
Practical Whole-System Provenance Capture
Thomas Pasquier
Harvard University
Cambridge, USA

tfjmp@seas.harvard.edu

Xueyuan Han
Harvard University
Cambridge, USA

hanx@g.harvard.edu

Mark Goldstein
Harvard University
Cambridge, USA

markgoldstein@g.harvard.edu

Thomas Moyer*

UNC Charlotte
Charlotte, USA

tmoyer2@uncc.edu

David Eyers
University of Otago

Dunedin, New Zealand
dme@cs.otago.ac.nz

Margo Seltzer
Harvard University

Cambridge, Massachusetts
margo@eecs.harvard.edu

Jean Bacon
University of Cambridge

Cambridge, United Kingdom
jean.bacon@cl.cam.ac.uk

ABSTRACT
Data provenance describes how data came to be in its present form. It
includes data sources and the transformations that have been applied
to them. Data provenance has many uses, from forensics and security
to aiding the reproducibility of scientific experiments. We present
CamFlow, a whole-system provenance capture mechanism that inte-
grates easily into a PaaS offering. While there have been several prior
whole-system provenance systems that captured a comprehensive,
systemic and ubiquitous record of a system’s behavior, none have
been widely adopted. They either A) impose too much overhead, B)
are designed for long-outdated kernel releases and are hard to port
to current systems, C) generate too much data, or D) are designed
for a single system. CamFlow addresses these shortcoming by: 1)
leveraging the latest kernel design advances to achieve efficiency; 2)
using a self-contained, easily maintainable implementation relying
on a Linux Security Module, NetFilter, and other existing kernel fa-
cilities; 3) providing a mechanism to tailor the captured provenance
data to the needs of the application; and 4) making it easy to integrate
provenance across distributed systems. The provenance we capture
is streamed and consumed by tenant-built auditor applications. We
illustrate the usability of our implementation by describing three
such applications: demonstrating compliance with data regulations;
performing fault/intrusion detection; and implementing data loss
prevention. We also show how CamFlow can be leveraged to capture
meaningful provenance without modifying existing applications.

*Work was completed while author was a member of technical staff at MIT Lincoln
Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3129249

CCS CONCEPTS
• General and reference → Design; • Security and privacy →
Operating systems security; Information flow control;

KEYWORDS
Data Provenance, Whole-system provenance, Linux Kernel

ACM Reference Format:
Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David
Eyers, Margo Seltzer, and Jean Bacon. 2017. Practical Whole-System Prove-
nance Capture. In Proceedings of SoCC ’17, Santa Clara, CA, USA, Septem-
ber 24–27, 2017, 15 pages.
https://doi.org/10.1145/3127479.3129249

1 INTRODUCTION
Provenance was originally a formal set of documents describing
the origin and ownership history of a work of art. These documents
are used to guide the assessment of the authenticity and quality of
the item. In a computing context, data provenance represents, in
a formal manner, the relationships between data items (entities),
transformations applied to those items (activities), and persons or
organisations associated with the data and transformations (agents).
It can be understood as the record of the origin and transformations
of data within a system [20].

Data provenance has a wide range of applications, from facilitat-
ing the reproduction of scientific results [39] to verifying compliance
with legal regulations (see § 2). For example, in earlier work [73], we
discussed how provenance can be used to demonstrate compliance
with the French data privacy agency guidelines in a cloud-connected
smart home system; in other work [77] we proposed data provenance
to audit compliance with privacy policies in the Internet of Things.

In this paper, we examine the deployment of Provenance as a
Service in PaaS clouds, as illustrated in Fig. 1. Tenants’ application
instances (e.g., Docker containers) run on top of a cloud-provider-
managed Operating System (OS). We include in this OS a prove-
nance capture module that records all interactions between pro-
cesses and kernel objects (i.e., files, sockets, IPC etc.). We also
record network packet information, to track the exchange of data

ar
X

iv
:1

71
1.

05
29

6v
1

 [
cs

.C
R

]
 1

4
N

ov
 2

01
7

https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/3127479.3129249

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA T. Pasquier et al.

Application A Application AApplication B Application B

Provenance CaptureProvenance Capture

OS OS
[...]

[...]Prov. App. Prov. App. Prov. App. Prov. App.

Provenance Stream

Figure 1: CamFlow cloud provenance architecture.

across machines. We stream the captured provenance data to tenant-
provided provenance applications (which can process and/or store
the provenance). We focus on the capture mechanism and discuss
four concrete provenance applications in § 7.

Two of us were deeply involved in the development of prior, simi-
lar provenance capture systems: PASS [66] and LPM [13]. In both
cases, we struggled to keep abreast with current OS releases and
ultimately declared the code unmaintainable. CamFlow achieves the
goals of prior projects, but with a cleaner architecture that is more
maintainable – we have already upgraded CamFlow several more
times than was ever accomplished with the prior systems. The adop-
tion of the Linux Security Modelu (LSM) architecture and support
for NetFilters makes this architecturally possible. Ultimately, our
goal is to have provenance integrated into the mainline Linux kernel.
Thus, we developed a fully self-contained Linux kernel module,
discussed in detail in § 4.

A second challenge in whole system provenance capture is the
sheer volume of data, “which [...] continues to grow indefinitely over
time” [13]. Recent work [12, 75] addresses this issue by limiting
capture based on security properties, on the assumption that only
sensitive objects are of interest. In practice, after the design stage,
many provenance applications answer only a well-defined set of
queries. We extend the “take what you need” concept [12] beyond
the security context, with detailed policies that capture requirements
to meet the exact needs of a provenance application.

The contributions of this work are: 1) a practical implementation
of whole-system provenance that can easily be maintained and de-
ployed; 2) a policy enforcement mechanism that finely tunes the
provenance captured to meet application requirements; 3) an im-
plementation that relies heavily on standards and current practices,
interacting with widely used software solutions, designed in a modu-
lar fashion to interoperate with existing software; 4) a new, simpler
approach to retrofit provenance into existing “provenance-unaware”
applications; 5) a demonstration of several provenance applications;
and 6) an extension of provenance capture to containers and shared
memory.

2 THE SCOPE OF PROVENANCE
Data provenance – also called data lineage, or pedigree – was
originally introduced to understand the origin of data in a data-
base [18, 92]. Whole-system provenance [78] goes further, tracking
file metadata and transient system objects. It gives a complete picture

Aline

Output fileProcess

Input File

Executable

wasAssociatedWith

used

used

wasGeneratedBy

Figure 2: A W3C ProvDM compliant provenance graph.

