minimization, and an enhanced greedy algorithm, i.e., the
PMP, to reconstruct a group of K correlated sparse signals.
These signals are sensed in the CS manner by the SNs and
reconstructed one by one at the FC based on the signal
measurements yk (k = 1, . . . ,K), and the signal sparse
Fréchet mean ˜̃xk (k = 1, . . . ,K). Note that it is possible
to use a specialized Fréchet mean, where λk′ > λk (∀k, k′)

to reconstruct the k′th signal. This requires the calculation
of a Fréchet mean for each signal, but also leads to a lower
estimation error bound in view of Proposition 1. Alternatively,
it is possible to use a single common Fréchet mean, where
λ1 = . . . = λK, to reconstruct each signal. This only requires
the calculation of a single Fréchet mean, but also lead to a
higher estimation error bound.

A. Penalized ℓ1 Minimization Algorithm

The penalized ℓ1 minimization algorithm uses the sparse
Fréchet mean ˜̃xk of the sparse representation xk as a penalty
vector in the ℓ1 minimization algorithm. The reconstruction
corresponds to the solution of the optimization problem:

min
x̂k

∥Wkx̂k∥1 s.t. ∥Akx̂k − yk∥2 ≤ ϵ, (19)

where Wk = diag
(

1
|˜̃xk,i|+β

)
∈ RN×N is a diagonal matrix

which contains a set of penalties. The parameter β > 0 is a
very small positive number to ensure that |˜̃xk,i|+ β ̸= 0.

The motivation of the approach relates to the fact that the
ℓ1-norm ∥Wkx̂k∥1 in (19) is a better approximation to the ℓ0-
norm than the ℓ1-norm ∥x̂k∥1 in (3) [17] because ∥Wkx̂k∥1 ≈
∥x̂k∥0 for a good prior estimate ˜̃xk. Consequently, one expects
the algorithm in (19) to outperform the algorithm in (3). The
pseudo-code for penalized ℓ1 minimization for a sequence of
signals is presented in Algorithm 1. The value of β should
be small enough to lead to x̂k,i

|˜̃xk,i|+β
≈ 1 for a good prior

estimate ˜̃xk. This can be fulfilled for example by letting β =
1

100 mini{˜̃xk,i|˜̃xk,i ̸= 0}.

Algorithm 1 Penalized ℓ1 minimization algorithm
Input: A group of sensing matrices Ak (k = 1, 2, . . . ,K),

a group of measurement vectors yk (k = 1, 2, . . . ,K), an
estimate of the noise level ϵ and λk (k = 1, 2, . . . ,K);

Output: A group of estimated sparse signals x̂k (t =
1, 2, . . . ,K).

Process: For k > 0, do
1) Compute the sparse Fréchet mean ˜̃xk by considering

yk and K − 1 other measurement vectors;
2) Compute the penalty wk

i,i =
1

|˜̃xk,i|+β
(i = 1, . . .N);

3) Compute (19) (for example using the basis pursuit
solver).

B. Precognition Matching Pursuit (PMP)

The greedy algorithm, namely PMP, aims to achieve fast
reconstruction and a reduced requirement on the number of
measurements compared to traditional matching pursuit (MP)
and its variations [23], [25], [26]. In particular, the PMP
algorithm uses the support of the sparse Fréchet mean as a
prior estimate of the sparse representation support. We denote
the support of the sparse Fréchet mean for the kth signal by
J̃k.

The key idea of the PMP is to find a support Jk that
is closest to the actual support of the kth signal xk. Then,
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the reconstructed signal x̂k is calculated by solving the least
square optimization problem:

min
x̂k

∥Ak,Jk
x̂k,Jk

− yk∥22 , (20)

which leads to x̂k = A†
k,Jk

yk. The PMP algorithm involves:
an initialization phase, where a residual signal r and the
estimated signal x̂k are initialized, and an iterative phase,
where the support of the actual signal is iteratively updated.
In particular, the iterative phase includes the steps:

1) Estimation of the support of the residual signal and of
the estimated signal from the previous iteration (see 2a
and 2b in algorithm 2);

2) update of the signal support (see 2c in algorithm 2);
3) update of the residual signal and the estimated signal

(see 2d and 2e in algorithm 2).
The estimated signal support Jk in each iteration is com-

posed of the sparse Fréchet mean support J̃k, the L =
2S −∥J̃k∥0 largest values of a residual vector returned in the
previous iteration, and the estimated signal support returned
in the previous iteration. The iterations stop when the result
satisfies some halting condition. For example, one can either
set a threshold for the the residual’s Frobenius norm or let
the algorithm stop when the improvement of the residual is
smaller than a threshold based on empirical knowledge. One
can observe that the PMP is similar to the CoSaMP [22]
except for the additional sparse Fréchet mean support in each
iteration. This key innovation enables the PMP to return a
better reconstructed signal. The pseudo-code of the PMP for
a sequence of signals is described in Algorithm 2.

