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Abstract—Compressive sensing (CS), a new sampling
paradigm, has recently found several applications in wireless
sensor networks (WSNs). In this paper, we investigate the design
of novel sensing matrices which lead to good expected-case
performance - a typical performance indicator in practice - rather
than the conventional worst-case performance that is usually
employed when assessing CS applications. In particular, we show
that tight frames perform much better than the common CS
Gaussian matrices in terms of the reconstruction average mean
squared error (MSE). We also showcase the benefits of tight
frames in two WSN applications, which involve: i) robustness to
data sample losses; and ii) reduction of the communication cost.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted

world-wide attention in recent years owing to the

reduced cost of sensor nodes and the increasing demand

for gathering various sorts of physical information from the

environment. These sensor nodes have low power and limited

processing resources compared to the fusion center (FC),

which collects and analyzes all the sensed data in the field. The

communications cost in data gathering is crucial for a WSN

as it determines the lifetime of the network and the amount

of wireless spectrum resources required. Another problem in

WSNs is data loss, which is inevitable due to the characteristic

of the wireless medium. While a number of schemes have been

proposed to deal with these issues [1], [2], the success of a new

sampling paradigm, known as compressive sensing (CS) [3],

[4], motivates novel designs for WSNs.

CS leverages the compressibility of signals in nature to

reduce the number of samples required for perfect or nearly-

perfect reconstruction. Therefore, this is a promising technique

for applications where the data gathering and communication

is expensive. In addition, CS also trades-off sampling rate for

reconstruction complexity, a property which suits the fact that

a FC has much more computational power than the sensor

nodes in WSNs.

Several CS-based schemes have been proposed in the litera-

ture for data gathering in WSNs. For example, Bajwa et al. [5]

proposed a distributed communication architecture using an

analog coherent transmission scheme. Charbiwala et al. [6]

exploited CS as an application layer erasure coding strategy for
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recovering missing data. Luo et al. [7] proposed a compressive

data gathering scheme to reduce communication cost for large

scale WSNs. A comprehensive survey of CS-based network

data gathering is given in [8].

The key novel feature of CS is using incoherent sampling

instead of the traditional Nyquist sampling method [3], [4].

The majority of the work in the literature considers the use of

Gaussian sensing matrices to perform the sampling operation.

These matrices obey the so-called restricted isometry property

(RIP), which represents a sufficient condition for successful

reconstruction of the signals [4].

In this paper, we propose to use specialized random ma-

trices, named tight frames, for CS sampling owing to its

superior expected-case reconstruction performance compared

to random Gaussian matrices. We also propose the use of

tight frames based sensing matrices in a variety of WSN

applications. In particular, we show that tight frames are robust

against sample losses in WSN applications, and that tight

frames can reduce the transmission cost in WSN applications.

The following notation is used. Upper-case letters denote

numbers, boldface upper-case letters denote matrices, boldface

lower-case letters denote column vectors and calligraphic

upper-case letters denote sets. (·)T , Tr(·) and rank(·) denote

the transpose, trace and rank of a matrix, respectively. Xi,j

denotes the element of the ith row and jth column of the

matrix X. N (µ, σ2) denotes the Gaussian distribution with a

mean µ and a variance σ2. ‖x‖0 denotes the ℓ0 norm, i.e., the

number of nonzero elements of the vector x. ‖x‖1 denotes the

ℓ1 norm, i.e., the summation of the absolute value of elements

of the vector x. ‖x‖2 =
√

∑

i x
2
i denotes the ℓ2 norm of the

vector x. ‖X‖F denotes the Frobenius norm of the matrix X.

II. COMPRESSIVE SENSING AND TIGHT FRAMES: THE

BASICS

A. Compressive Sensing

Signals in nature are often compressible due to inherent

redundancy. Unlike the traditional Nyquist sampling method,

CS directly acquires a reduced number of signal samples on

the premise of the compressibility of signals thereby obviating

the need for an extra compression process after the sampling

process. We assume that a discrete signal f ∈ R
N can be

represented by a sparse signal x ∈ R
N in some orthonormal



basis, i.e.,

f = Dx, (1)

where D ∈ R
N×N denotes the orthonormal basis. In particular,

the signal f is S-sparse if it is a linear combination of S

basis vectors only, i.e., the vector x contains only S nonzero

elements.