of a system from initialisation to shutdown. We begin by examining
a number of illustrative provenance use cases.
Retrospective Security [7, 54, 79, 91] is the detection of security
violations after execution, by determining whether an execution
complied with a set of rules. We use provenance to detect such
violations. In particular, we verify compliance with contractual or
legal regulations [73]. We discuss a concrete implementation in
§ 7.1.
Reproducibility: Many have explored using provenance to guaran-
tee the reproducibility of computational experiments or to explain
the irreproducibility of such results [42, 61, 85]. It is increasingly
common for such experiments to run on a PaaS platform. Creat-
ing a detailed record of the data ((e.g., input dataset, parameters
etc.)) and software used (e.g., libraries, environment etc.) and the
dependencies between them enables reproduction, by creation of an
environment as close as possible to that of the original execution.
Differential provenance techniques [23] can provide information to
explain why two executions produce different results, which might
otherwise be difficult to understand, e.g., in a long and complex
scientific workflow.
Deletion and Policy Modification: When dealing with highly sen-
sitive data it is important to be able to delete every document con-
taining certain information, including derived documents. It is also
necessary to propagate changes to the access policy of such informa-
tion. For example, EU data protection law includes “secure delete”
and the “right to be forgotten”. This is achieved by capturing and
recording the relationships between documents (and their system
representations, e.g., as files). These complex relationships must be
taken into account when deleting information or updating a policy.
Intrusion/Fault Detection: In cloud environments, several instances
of the same system/application run in parallel. Through analysis of
provenance data generated during those executions, we can build a
model of normal behavior. By comparing the behavior of an execut-
ing task to this model, we can detect abnormal behavior. We discuss
this use case in more detail in § 7.2.
Fault Injection: Fault injection is a technique commonly used to
test applications’ resistance to failure [70]. Colleagues at UCSC
are using a CamFlow-generated provenance graph to record the
execution of a distributed storage system to help them discover
points of failure, leading to better fault-injection testing.

While CamFlow satisfies all of the above application require-
ments, in this paper, we focus on the construction of the capture
mechanism itself. In § 7, we discuss some of the provenance appli-
cations that we have built using CamFlow.

Practical Whole-System Provenance Capture SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

P1

P2F1

S1

S2 Pckt
sendsend

version version

P3

version

S3 Pckt
receive

version

F2

version

receivewrite

read

Figure 3: CamFlow-Provenance partial graph example. A pro-
cess P reads information from a file F , sends the information
over a socket S, and updates F based on information received
through S.

3 PROVENANCE DATA MODEL
We extend the W3C PROV Data Model (PROV-DM) [15], which
is used by most of the provenance community. A provenance graph
represents entities, activities and agents. At the OS level, entities
are typically kernel data objects: files, messages, packets etc., but
also xattributes, inode attributes, exec parameters, network addresses
etc. Activities are typically processes carrying out manipulations on
entities. Agents are persons or organisations (e.g., users, groups etc.)
on whose behalf the activities operate. In the provenance graph, all
these elements are nodes, connected by edges representing different
types of interactions. For example, Fig. 2 depicts that an output file
was generated by a process that was associated with a user Aline,
and used an executable and an input file.

CamFlow records how information is exchanged within a system
through system calls. Some calls represent an exchange of informa-
tion at a point in time e.g., read, write; others may create shared
state, e.g., mmap. The former can easily be expressed within the
PROV-DM model, the latter is more complex to model.

Previous implementations managed shared states (i.e., POSIX
shared memory and mmap files, which both use the same underlying
Linux kernel mechanism) by recording the action of “associating”
the shared memory with a process (e.g., shmget, mmap_file).
These shared states are either ignored during queries or make the
queries significantly more complex. Indeed, information may flow
implicitly (from the system perspective) between processes, without
being represented in the provenance graph. Without a view of infor-
mation flow within an application (we discuss how intra-application
provenance can be appended to the graph in § 4.5), it is impossible
to know if/when a process is writing to some “associated” shared
memory at the system-call level. Therefore, we conservatively as-
sume that any incoming or outgoing flow to/from the process implies
an incoming or outgoing flow to/from the shared state.

Provenance graphs are acyclic. A central concept of a CamFlow
graph is the state-version of kernel objects, which guarantees that
the graph remains acyclic. A kernel object (e.g., an inode, a process
etc.) is represented as a succession of nodes, which represent an

object changing state. We conservatively assume that any incoming
information flow generates a new object state. Nodes associated
with the same kernel object share the same object id, machine id,
and boot id (network packets follow different rules described in
§ 4.2). Other node attributes may change, depending on the incoming
information (e.g., setattr might modify an inode’s mode).
Fig. 3 illustrates CamFlow versioning.

In Fig. 3, we group nodes belonging to the same entity or activity
(F , P and S), based on shared attributes between those nodes (i.e.,
boot_id, machine_id, and node_id). In the cloud context,
those groups can be further nested into larger groups representing
individual machines or particular clusters of machines. For example,
when trying to understand interactions between Docker contain-
ers [1], we can create groups based on namespaces (i.e., UTS, IPC,
mount, PID and network namespaces), control groups, and/or secu-
rity contexts. The combination of these process properties differenti-
ate processes belonging to different Docker containers. Provenance
applications determine their own meaningful groupings.
1 "ABAAAAAAACAe9wIAAAAAAE7aeaI+200UAAAAAAAAAAA=" : {
2 " c f : i d " : "194334" ,
3 " prov : t y p e " : " f i f o " ,
4 " c f : b o o t _ i d " : 2725894734 ,
5 " c f : mach ine_ id " : 340646718 ,
6 " c f : v e r s i o n " : 0 ,
7 " c f : d a t e " : "2017 : 01 : 03T16 : 43 : 30" ,
8 " c f : j i f f i e s " : "4297436711" ,
9 " c f : u i d " : 1000 ,

10 " c f : g i d " : 1000 ,
11 " c f : mode " : "0 x1180 " ,
12 " c f : s e c c t x " : " u n c o n f i n e d _ u : u n c o n f i n e d _ r :

u n c o n f i n e d _ t : s0−s0 : c0 . c1023 " ,
13 " c f : i n o " : 51964 ,
14 " c f : uu id " : "32 b7218a−01a0−c7c9−17b1−666 f200b8912 " ,
15 " prov : l a b e l " : " [f i f o] 0"
16 }

Listing 1: PROV-JSON formatted inode entry.

1 "QAAAAAAAQIANAAAAAAAAAE7aeaI+200UAAAAAAAAAAA=" : {
2 " c f : i d " : "13" ,
3 " prov : t y p e " : " w r i t e " ,
4 " c f : b o o t _ i d " : 2725894734 ,
5 " c f : mach ine_ id " : 340646718 ,
6 " c f : d a t e " : "2017 : 01 : 03T16 : 43 : 30" ,
7 " c f : j i f f i e s " : "4297436711" ,
8 " prov : l a b e l " : " w r i t e " ,
9 " c f : a l l o w e d " : " t r u e " ,

10 " prov : a c t i v i t y " : "AQAAAAAAAEAf9wIAAAAAAE7aeaI+200
UAQAAAAAAAAA=" ,

11 " prov : e n t i t y " : "ABAAAAAAACAe9wIAAAAAAE7aeaI+200
UAQAAAAAAAAA=" ,

12 " c f : o f f s e t " : "0"
13 }

Listing 2: PROV-JSON formatted write entry.

Listing 1 and Listing 2 show an inode and a write relationship in the
provenance graph, in PROV-JSON [47] format.1 We also developed
a compact binary format.

4 CAPTURING SYSTEM PROVENANCE
CamFlow builds upon and learns from previous OS provenance cap-
ture mechanisms, namely PASS [65, 66], Hi-Fi [78] and LPM [13].
1See https://github.com/CamFlow/CamFlow.github.io/wiki/JSON-output.

https://github.com/CamFlow/CamFlow.github.io/wiki/JSON-output

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA T. Pasquier et al.

security-fs relay-fs

Capture

camflowd

libprovenance

Provenance-aware

libprovenance

camconfd

libprovenance

Flat file

Apache Flume

MQTT

CPL

Configuration

application

Kernel objects’ provenance data structure Configuration

Provenance Records

System Provenance

Storage back-end

e.g. SQL, Neo4J

Stream processing

e.g. Spark

Boot-buffer

Kernel-space

User-space

NetFilter hooksLSM hooks

xattr

Standard
application

Figure 4: Architecture overview.