Algorithm 2 Precognition matching pursuit (PMP)
Input: A group of measurement vectors yk (k = 1, . . . ,K), a

group of sensing matrices Ak (k = 1, . . . ,K), a group of
estimated supports J̃k (k = 1, . . . ,K) and the sparsity level
S;

Output: An group of estimate sparse signals x̂k (k =
1, 2, . . . ,K);

Process: For k > 0, do
1) Initialization: Let x̂k = 0 and r = yk;
2) Repeat:

a) u = AT
k r, L = 2S − ∥J̃k∥0;

b) T = suppuL, O = suppx̂k;
c) Jk = T ∪ J̃k ∪ O;
d) v = A†

k,Jk
yk, Q = suppvS

e) x̂k,Q = vQ, x̂k,Q̄ = 0, r = yk −Ak,Jk
x̂k;

f) if halting condition true then
quit the iteration;

end if.

We note that the PMP requires the knowledge of the
sparsity level S, which is also required by many other MP
algorithms, such as orthogonal matching pursuit (OMP), reg-
ularized orthogonal matching pursuit (ROMP) and CoSaMP.
For example, one can use some empirical knowledge about
the sparsity level S, or else one can run the PMP algorithm
with several different sparsity levels to choose the signal with
minimal squared error ∥Akx̂k − yk∥22 as the final solution.

V. EXPERIMENTAL RESULTS

Fig. 3. Layout of the WSN of the Intel Berkeley Research lab.

We now apply the proposed method to reconstruct the
signals gathered by the WSN located in the Intel Berkeley
Research lab [18]. In this WSN, 54 Mica2Dot SNs with
weather boards were deployed in one floor of the lab building
as shown in Fig. 3. Each SN had measured the environmental
humidity, temperature and light level for more than one month.
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Fig. 4. DCT coefficients of a typical temperature signal detected by the
WSN.

Note that the signals monitored by the WSN might be
compressible rather than exactly sparse in some sparsifying
basis, and all the measurements are disturbed by the noise. In
the following evaluation of our method, we use the discrete
cosine transform (DCT) as the sparsifying domain. When we
investigated the data collected by these SNs, we noticed that
some of the SNs data experienced a high level of loss. Thus,
we only used the contiguous data that was available from
K = 19 of the SNs in our experiment. In Fig. 4, we show
that the DCT coefficients of the temperature signal sensed
by the 1st SN, are very sparse. All the other signals also
have similarly sparse DCT vectors. We also note that the
environmental temperature signals in the detected area have
high spatial correlations as shown in Fig. 5. Instead of uniform
sampling, each SN independently and randomly collects a
small portion of the original samples and transmits them to
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Fig. 5. Environmental temperature signals detected by the WSN.

the FC. Therefore, the sensing matrices Ak become random
partial DCT matrices.
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Fig. 6. Environmental temperature signal detected by the 5th SN and
reconstruction results.

All the signals we employ in the following study have a
length of N = 1024. We let the sparsity level be S = N

20 in our
simulation3. We calculate the Fréchet mean from the randomly
sampled signal of different SNs with λ1 = . . . = λK = 1 for

3In practice, the value of sparsity level is often based on empirical
knowledge.

all the signals, and then derive the common sparse Fréchet
mean ˜̃xk by using (8) and (12). The sparse Fréchet mean is
used as an input to the penalized ℓ1 minimization, where we
let β = 1

100 mini{˜̃xk,i|˜̃xk,i ̸= 0}, and the PMP is used to in-
dependently reconstruct each signal. In Fig. 6, we demonstrate
the effectiveness of our method by comparing the original
temperature signal of the 5th SN with the reconstructed signal.
All the other temperature signals show a similarly close match
between the reconstructed and the original signals.
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Fig. 7. Histogram of the relative recovery error of the reconstructed
temperature signal of the 5th SN with different reconstruction algorithms
(M = 300 and N = 1024).
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Fig. 8. Environmental temperature signal reconstruction performance of using
different choices of λk′ (M = 200 and N = 1024).