The conventional CS sensing model can be written as

follows:

y = ΦDx+ n, (2)

where Φ ∈ R
M×N (M < N) denotes a sensing matrix and

n ∈ R
M denotes a noise vector with i.i.d. random elements

drawn according to N (0, σ2).

In general, solving (2) with a given Φ, D and y is

impossible even in the absence of noise. Fortunately, with a

sparse constraint, i.e., S ≤ M
2 [4], it is possible to estimate the

sparse vector x by solving the following optimization problem:

min
x̂

‖x̂‖0
s.t. ‖ΦDx̂− y‖2 ≤ ǫ,

(3)

where ǫ ≥
√

Mσ2, In the view of the fact that such an

optimization problem is NP-complete, the following convex

relaxation of the original optimization problem is applied:

min
x̂

‖x̂‖1
s.t. ‖ΦDx̂− y‖2 ≤ ǫ,

(4)

where ǫ ≥
√
Mσ2.

The reconstruction performance of (4) depends upon the

“quality” of a sensing matrix Φ. A common metric to assess

the quality of a sensing matrix is the mutual coherence [9]

given by:

µ = max
1≤i,j≤N,i6=j

|Ψi,j |, (5)

where Ψ = DTΦTΦD denotes the coherence matrix of ΦD.

In general, the smaller the mutual coherence, the better quality

the sensing matrix. Another common metric to assess the

quality of the sensing matrix is the Babel function, also called

cumulative coherence [10], [11], given by:

µp(S) = max
||L||0=S,j /∈L

∑

i∈L

||Ψi,j||p, (6)

where L is a subset of the column indexes of Ψ, and p = 1
and p = 2 denote the 1-Babel function and the 2-Babel

function respectively. The Babel function evaluates the matrix

quality in a vector scale, while mutual coherence considers

the entry-wise incoherence. Currently, only coherence based

techniques such as mutual coherence and its refined variants,

i.e., Babel functions, are computationally tractable thereby

providing the means to evaluate the quality of the sensing

matrix and reconstruction performance.

B. Tight Frames

For finite-dimentional real spaces, a frame can be seen as a

matrix Φ ∈ R
M×N such that for any vector z ∈ R

N,

A‖z‖22 ≤ ‖ΦT z‖22 ≤ B‖z‖22, (7)

where A > 0 and B > 0 are called frame bounds. Tight frames

are a class of frames with equal frame bounds, i.e., A = B.

Proposition 1:

1) Let M = N and A = B = 1. Then the matrix Φ is a

tight frame if and only if it is an orthogonal matrix.

2) Let M ≤ N. Then the matrix Φ ∈ R
M×N is a tight frame

if and only if it is a solution to minΦ
∥

∥ΦTΦ− AIN

∥

∥

2

F
,

where IN is the N × N identity matrix.

3) Let M ≤ N. Then the matrix Φ ∈ R
M×N is a tight frame

if and only if ΦΦT = AIM, where IM is the M × M

identity matrix.

Proof: See Appendix.

Proposition 1 illustrates the connection between tight frames

and orthogonal matrices. In particular, a tight frame represents

a matrix whose coherence matrix is as close as possible to

an orthogonal matrix according the Frobenius norm. Frames

have been widely used in many applications such as denoising,

CDMA systems and multiantenna code design [12].

III. THE SUPERIOR EXPECTED-CASE RECONSTRUCTION

PERFORMANCE BY USING TIGHT FRAMES

We are interested in the expected-case performance of CS

reconstruction. We wish to minimize the mean squared error

(MSE) in estimating x from y, according to the sensing model

in (2), given by

MSE(Φ) = Ex,n

(

‖F(ΦDx+ n)− x‖22
)

, (8)

where F(·) denotes an estimator and Ex,n(·) denotes expecta-

tion with respect to the joint distribution of the random vectors

x and n. We assume a random signal model where the signal

is exactly S-sparse. We also assume a random signal model

where the positions of the S non-zero elements follows an

equiprobable distribution.