Our strategy for CamFlow is that it: 1) is easy to maintain, 2) uses
existing kernel mechanisms whenever possible, 3) does not dupli-
cate existing mechanisms, and 4) can be integrated into the mainline
Linux kernel. Beyond being good practice, the first three require-
ments are essential to realize the last requirement (adoption in the
mainline Linux kernel). We also incorporated requirements for us-
ability and extendibility.

Fig. 4 gives an overview of the architecture. We use LSM and
NetFilter (NF) hooks to capture provenance and relayfs [95] to
transfer the data to user space where it can be stored or analyzed.
Applications can augment system level provenance with application-
specific details through a pseudofile interface. This is restricted to
the owner of the capability CAP_AUDIT_WRITE, following Linux
development recommendations to re-use existing capabilities, rather
than from creating new ones. Applications owning the CAP_AU-
DIT_CONTROL capability can collect configure CamFlow to cap-
ture a subset of the provenance (see § 5). We provide a library whose
API abstracts interactions with relayfs and the pseudo-files we
use to communicate configuration information.

4.1 Capture mechanism
The key to clean Linux integration is use of the LSM API. LSM
implements two types of security hooks that are called 1) when a
kernel object (e.g., inodes, file, sockets etc.) is allocated and
2) when a kernel object is accessed. The first allocates a security
blob, containing information about the associated kernel object. The
second is called when making access decisions during a system call
(e.g., read, write, mmap_file).

There are two types of LSM: major and minor modules. Major
modules use a security blob pointer (e.g., cred->security, in-
ode->i_security etc.). Examples include SELinux [86] and
AppArmor [14]. Minor security modules, such as SMACK [26] and
LoadPin [27], do not use such pointers. Kernel version 4.1 allows

a major module to be stacked with any number of minor modules.
After Linux performs its normal access control checks, it calls LSM
hooks in a pre-defined order. If any LSM hook call fails, the system
call immediately fails. We arrange for the CamFlow hook to be
called last to avoid recording flows that are subsequently blocked by
another LSM. CamFlow users the record of LSM events to build its
provenance graph [78].

CamFlow needs a “provenance” blob pointer to store provenance
information alongside kernel objects, so CamFlow is a major security
module. Using CamFlow in conjunction with another major module,
e.g., SELinux, requires that we modify some kernel data structures,
e.g., inode, cred, to add an additional pointer. This is the one
place we violate our “self-contained” philosophy. However, work
is in progress [83] to allow stacking of major security modules (by
modifying how security blobs are handled).

CamFlow hooks: 1) allocate a provenance-blob, if needed 2)
consider filter/target constraints (see § 5), and 3) record provenance
in the relayfs buffer. The user space provenance service then
reads the provenance entries see § 4.4).

4.2 Cross-host Provenance Capture
CamFlow captures incoming packets through the socket_sock_-
rcv_skb LSM hook. No equivalent hook exists for outgoing pack-
ets, so we implement a NetFilter hook to capture their prove-
nance.

CamFlow represents a packet as an entity in the provenance graph.
We construct packet identifiers from the immutable elements of the
IP packet and immutable elements of the protocol (e.g., TCP or
UDP). For example, a TCP packet’s identifier is built from: IP packet
ID, sender IP, receiver IP, sender port, receiver port, protocol, and
TCP sequence number. We also record additional metadata such as
the payload length. In most scenarios, the sending and receiving ma-
chines can match packets using this information. In other scenarios

Practical Whole-System Provenance Capture SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

kbuf0

/cpu0relayfs
files (VFS)

kernel

userspace

/mnt/cpu0relayfs
files (mounted)

kbuf1

/cpu1

kbuf2

/cpu2

kbuf3

/cpu3

CPU2

/mnt/cpu1 /mnt/cpu2 /mnt/cpu3

reader
thread 0

management

thread
reader

thread 1
reader

thread 2
reader

thread 3

Provenance-service

relay write

mmap

CPU0 CPU1 CPU3

Figure 5: Transferring provenance data to user space through
relayfs.

(e.g., NAT), some post-processing may be required to match packets
(e.g., content match, temporal relationship, approximative packet
length); the details of these techniques are beyond the scope of this
paper. Additionally, CamFlow can optionally capture payloads.

4.3 Hardware Root of Trust
In some circumstances it is necessary to be able to vouch for the
integrity of provenance data and the provenance capture mecha-
nism, e.g., when presented as evidence in a court of law. The soft-
ware may not always be under the control of a trusted entity, and
hardware-based trust certification will be required. Our architecture
can support this by using Trusted Platform Module (TPM) [63] or
virtual TPM [16] technologies that can be used to measure the in-
tegrity of a system. This integrity can be verified through Remote
Attestation [52].

We need to assume that sufficient technical and non-technical
measures are taken to ensure that the hardware has not been tampered
with (e.g., see CISCO vs NSA [80]). We assume that the integrity
of the low-level software stack is recorded and monitored at boot
time through a Core Root of Trust Measurement (CRTM). The
low-level software stack here includes: BIOS, boot loader code
and configuration, options ROM, host platform configuration, etc.
We assume that this integrity measurement is kept safe and cannot
be tampered with (one of the features provided by TPM). Further,
system integrity needs to be guaranteed at run time.

In the Linux world such the Integrity Measurement Architecture
(IMA) [50, 52, 81] provies integrity guarantees and remote attesta-
tion. The CRTM measures hardware and kernel integrity. IMA is
initialized before kernel modules are loaded and before any appli-
cation is executed. IMA measures the integrity of kernel modules,
applications executed by root, or libraries. Each binary is hashed to
create an evidence trail. The integrity of this record is guaranteed by
a cumulative hash, which is stored in TPM’s Platform Configuration
Registers. During remote attestation, this evidence trail is verified
against the known good value. While not strictly part of CamFlow,
use of IMA and remote attestation should be considered by cloud
providers.

4.4 User Space Interface
While provenance capture must happen in the kernel, we relegate
storage and processing to user space. CamFlow uses relayfs [95]
to efficiently transfer data from kernel to user space as illustrated
in Fig. 5. The CamFlow kernel module writes provenance records
into a ring buffer that is mapped to a pseudofile (this is handled by
relayfs) that can be read or mmapped from user space. Before
file system initialization, CamFlow records provenance into a “boot”
buffer that is copied to relayfs as soon as it is initialized.

Once the file system is ready, systemd starts up a provenance
service in user space. The service reads from the file that is mapped to
the kernel buffer, and the relayfs framework deals with “freeing”
space in the kernel ring buffer. The provenance service itself is
marked as opaque to avoid the provenance service looping infinitely;
the provenance capture mechanism ignores opaque entries, which
do not appear in the captured data (see § 5).

We provide a user space library that deals with handling the re-
layfs files and multi-threading. The library also provides functions
to serialize the efficient kernel binary encoding into PROV-JSON.
We then stream the provenance data, in either binary or JSON format,
to applications, as shown in Fig. 1. CamFlow can use any messaging
middleware such as MQTT [10] or Apache Flume [46] to stream the
provenance data.