The sparse Fréchet mean estimate of the signal is also
plotted to highlight that the result of the reconstruction algo-
rithms exhibit further refinement. Now, we define the relative
recovery error for a single SN to be equal to ∥f̂k−fk∥2

2

∥fk∥2
2

, where

fk and f̂k are the original signal and the reconstructed signal of
the kth SN respectively. In Fig. 7 we illustrate as an example
the distribution of the relative recovery error for the 5th SN.
We let λk = 1 (k = 1, . . . ,K) in the calculation of the sparse
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TABLE I
THE SUCCESSFUL RECONSTRUCTION PROBABILITIES OF THE 1ST SN AND THE 5TH SN WITH DIFFERENT ALGORITHMS (N = 1024) .

The 1st SN The 1st SN The 5th SN The 5th SN
M = 300 M = 250 M = 300 M = 250

L1 87.3% 15.1% 5.5% 0.0%
Penalized L1 λk′ = 1 94.6% 57.4% 86.0% 16.5%
Penalized L1 λk′ = 1.5 98.8% 95.8% 95.7% 82.0%

CoSaMP 99.56% 96.38% 92.44% 33.26%
PMP λk′ = 1 99.95% 99.82% 99.37% 87.33%
PMP λk′ = 1.5 99.96% 99.85% 99.38% 87.52%

Fréchet mean. It is clear that the performance of the proposed
two algorithms, i.e., the Penalized ℓ1 minimization and the
PMP, surpass the performance of the two conventional algo-
rithms, i.e., the ℓ1 minimization and the CoSaMP, respectively.
In Fig. 8, we also show the reconstruction performance of
temperature signals of the 1st SN and the 5th SN with different
choices of {λk} in the sparse Fréchet mean calculation, and
the results are averaged over 100 trials. In particular, we let all
λk = 1 (k = 1, . . . ,K) except for the value λk′ corresponding
to the target k′th SN. Note that the reconstruction performance
of the penalized ℓ1 minimization algorithm can be improved
by using λk′ greater than 1. However, the best choices of λk′

value for the 1st SN and the 5th SN are different. Although
one cannot find a unique value of λk′ which is best for
all SNs, it worth choosing a value of λk′ slightly greater
than 1 in order to obtain some performance gain. On the
other hand, we note that the reconstruction performance of
the PMP appears not to be significantly affected by different
choices of λk′ . By defining a successful reconstruction as
one where the relative recovery error is less than 10−3, we
investigate the probability of successful reconstruction of a
single SN with different algorithms. We let all λk = 1
(k = 1, . . . ,K) except for the value λk′ corresponding to the
target k′th SN in the calculation of the sparse Fréchet mean.
The reconstruction probability results are shown in Table I.
Note that the reconstruction probabilities can be improved
by using the Fréchet mean enhanced algorithms, i.e., the
penalized ℓ1 minimization algorithm and the PMP algorithm.

We define the relative recovery error for multiple SNs in a
WSN to be

∑K
k=1 ∥f̂k−fk∥2

2∑K
k=1 ∥fk∥2

2

. In Fig. 9, we show the superiority
of the Fréchet mean enhanced algorithms, i.e., the penalized ℓ1
minimization algorithm and the PMP, in comparison with the
ℓ1 minimization algorithm and the CoSaMP algorithm which
is one of the most efficient greedy algorithms. In particular,
we consider the use of a specialized sparse Fréchet mean,
where λk′ = 1.5 for the target signal and λk = 1 for the
other signals, as well as a common sparse Fréchet mean where
λ1 = . . . = λK = 1. The results are averaged over 100 trials.
We use the CVX code (http://www.stanford.edu/∼boyd/cvx/)
to solve the penalized ℓ1 minimization problem. The penalized
ℓ1 minimization algorithm takes several minutes to reconstruct
the group of signals while greedy algorithms just requires
a few seconds using the same PC, which makes greedy
algorithms promising in terms of computational complexity.
We also observe that the performance of algorithms that
employ the specialized sparse Fréchet mean is also better than
that of algorithms that use the common sparse Fréchet mean.
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Fig. 9. Performance of three different reconstruction algorithms for temper-
ature signals (N = 1024) detected by the WSN.

VI. CONCLUSIONS

In this paper, we proposed a Fréchet mean enhanced CS
approach to efficiently monitor the environmental physical
parameters by WSNs. The proposed approach leads to a con-
siderable reduction in the number of samples required by the
conventional CS framework by exploiting the intra-signal and
inter-signal correlation of the sensor signals. As the number
of samples is approximately proportional to the total energy
consumed by a SN in the processes of sampling, processing
and transmission, this translates directly into savings in energy
consumption and so prolong the life time for a network
having battery powered SNs. Experiments demonstrate the
advantage of our approach in the reconstruction of typical
signals collected by a practical WSN.
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