We consider the well-known oracle estimator, which uses

least square estimation based on the prior knowledge of the

positions of the S non-zero elements of the sparse signal, in

order to bound the MSE in (8). The reason for using the oracle

estimator is based on the fact that the oracle MSE is equal to

the unbiased Cramér-Rao bound (CBD) for exactly S sparse

deterministic vectors [13]. The oracle MSE - for a fixed sparse

vector x - is given by:

MSE
oracle
n (Φ,x) =En

(

‖Foracle(ΦDx+ n)− x‖22
)

=σ2Tr
(

(

ET
JDTΦTΦDEJ

)−1
)

,
(9)

where En(·) denotes expectation with respect to the distribu-

tion of the random vector n, J denotes the set containing the

positions of the S nonzero elements of x and EJ denotes the

matrix that results from the identity matrix by deleting the set

of columns out of the set J .



Consequently, the average value of the oracle MSE - which

acts as a lower bound to the MSE in (8) - is given by:

MSE
oracle(Φ) = Ex

(

MSE
oracle
n (Φ,x)

)

= Ex

(

σ2Tr
(

(

ET
JDTΦTΦDEJ

)−1
))

= σ2
EJ

(

Tr
(

(

ET
JDTΦTΦDEJ

)−1
))

,

(10)

where Ex(·) and EJ (·) denote expectation with respect to

the distribution of the random vector x and the random set J ,

respectively. In (10), we have used the fact that the expectation

with respect to the distribution of the random vector x is

equal to the expectation with respect to the distribution of

the positions of the nonzero elements of the random vector x,

owing to the use of the oracle.

We define the coherence matrix of the sensing matrix as

Q = ΦTΦ. We now look for the coherence matrix, which

up to a rotation leads to the sensing matrix, that minimizes

the average value of the oracle MSE subject to an energy

constraint by posing the following optimization problem:

min
Q

EJ

(

Tr
(

(

ET
JDTQDEJ

)−1
))

s.t. Q � 0,

Tr (Q) = N,

rank(Q) ≤ M,

(11)

where Q � 0 denotes that the matrix Q is positive semi-

definite. However, (11) is non-convex due to the rank con-

straint. Therefore, we first consider a convex relaxation of

(11) by ignoring the rank constraint, and then look for a

feasible solution that is the closest to the solution to the relaxed

problem and also satisfies the rank constraint.

Proposition 2: The solution of the optimization problem:

min
Q

EJ

(

Tr
(

(

ET
JDTQDEJ

)−1
))

s.t. Q � 0,

Tr (Q) = N,

(12)

which represents a convex relaxation of the original optimiza-

tion problem in (11), is the N × N identity matrix IN.

Proof: In the interest of space, the proof is omitted, but

it can be found in [14].

Proposition 2, in conjunction with Proposition 1, leads us

to conclude that a tight frame is the closest design - in the

Frobenius norm sense - to the solution of the convex relaxation

of the original optimization problem in (11). Fig. 1 illustrates

the average MSE performance of the oracle estimator and the

conventional ℓ1 minimization estimator. The orthonormal basis

used here is a fixed orthogonal matrix generated randomly and

the MSE is calculated by averaging over 1000 trials, where

in each trial we generate randomly a sparse vector with S

randomly placed ±1 spikes. The reconstruction performance

of tight frames based sensing matrices clearly outperforms the

reconstruction performance of other sensing matrix designs

including Gaussian matrices, Elad’s design [15] and Sapiro’s

design [16].

Fig. 1. Comparison of the MSE of different sensing matrices (M = 100,
N = 200 and σ

2
= 10

−4).

Fig. 2. Compressive sensing erasure coding.

IV. APPLICATIONS IN WSNS

We have seen improved expected-case CS reconstruction

performance by using tight frames based sensing matrices

rather than Gaussian sensing matrices. In this section, we

further show two beneficial characteristics of tight frames, and

their usage in WSNs.

A. Robustness of Tight Frames Against Data Loss

In [6], Charbiwala et al. use CS as an application layer era-

sure coding strategy for recovering missing data. In particular,

as shown in Fig. 2, physical signals are sampled using the CS

approach rather than traditional sampling used in conjunction

with source and channel coding. The data, which is transmitted

through a memoryless erasure channel, is reconstructed at the

FC. The objective is to explore CS to shift the computation

burden from the sensor nodes to the FC. The approach is robust

to data loss at the physical layer, because the CS decoder can

reconstruct the signal at the application layer.