4.5 Application-level Provenance
So far we have discussed how CamFlow records information flows
through system calls, in terms of kernel objects. Other systems (e.g.,
database systems, workflow systems) record provenance in terms
of different objects, e.g., tuples in a database system [19] or stages
of processing in a workflow system [6, 28]. Muniswamy-Reddy et
al. [65] demonstrated that many scenarios require associating ob-
jects from these different layers of abstraction to satisfy application
requirements.

Consider scientific software reading several input files to gener-
ate several figures as output files. Application-level provenance is
oblivious to files altered by other applications and can only provide
an incomplete view of the system. On the other hand, system-level
provenance, while providing a complete view of the system, will ex-
pose only coarse grained dependencies (i.e., every output will depend
on all inputs read so far). Combining application- and system-level
provenance allows us to describe fine-grained dependencies between
inputs and outputs.

CamFlow provides an API for provenance-aware applications
to disclose provenance to support the integration of application
and system provenance. The API allows us to associate application
provenance with system objects as long as a system level descriptor
(e.g., a file descriptor) to that object is available to the application.
CamFlow guarantees that such associations do not produce cycles,
however, it is the responsibility of the application level provenance
collection to ensure that there are no cycles within its subgraph.
Further, CamFlow’s underlying infrastructure manages identifiers
and guarantees their uniqueness, system wide.

Application-level provenance associated with a kernel object is
attached to a specific version of that object in the provenance graph.
It is sometimes useful to view application-disclosed provenance as

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA T. Pasquier et al.

P1

P2F1

S1

S2 Pckt
sendsend

version version

P3

version

S3 Pckt
receive

version

F2

version

receivewrite

read

request XXXX

response XXXX

Figure 6: CamFlow-Provenance presented in Fig. 3 annotated
with application logs.

a subgraph contained within activity nodes, describing the internal
working of that particular activity.

Modifying existing applications to be provenance-aware is not a
trivial task [57, 65]. Ghoshal et al. [38] demonstrated that existing
application log files can be transformed into a provenance graph. We
provide the infrastructure for application to apply such approach.

We limit this approach to applications that already generate
log files (e.g., httpd, Postgres). Placing these logs in a spe-
cial pseudo-file automatically incorporates their log records into
CamFlow’s provenance graphs. For example, replacing Error-
Log "/var/log/httpd-error.log" with ErrorLog "/
sys/kernel/security/provenance/log" in the httpd
configuration file enables CamFlow to incorporate web server opera-
tions. CamFlow creates an entity for each log record and attaches it
to the appropriate version of activity that created it. The log record
entities contain the text of the log message, thereby providing anno-
tations for the provenance graph. This helps make the graph more
human-readable. If desired, provenance applications can parse these
log entries for further processing or interpretation.

Fig. 6 shows a log integrated into the provenance graph. In this
example, the log entries might help a human user or application un-
derstand that the information exchanged with the socket corresponds
to a client request/response interaction. In § 7.4, we use this feature
to insert httpd logs into a system provenance graph.

5 TAILORING PROVENANCE CAPTURE
A major concern about whole-system provenance capture is that the
size of the provenance can ultimately dwarf the “primary” data. Fur-
ther, provenance application execution time is often a function of the
size of the provenance graph. One approach is to limit provenance
capture to “objects of interest”, based on a particular security pol-
icy [12, 75, 76]. While recording interactions only between security-
sensitive objects may make sense in some contexts, in others, for
example, a scientific workflow, it probably does not make sense.
We devised a more complex capture policy that allows end users
to define the scope of capture based on their precise needs, greatly
reducing storage overhead. Users choose between whole-system
provenance and selective provenance. Within selective provenance,
they can specify filters on nodes and edges, specific programs or
directories to capture, whether capture should propagate from a
specified process, and what network activity should be captured.

1 [provenance]
2 ;unique identifier for the machine, use hostid if set to 0
3 machine_id=0
4 ;enable provenance capture
5 enabled=true
6 ;record provenance of all kernel object
7 all=false
8 ;set opaque file
9 opaque=/usr/bin/ps

10 ;set tracked file
11 ;track=/home/thomas/test.o
12 ;propagate=/home/thomas/test.o
13 node_filter=directory
14 node_filter=inode_unknown
15 node_filter=char
16 relation_filter=sh_read
17 relation_filter=sh_write
18 propagate_node_filter=directory
19 propagate_node_filter=char
20 propagate_node_filter=inode_unknown
21

22 [ipv4−egress]
23 ;propagate=0.0.0.0/0:80
24 ;propagate=0.0.0.0/0:404
25 ;record exchanged with local server
26 ;record=127.0.0.1/32:80
27

28 [user]
29 ;track=thomas
30

31 [group]
32 ;propagate=docker

Listing 3: Capture policy example.

Users specify these capture policies either through a command line
interface or in a policy configuration file, like the one shown in
Listing 3.

In whole-system provenance mode, CamFlow captures all objects
that have not been declared opaque (line 7). In selective mode (line 5),
CamFlow captures the provenance of only non-opaque specified tar-
gets; line 9, track=/home/thomas/myexperiment.o, tells
CamFlow to track any information flow to/from the specified file
and any process resulting from the execution of programs built from
it. Line 10 tells CamFlow to track any object that interacts with
the file/process and any object they may subsequently interact with.
Similarly, line 27, propagate=0.0.0.0/0:0, indicates that we
want to track any information flow to/from a listening socket on the
machine.

We can also specify opaque or tracked objects based on criteria,
such as: 1) pathname (line 9), 2) network address (line 27), 3) LSM
security context2 (not shown), 4) control group,3 (not shown), and 5)
user and group ID. We frequently expand this list based on feedback
from users. Fig. 7 illustrates how CamFlow implements the capture
policy for the open system call.

The mechanism to mark targets varies dependending on the tar-
geted attribute. For example, exact path matches are handled through
security extended attributes, while network interface based policies
2These are dependent on the major LSM running on a machine. The security contexts
defined by SELinux or AppArmor are different. Defining capture policy based on these,
therefore requires an understanding of the MAC mechanism in place.
3Control groups or cgroups are the mechanism used in Linux to control, for example,
the resource access of containers.

Practical Whole-System Provenance Capture SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

User space Process

Read system call

Look up inode

Error checks

DAC checks

SELinux LSM hook

Kernel Space

User Space

Complete request

inode

Provenance LSM hook edge and vertices metadata
Capture information flow, and

loadpin LSM hook

Yama LSM hook

Capbility LSM hook

Whole-system provenance on?

camflowd

relayfs ring-buffer

namespace, user, security context etc.
Identify target based on attributes

Apply edge and vertex filter

Filter opaque objects

No

CamFlow Policy Engine

Discard

Discard

Discard

Yes

Figure 7: Executing an open system call. In green the capture
mechanism described in § 4, in pink the provenance tailoring
mechanism described in § 5.

are handled in connect and bind LSM hooks. The policy engine
does not reevaluate the policy for every event, but rather verifies
the mark associated with kernel objects and the provenance data
structure. Some policies (e.g., user id) are regularly reevaluated, for
example, on setuid events.
Excluding edges or node types from the graph: Line 12 (14) il-
lustrates how to exclude specific node (edge) types. In this case, line
12 tells CamFlow not to capture operations on directories, while line
14 says to ignore read permission checks. This is the last stage in
an event capture, as illustrated in Fig. 7. For every edge recorded,
CamFlow compares the types of its endpoints to that specified in the
filter, discarding any edge that produced a match.
Propagating tracking: While targeting a single individual or group
of objects may be interesting, in many cases the user wants to track
all information emanating from a given source. The propagate
setting tells CamFlow to track interactions with any object that re-
ceived information from a tracked object; this automatically tracks
the receiving object in a manner similar taint tracking [32] works.
It is also possible to define types of relations or nodes through
which tracking should not propagate (e.g., propagate_node_-
filter=directory). Filtered nodes or relation types do not
propagate tracking. For example, when tracking content dissemi-
nation (see § 7.3) it is possible to set the tracking propagation to
never be applied to directories, or not to occur on permissions-
checking operations (e.g., when opening a file), but only on explicit
read and write operations.

Taint tracking: Tracking propagation can be coupled with tainting
(with a taint being an arbitrary 64 bit integer), following the same
policy-specified restrictions. Kernel objects can hold an arbitrary
number of taints. This is useful when provenance is used for policy
enforcement, requiring a quick decision to be made upon accessing
an object (see § 7.3).

Note that “tailoring” provenance capture means that the prove-
nance is no longer guaranteed to be complete. Indeed, the raison
d’être for tailoring is to exclude part of the provenance from the
record. Thus, it is imperative that a user understand the minimum
and sufficient information required for a particular application to be
correct.

We can, for example, make the distinction between data prove-
nance [20] and information flow audit [75]. The two are similar,
but differ in their objectives. The first is concerned with where data
comes from; that is, the integrity of the data (e.g., verifying proper-
ties of data used for a scientific results). The second is concerned
with where the data have gone; that is, the confidentiality of the data
(e.g., monitoring usage of personal data in a system). In terms of
completeness, assuming an object or objects of interest, this means
that for data provenance (integrity), all information flows to the ob-
ject must be recorded; and for infomation flow audit (confidentiality),
all information flows from the object must be recorded. The track-
ing propagation mechanism, for example, is appropriate to handle
confidentiality, but not necessarily integrity. It is important to define
the objective of the capture and the adversary (if any) when tailoring
the capture.

6 EVALUATION
The goal of our evaluation is to answer the following questions: 1)
How does CamFlow improve maintainability relative to prior work?
2) What is the impact of CamFlow on PaaS application performance?
3) How much does selective provenance capture reduce the amount
of data generated? We follow this quantitative evaluation with more
qualitative evaluation of usability in § 7.

6.1 Maintainability

Provenance system Headers Codes Total LoC
(kernel version) Number of files
PASS (v2.6.27.46) 18 69 87 5100
LPM (v2.6.32 RHEL 6.4.357) 13 61 74 2294
CamFlow (v4.9.5) 8 1 9 2428

Table 1: Number of files and lines of code (LoC) modified in
various whole-system provenance solutions. The LoC results for
PASS and LPM are as reported in [66] and [13] respectively.
The number of files modified measurement is based on the last
source code available from the PASS and Hi-Fi/LPM teams and
for CamFlow v0.2.1.

It is difficult to objectively measure the maintainability of a code
base. PASS was one of the first whole-system provenance capture
mechanisms, but it required massive changes to the Linux kernel,
and it was unmaintainable, almost from day one. We never simply
upgraded PASS across Linux kernel minor versions, let alone major

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA T. Pasquier et al.

versions, because it was such a massive undertaking. It took us over
two years and several dozen person months to develop the second
version of PASS [65], which included a transition from Linux 2.4.29
to 2.6.23, i.e., two minor Linux revisions. Our estimate is that the
effort was divided in roughly three equal parts: re-architecting how
we interacted with the kernel, adding new features, and changing ker-
nel releases. It should be apparent that maintaining a self-contained
provenance capture module will be significantly easier than main-
taining PASS, and the ease with which we have adapted to new Linux
releases supports this. Indeed, an explicit requirement of the LSM
framework [62] is to limit the impact of new security features on
the kernel architecture, thereby improving the maintanability of the
Linux kernel. CamFlow selected the LSM framework for precisely
this reason. Further as LSM is a major security feature of the Linux
kernel to our knowledge most Linux distribution ship with an LSM
(e.g., SELinux for Android >=4.3), it is practically guaranteed that
future releases will continue to support the framework with minimal
modification.

Table 1 provides some metrics to quantify the pervasiveness re-
quired for PASS, LPM, and CamFlow. We calculated the numbers
using diff between “vanilla” Linux and provenance-enabled Linux
for the same version, ignoring newly added files.

Kernel version Code Header CamFlow Total Conflict
In number of files modified In number of lines modified

4.9.6 → 4.10-rc6 0 1 0 234 0
4.9.5 → 4.9.6 0 0 0 0 0
4.9.4 → 4.9.5 0 0 0 0 0
4.9.2 → 4.9.4 0 0 0 0 0
4.9 → 4.9.2 0 0 0 0 0
4.4.38 → 4.9 1 4 3 1194 (17) 8
4.4.36 → 4.4.38 0 0 0 0 0
4.4.35 → 4.4.36 0 0 0 0 0
4.4.34 → 4.4.35 0 0 1 2 (2) 0
4.4.32 → 4.4.34 0 0 0 0 0

Table 2: Modification required when porting CamFlow to new
kernel versions. The number of lines modified includes com-
ments. The numbers in parentheses are the number of lines of
CamFlow-specific code changed.

Neither PASS nor LPM were ever ported to newer kernel releases,
even though both groups would have liked to do so. In contrast,
we have already maintained CamFlow across multiple Linux kernel
major revisions with only a few hours of effort. The authors of PASS
and LPM state that transitioning to newer kernel releases would
take many man months. Table 2 quantifies the CamFlow porting
effort. We obtained these results by going through the updates in
our git repository from November 21, 2016 to February 2, 2017.
We considered only changes relating to version updates and ignored
feature development. The most significant upgrade over this period
was from version 4.4.38 to 4.9. However, we modified 8 lines of code
in /security/security.c relating to changes in the LSM
framework. Most of these patches were applied without any conflict.
We continue to maintain CamFlow, see Appendix A for the most
recent supported version and a full commit history. (Neither PASS
nor LPM have any such commit history available.)

SysCall execution
Target, Filter, Taint

Blob Allocation Provenance recording

vanilla

selective

whole

Figure 8: System call overhead decomposition.

6.2 Performance
We next discuss how CamFlow affects system performance. We
selected standard benchmarks that can be easily reproduced and
provide meaningful references to prior work. We ran the benchmarks
on a bare metal machine with 6GiB of RAM and an Intel i7-4510U
CPU. (We use a bare metal machine rather than a cloud platform,
such as EC2, to reduce uncontrolled variables.) See Appendix A for
details on obtaining the code, reproducing these results and accessing
the raw results presented here, following suggestions from Collberg
et. al [24].

We run each test on three different kernel configurations. The
vanilla kernel configuration is our baseline and corresponds to an
unmodified Linux kernel. The whole configuration corresponds to
CamFlow recording whole-system provenance. The selective con-
figuration corresponds to CamFlow with whole-system provenance
off, but selective capture on. We use CamFlow v0.2.1 [71] with
Linux 4.9.5. Comparing the CamFlow configurations to the baseline
reveals the overhead imposed by CamFlow’s provenance capture
mechanism.