We assume that K out of the M samples are erased or lost.

Then, CS sensing model in (2) can be re-written as follows:

yK = EKy = EKΦDx+EKn, (13)

where where K represents a set with containing the positions

of the K erased samples, yK denotes the vector that results

from the vector y by deleting the elements in the positions

indexed by the elements of the set K, and EK ∈ R
K×M denotes

the matrix that results from the identity matrix by deleting the

set of rows indexed by the elements of the set K. Then the

average reconstruction MSE becomes

MSE(Φ) = Ex,n,K

(

‖F(EKΦDx+EKn)− x‖22
)

= EK

(

MSE(EKΦ)
)

,
(14)

where Ex,n,K(·) denotes expectation with respect to the joint

distribution of the random vector x, n and the random set K,
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Fig. 3. Comparison of the MSE of Gaussian matrice and tight frames by
using ℓ1 minimization reconstruction in the case of data loss. (M = 100,
N = 200 and σ2

= 10
−4).

and EK(·) denotes expectation with respect to the distribution

of the random set K.

The following Proposition shows that if Φ is a tight frame

then EKΦ is also a tight frame, which suggests that the

expected case performance of a tight frame is also better than

that of other sensing matrix designs in this application.

Proposition 3: Let K ⊂ {1, . . . ,M} denote a set of integers.

Let also EK ∈ R
K×M (K < M) denote the matrix that results

from the identity matrix by deleting the set of rows indexed

by the elements of the set K. It follows that if Φ ∈ R
M×N

(M ≤ N) is a tight frame, then EKΦ is also a tight frame.

Proof: Proposition 1 shows that a matrix is a tight frame

if and only if its rows are orthogonal. Thus, any matrix that

results from deleting a certain number of rows from a tight

frame is still a tight frame.

Fig. 3 demonstrates that indeed tight frames based sensing

matrices are more robust to data loss than Gaussian sensing

matrices. The orthonormal basis used here is a fixed orthogonal

matrix generated randomly and the MSE is calculated by

averaging over 1000 trials, where in each trial we generate

randomly a sparse vector with S randomly placed ±1 spikes.

The positions of the K erased samples are also randomly

generated.

B. Efficient Compressive Data Gathering

In [7], Luo et al. proposed a compressive data gathering

(CDG) scheme to reduce the communication cost of WSNs. In

particular, they considered a WSN composed of one FC and N

sensor nodes arranged in a chain-type topology. Let us denote

by fi the measurement of sensor node i (i = 1, . . . ,N). The

baseline data gathering scheme shown in Fig. 4 (a) requires

O(N2) total message transmissions in the network and O(N)
maximum message transmissions for any single sensor node.

On the other hand, in the CDG scheme shown in Fig. 4

(b), each sensor node transmits M (M < N) messages that

are the sum of the received message vector
∑j−1

i=1 φifi and

its own message vector φjfj generated by multiplying its

message fj with a spreading code φj ∈ R
M. By exploiting

the CS principle, the CDG scheme only requires O(MN) total

Fig. 4. Comparing compressive data gathering and baseline data gathering
in a chain-type topology.

message transmissions in the network and O(M) maximum

message transmissions for any single node.

The success of the CDG scheme relies on the assumption

that the signal sensed by those sensor nodes has spatial

correlation, which has been observed in many applications of

WSNs.1

The fact that the mathematical model of the CDG scheme is

equivalent to the general CS model in (2), suggests the use of

a tight frame, rather than the traditional Gaussian matrices, to

define the spreading codes in the CDG application will lead to

better average MSE reconstruction performance. We consider

a more efficient CDG scheme in terms of transmission cost

where the (sensing) matrix that defines the spreading codes

exhibits the structure:

Φ =











1 0 · · · 0 Φ1,M+1 · · · Φ1,N

0 1 · · · 0 Φ2,M+1 · · · Φ2,N

...
...

. . .
...

... · · ·
...