Test Type vanilla whole overhead selective overhead
Process tests, times in µs, smaller is better

NULL call 0.07 0.06 0% 0.05 0%
NULL I/O 0.09 0.14 56% 0.14 56%
stat 0.39 0.78 100% 0.50 28%
open/close file 0.88 1.59 80% 1.04 18%
signal install 0.10 0.10 0% 0.10 0%
signal handle 0.66 0.67 2% 0.66 0%
fork process 110 116 6% 112 2%
exec process 287 296 3% 289 <1%
shell process 730 771 6% 740 1%

File and memory latencies in µs, smaller is better
file create (0k) 5.05 5.32 5% 5.12 1%
file delete (0k) 3.42 3.78 11% 3.79 11%
file create (10k) 9.81 11.41 16% 10.9 11%
file delete (10k) 5.70 6.12 7% 6.08 6%

Table 3: LMbench measurements.

Microbenchmarks: We used LMbench [60] to benchmark the im-
pact of CamFlow’s provenance capture on system call performance.
Table 3 presents a subset of the results. Due to space constraints, we
selected the subset of greatest relevance; the complete results are
available online.

The performance overhead can be decomposed into two parts
as illustrated in Fig. 8. The first part is present in the selective and
whole results. This part concerns the allocation of the provenance
blob associated with kernel objects (see § 4) and the application of
the policies described in § 5. The second part is present in the whole
overhead only and corresponds to the recording of the provenance.

Practical Whole-System Provenance Capture SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

It is important to note that a system call does not necessarily cor-
respond to a single event in the provenance graph. On a file open, for
example, both read_perm and write_perm provenance events
may be generated as appropriate for the directory and subdirecto-
ries in the path and for the file itself, in addition to an event for
the open on the file. Further, if the file did not exist prior to the
open, CamFlow generates a create event. Tailoring the types
of provenance events that must be recorded (see § 5) can further
improve performance. Additionally, assuming a relatively constant
time for provenance data allocation and copy into the relay buffer,
the overhead appears proportionally large due to the short execu-
tion time of most system calls. For example, stat is fast, but must
record perm_read, read and get_attr provenance relations,
producing large relative overhead, which in absolute terms is smaller
than that for exec (0.39µs vs 9µs for whole provenance), which
requires several provenance object allocations and a larger number
of relations.

Test Type vanilla whole overhead selective overhead
Execution time in seconds, smaller is better

unpack 11.16 11.36 2% 11.24 <1%
build 433 442 2% 429 0%

4kB to 1MB file, 10 subdirectories,
4k5 simultaneous transactions, 1M5 transactions

postmark 71 79 11% 75s 6%
Table 4: Standard provenance-system macrobenchmark re-
sults.

Macrobenchmarks: We present two sets of macrobenchmarks that
provide context for the overheads measured in the microbenchmarks.
First, we used the Phoronix test suite [55] to illustrate single machine
performance, running kernel unpack and build operations. Second,
we ran the Postmark benchmark [51], simulating the operation of an
email server. These are the common benchmarks used in the system
provenance literature. Next, we ran a collection of benchmarks fre-
quently used in cloud environments, also available via the Phoronix
test suite. Table 4 shows the results of the single system benchmarks,
and Table 5 shows the results for the cloud-based benchmarks.

The single system benchmarks (Table 4) show that CamFlow adds
minimal overhead for the kernel unpack and build benchmarks and
as much as 11% overhead to Postmark for whole-system capture.
These results compare favorably to prior systems and the option to
use selective capture provides a better performing solution.

We ran two configurations for the cloud-based benchmark: off
includes CamFlow in the kernel build but does not capture any
data, representing tenants who do not use the provenance capture
feature, and whole runs in whole-system capture mode. This time,
the overheads are larger, with a maximum of 22% for redis LPOP.
Discussion: CamFlow’s performance is the same order of mag-
nitude as that reported by PASS [66], Hi-Fi [78], its successor
LPM [13], and SPADE [36], and slightly better in most cases. How-
ever, these results are difficult to compare—the variation in experi-
mental setup is significant e.g., from a 500MHz Intel Pentium 3 with
768 MiB RAM for PASS to a dual Intel Xeon CPU machine for LPM,
or e.g., kernel version from 2.4.29 for PASS to 4.9.5 for CamFlow.

Test Type off whole overhead
Request/Operation per second (the higher the better)

apache 8235 7269 12%
redis (LPOP) 1442627 1120935 22%
redis (SADD) 1144405 1068877 7%
redis (LPUSH) 998077 961849 4%
redis (GET) 1386329 1219830 12%
redis (SET) 1053978 1012158 4%
memcache (ADD) 18297 16658 9%
memcache (GET) 37826 32548 14%
memcache (SET) 17762 16825 5%
memcache (APPEND) 19393 17172 11%
memcache (DELETE) 38245 32517 15%
php 240889 239069 <1%

Execution time (ms) (the lower the better)
pybench 3515 3525 <1%

Table 5: Extended macrobenchmark results.

Further the provenance “coverage” tends to become more extensive
in each successive publication. Comparing to the latest published
work—LPM—CamFlow includes additional information such as
iattr and xattr, security context, control group,
overlayfs etc. While this provides a more complete picture, it
also increases the amount of provenance recorded, which produces
more overhead.

6.3 Generated Data Volume
CamFlow is a capture mechanism, so we do not attempt to evaluate
provenance storage strategy, but rather the impact of selective capture
on the amount of data generated. As prior systems [13, 36, 66, 78]
have shown, storage and the accompanying query time increase over
time. We discuss an approach to address increasing query time for
some scenarios in § 7.3.

We currently write provenance in a bloated, but standard format
(PROV-JSON). Colleagues working with CamFlow have achieved a
storage size of 8% of the equivalent PROV-JSON graph size through
compression techniques [89]. Others have reported on alternative
ways to reduce storage requirements through compression [22, 93,
94], but such concerns are orthogonal to the work presented here.
Regardless of the storage techniques employed, the size of the graph
grows over time, and this makes query time grow proportionally.

The CamFlow capture mechanism addresses storage issues in
the following ways: 1) it gives the storage system great flexibility
through a clear separation of concerns; and 2) it allows for con-
figurable capture, limiting the volume of data. The separation of
concerns is application specific and out of scope, however, previous
work by Moyer et al. [64] discusses handling provenance storage
in a cloud environment. In the rest of this section we evaluate the
impact of selective capture.

We selected a simple workload to ease reproducibility; we record
the provenance generated by:
wget www.google.com
We have three experimental setups: 1) provenance off (baseline); 2)
ignore directory nodes and permission edges (perm_read, perm_-
write and perm_exec) (selective); and 3) record everything

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA T. Pasquier et al.

(whole). Packet payloads are not recorded in any of these setups.
Note that there are 39 edge types and 24 node types in the current
implementation. The data recorded when the provenance is off cor-
responds to the machine/boot description (<1kB). The output rate
is 12.45kB/iteration for whole and 9.98kB/iteration for selective;
tailoring capture reduces the data rate by 20%. This illustrates the
trade-off between between completeness and utility (see discussion
in § 5). In scenarios where, for example, only a set of applications
or the actions of a user are of interest, the quantity of data captured
can be several orders of magnitude smaller relative to PASS or LPM.
As discussed in § 5, it is possible express in detail what part of the
system is/is not of interest. This trade-off needs to be viewed in rela-
tion to the provenance application; we discuss a concrete example in
§ 7.3.

6.4 Completeness and expressiveness
CamFlow extends the functionality of previous provenance systems,
while retaining the same features. Notably, we introduce a new com-
pleteness trade-off against performance, storage, and I/O bandwidth.
In other words, we allow users to decide between capturing the
entirety of supported system events (as PASS or LPM did) and cap-
turing a subset of those events based of some particular well defined
needs (see § 5). Further, this same feature has proved helpful to
new users when developing provenance applications (see § 7). The
tailoring feature has been used to help explain system behavior and
to help new developers get started. A typical workflow with Cam-
Flow is: 1) start capturing a single or small group of processes and
their interactions; 2) develop a small prototype provenance appli-
cation; and 3) move to an architecture able to handle scale issues
introduced by whole-system provenance. This has proved extremely
beneficial as the accumulation rate and amount of provenance data
can be daunting. We and our users believe this to be important for
increasing provenance adoption.

A remaining challenge is to provide a full comparison of Cam-
Flow against alternative implementations: i.e., is the graph as com-
plete and expressive as when using an alternative approach? To our
knowledge, no study of such a nature has been completed. Our expe-
rience tells us that CamFlow captures as much or more information
compared to PASS or LPM, but we have not performed any formal
evaluation. Indeed, quantitatively measuring provenance complete-
ness or expressivity are complex, ongoing topics of research in the
provenance community [21]. Chan et al. [21] propose running a
system-call benchmark and comparing the “quality” of the prove-
nance captured. However, one could argue that “quality” is a hard
metric to evaluate. An alternative approach is more formal and, as
discussed in § 4.1, relies on the guarantees provided by LSM hooks
that are present on the path between any kernel object and a process.
However, recent research has demonstrated that this coverage may
not capture every information flow [37], as the LSM framework was
originally conceived to implement MAC policy. We derived from
this publication [37] a patch to the LSM infrastructure [72]. This
patch is used by most recent versions of CamFlow (>=0.3.3). In
addition to demonstrating that provenance is generated for every
event, it must also be shown that the generated graph is “correct”
and “well connected”. An empirical or formal demonstration of the

completeness of the provenance captured is beyond the scope of this
paper.

7 EXAMPLE APPLICATIONS
We proposed that PaaS providers offer provenance as a service
to their tenants. In § 3, we discussed how our model expands on
previous provenance capture implementations, notably by record-
ing information relevant to Docker containers. In § 4, we showed
how provenance can be captured and streamed in OS or distributed
systems. In § 5, we showed how the captured provenance can be tai-
lored to meet the tenant application requirements. Finally, in § 6 we
showed that this can be achieved with tolerable performance impact.
We now discuss, through examples, how cloud tenants can subscribe
to the provenance data stream and develop provenance applications.
We explore four such applications: two from from ongoing work at
Harvard (§ 7.1 and § 7.2), and two where we implement examples
from prior work, taking advantage of CamFlow’s unique features
(§ 7.3 and § 7.4).

7.1 Demonstrable Compliance
The manipulation of personal data in widely distributed systems,
especially the cloud, has become a subject of public concern. As
a result, legislators around the world are passing laws to address
issues around manipulation and privacy of personal data. In Europe,
data protection laws [2, 4] regulate and control all flows of personal
data, in essence, information identifiable to individuals. These flows
must be for specific legitimate purposes, with various safeguards for
individuals and responsibilities on those who hold, manage and oper-
ate on personal data. In other jurisdictions, most notably the United
States, which does not have such omnibus data protection laws, there
are sector-specific restrictions on personal data. These include areas
such as health [3] and finance [5], as well as general Fair Information
Practice Principles (FIPP) [25], which embody principles such as
notice, choice, access, accuracy, data minimization, security, and
accountability. Further, there is pressure for the involved actors to
provide transparency in how they handle data and to demonstrate
compliance with the requirements.

In recent work [74], we developed an application that used Cam-
Flow provenance to continuously monitor compliance with such
regulations. information flow constraints that translate into prop-
erties of paths in a provenance graph can express many of these
regulations. An auditor can subscribe to a (distributed) system’s
provenance stream (as described in § 4) and verify that the stream re-
spects the specified constraints, using a label propagation mechanism.
Developers write these constraints using a framework similar to fa-
miliar graph processing tools such as GraphChi [53] or GraphX [41].
The example application uses structural and semantic properties of
provenance graphs to reduce overhead, claiming CPU overhead of
about 5% and storage of only a few hundred megabytes of memory.
In parallel, the system retains the complete provenance record as
forensic evidence, using cloud-scale storage such as Apache Accu-
mulo [64]. When the auditor detects a regulation violation, users
can query and analyze the forensic provenance to identify the cause
of the violation and take action, for example, by fixing the system or
notifying affected users as mandated by HIPAA [3].

Practical Whole-System Provenance Capture SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

7.2 Intrusion Detection
The FRAPpuccino fault/intrusion detection system uses the capture
mechanism presented here to identify errant or malicious instances of
a PaaS application [44, 45]. An earlier system, pH [87, 88], recorded
system call patterns of security-sensitive applications to detect ab-
normal behavior. We hypothesised that provenance data would be a
better source of information, leading to more accurate results. We
experimented with reported real world vulnerabilities, and prelimi-
nary results indicate that we are able to detect attacks with higher
accuracy.

The system consists of two stages of operation: 1) a training stage
where we build a per-application behavior model and 2) a deploy-
ment stage where we monitor deployed applications. During the first
stage, many instances of the target application run in parallel on the
PaaS platform, and we assume most of them behave correctly. We
use the provenance graph generated to build a model of normal be-
havior. In deployment, we analyze the provenance stream in sliding
windows, comparing the current execution to the model generated
during the training stage. If the stream does not fit the model, we
determine if there is a real intrusion or fault. In the case of a false
positive, we retrain the model incorporating the new data. In the case
of a true positive, we can analyze the forensic provenance to identify
the root cause.

The prototype successfully detected known vulnerabilities, such
as a wget arbitrary file upload [40] that can be leveraged for privi-
lege escalation, a tcpdump crash [84] through malicious packets, and
an out of memory exception in a Ruby server that breaks garbage
collection [35].

This is ongoing work. We plan to analyze streamed provenance
data on Data-Intensive Scalable Computing systems such as Apache
Spark, to expedite the process and make our intrusion detection
system scalable. We will also extend the prototype to include the
retraining process, to further improve accuracy in monitoring com-
plex applications. Work remains to evaluate the effectiveness of the
approach in discovering new vulnerabilities.

7.3 Data Loss Prevention
Bates et al. describe how to leverage whole-system provenance cap-
ture to build Provenance-Based Data Loss Prevention (PB-DLP) [13].
PB-DLP issues a provenance query that follows well-defined edge
types to determine data dependencies on data before it leaves the sys-
tem. If the dependencies include any sensitive information, PB-DLP
aborts the transfer. Bates et al. acknowledge that the provenance
graph grows without bound, creating increasingly long query times.

Our first approach to this use case leveraged the knowledge that
policy enforcement queries need only consider a set of well-defined
edge types. As query time is dependent on the overall graph size, we
tailor the capture policy, restricting capture to only those edges of
the specified type(s). This significantly reduces the volume of data
collected.