0 0 · · · 1 ΦM,M+1 · · · ΦM,N











.

This matrix can be seen as the concatenation of an identity

matrix and another matrix. Therefore, the first M sensor nodes

in the chain only need to transmit one message per sensor,

while M messages per sensor are required to be transmitted if

the traditional spreading codes (having M non-zero entries) are

used in the first M columns of Φ. That is, the total number of

message transmissions in the network can be further reduced

to M(N − M + 1).
The following Proposition shows that if the matrix Φ ∈

R
(N−M)×N is a tight frame then the matrix [IM Φ], where IM

is an M × M identity matrix, is also a tight frame, which

suggests that the expected case performance of the spreading

codes that correspond to such a design is better than that of

the traditional spreading codes in this application.

Proposition 4: Let IM as an M × M identity matrix. It

follows that if Φ ∈ R
(N−M)×N (M < N) is also a tight frame,

then the concatenated matrix [IM Φ] is a tight frame.

1This CDG scheme can also be applied to a tree-type topology. Although
the transmission cost for the tree-type topology is different to the chain-type
topology, the superiority of the CDG scheme against the baseline scheme
does not change [7]. Here we only consider the chain-type topology due to
the limited space, but our results can also be applied to a tree-type topology.
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Fig. 5. Comparison of the MSE of Gaussian matrice and concategated tight
frames by using ℓ1 minimization reconstruction. (M = 100, N = 200 and
σ2

= 10
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Proof: Proposition 1 shows that a matrix is a tight frame

if and only if its rows are orthogonal. Then, the matrix [IM Φ]
is a tight frame because its rows are orthogonal.

Fig. 5 demonstrates that indeed tight frames based design

leads to superior reconstruction than than a Gaussian matrix

based design. The orthonormal basis used here is a fixed or-

thogonal matrix generated randomly and the MSE is calculated

by averaging over 1000 trials, where in each trial we generate

randomly a sparse vector with S randomly placed ±1 spikes.

V. CONCLUSIONS

In this paper, it is shown that tight frames based sens-

ing matrices provide better expected case performance than

other sensing matrix designs, most notably, the widely used

Gaussian sensing matrices. It is also shown that tight frames

based sensing matrices exhibit properties suitable for WSN

applications, such as robustness to data sample losses.

APPENDIX A

PROOF OF PROPOSITION 1

Let λ1 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of the positive

semi-definite matrix ΦTΦ. According to the definition of

frame in (7), we have the maximum eigenvalue of ΦTΦ given

by

λ1 = max
z6=0

‖ΦT z‖2
‖z‖2

= B. (15)

As M ≤ N, the matrix ΦTΦ has at most M nonzero

eigenvalues. Then, the minimum non-zero eigenvalue of the

matrix ΦTΦ is given by

λM = min
z6=0

‖ΦT z‖2
‖z‖2

= A. (16)

Assume that M = N. If A = B = 1 then λ1 = . . . = λM = 1
and so the matrix Φ is orthogonal. Conversely, if the matrix

Φ is orthogonal then λ1 = . . . = λM = 1 and so A = B = 1.

Assume now that M ≤ N. The minimum of

∥

∥ΦTΦ− AIN

∥

∥

2

F
=

N
∑

i=1

(λi−A)2 =

M
∑

i=1

(λi−A)2+(N−M)A2,

(17)

is achieved when λi = A (i = 1, . . . ,M), i.e., Φ is a tight

frame. Conversely, if a matrix Φ is a tight frame then it

minimizes
∥

∥ΦTΦ− AIN

∥

∥

2

F
.

Consider the the singular value decomposition Φ =
URVT , where U ∈ R

M×M and V ∈ R
N×N are orthogonal

matrices, and R ∈ R
M×N is a matrix whose main diagonal

entries are the singular values of Φ. Thus, we have

ΦΦT = URRTUT , (18)

where the diagonal entries of the matrix RRT are λi (i =
1, . . . ,M). Therefore, if a matrix Φ is a tight frame, i.e., λ1 =
. . . = λM = A, then ΦΦT = AIM. Conversely, if ΦΦT = AIM

then λ1 = . . . = λM = A, i.e., the matrix Φ is a tight frame.
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