The second approach uses CamFlow’s taint mechanism, intro-
duced in § 5. Using taint propagation, we can replace a potentially
costly graph query with a much less expensive taint check when
data is about to leave the system. Propagation can be tuned taint to
apply only to specific types of node and/or edge. As a result, we can
produce the same behavior produced by the (expensive) query of

Bates et al. [13] with a time-constant check. Further, we note that
taint tracking has been proved effective in similar scenarios [32].
In conjunction with tracking taint using this method, we can also
choose to store either whole or selective provenance as forensic
evidence. This allows the use of “post-mortem” queries to explore
the chain of events leading to the disclosure attempt. This approach
reduces computational overhead, while simultaneously providing
forensic evidence.

7.4 Retrofitting existing applications
Bates et al. also retrofitted provenance into a classic three-tier web
application [11]. They use LPM to capture whole-system provenance
and modify the web server to relate HTML and database queries.
A proxy between the web server and the database collects SQL
queries, which are transformed into application-level provenance for
the database. It is therefore possible to link an HTML response to
database entries. Before responding to a query, the system issues
a provenance query on the combined application and system data
to check for leakage of sensitive data, which it then prevents. This
architecture avoids having to modify the database, but still requires
modifications to the server and adds an additional component (the
proxy) into the system. With CamFlow we can achieve the same
result without modifying the existing three-tier web application, as
follows:
1) We track (and optionally propagate tracking from) both server and
database executables. 2) We configure the server’s ErrorLog as
a provenance log file, as described in § 4.5 and set the LogLevel
to collect sufficient information to relate an HTML request to an
SQL query. 3) We capture network packets (e.g., by adding the
line record=DB_IP/32:DB_PORT in the capture policy), which
allows us to capture the SQL queries, without using an intermediate
proxy.

8 RELATED WORK
Most provenance capture systems work at the application level,
e.g. [8, 57, 59, 69] or at the workflow level [17, 29]. These systems
provide an incomplete record of what happened, which renders some
use cases impossible (see § 4.5). System level provenance provides
information about the interactions between programs, which is the
key to supporting more complex use cases. One of the first attempts
at system-level provenance is the Lineage File System [82] that used
system call interposition in a modified Linux Kernel, while a user
space process read captured provenance out of a printk buffer and
stored the data in a SQL database. PASS captures provenance at
the Virtual File System (VFS) layers. PASSv1 [66] provides func-
tionality to capture processes’ I/O interactions, while PASSv2 [65]
introduced a disclosed provenance API to allow the integration of
provenance across semantic levels. The main issue for these sys-
tems was the difficulty of maintaining and extending provenance
capture over time, since it was spread among various places in the
kernel. CamFlow is a strictly self-contained implementation that
uses standard kernel features and is extremely easy to extend and
maintain.

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA T. Pasquier et al.

The next generation of system-level provenance used the Linux
Security Framework (LSM) to capture provenance. The LSM frame-
work provides a guarantee of completeness [31, 34, 49] of the prove-
nance captured; Hi-Fi [78] was the first such approach. Hi-Fi did not
support security module stacking (i.e., SELinux or AppArmor cannot
run alongside provenance capture), rendering the system it monitors
vulnerable. Further, Hi-Fi did not provide any API for disclosed
provenance. Linux Provenance Module (LPM) [13] addressed those
limitations. LPM provides an API for disclosed provenance and
duplicates the LSM framework to allow the stacking of provenance
and MAC policy.

CamFlow leverages recent advances of the LSM framework [30,
83] to allow stacking of LSMs without feature duplication, thereby
further increasing maintainability and extensibility. A second objec-
tive of LPM was to provide stronger integrity guarantees: leveraging
TPM and the Linux Integrity Measurement Architecture [50, 81] and
using cryptographic techniques to protect packet-level provenance
taint. We can do the former, while the latter tends to create compati-
bility issues. We believe in a clearer separation of concerns, leaving
packet integrity guarantees to mechanisms such as IPSec [33].

An alternative implementation of whole-system provenance is
interposition between system calls and libraries in user space, as
in OPUS [9]. An argument in favour of such systems is that mod-
ifications to existing libraries are more likely to be adopted than
modifications to the kernel. However, for this approach to work, all
applications in the system need to be built against, or dynamically
linked to, provenance-aware libraries, replacing existing libraries.
Further, the guarantees of completeness provided are much weaker
than those provided by an LSM-based implementation. SPADE [36]
mixes this approach, with the Linux Audit infractustructure; the
LSM-based approach to provenance provides a more detailed record
and stronger completeness guarantees.

Another system-call based approach that uses both logging and
taint tracking is ProTracer [58]. ProTracer relies on kernel trace-
points to intercept system calls and capture provenance. The sys-
tem relies on taint propagation when the events being traced are
ephemeral (e.g., inter-process communication) and full provenance
capture for events that are determined to be permanent. One con-
cern with system call-based approaches is the lack of guarantees of
completeness in the provenance record. Consider for example the
read and pread64 system calls. Both read from a file descriptor,
the difference being that the latter can do so with an offset. A system
needs to properly record both types of read system calls, and should
probably ensure that the record for pread64 is the same as the
record of an lseek and subsequent read call. Ensuring such con-
sistency increases the complexity of the capture (or post-processing).
LSM-based approaches are guaranteed to capture every event that is
deemed security-sensitive and focus on the objects being accessed,
instead of the actions being carried out on those objects.

One of the main hurdles of system-level provenance capture is
the sheer amount of data generated [13, 64]. One approach to this
issue is to improve provenance ingest to storage [64] and provenance
query [90]. A second approach is to reduce the amount of provenance
data captured. This reduction might be based on security policies [12,
75], limiting capture to only those elements considered important
or sensitive. This is of limited interest in contexts such as scientific
workflows, where data of interest may not be associated with any

security policy. We address these issues by providing administrators
and system designers with selective capture in a way consistent with
the provenance data-model.

Using system-level provenance in a cloud computing context has
been proposed in the past [56, 67, 68, 96]. To our knowledge, the
work presented here is the first open-source maintained implemen-
tation with demonstrated use cases (§ 7). The main focus of our
work has been to develop a practical system that can be used and
expanded upon by the community. There is application-level prove-
nance for a cloud computational framework such as MapReduce [6]
or Spark [43, 48]. We see these as complementary; they could be in-
corporated in CamFlow provenance capture through the mechanism
discussed in § 4.4.

9 CONCLUSION
CamFlow is a flexible, efficient and easy to use provenance cap-
ture mechanism for Linux. Linux is widely used in cloud service
offerings and our modular architecture, using LSM, means that data
provenance can be included without difficulty as part of a cloud OS
in PaaS clouds.

We take advantage of developments in Linux kernel architecture
to create a modular, easily maintainable and deployable provenance
capture mechanism. The ability to finely tune the provenance being
captured to meet each application’s requirements helps to create
a scalable system. Our standards-compliant approach further en-
hances the broad applicability and ease of adoption of CamFlow.
Further, we demonstrated the low impact on performance and the
wide applicability of our approach.

ACKNOWLEDGMENTS
This work was supported by the US National Science Foundation
under grant SSI-1450277 End-to-End Provenance. Early versions
of CamFlow open source software were supported by UK Engi-
neering and Physical Sciences Research Council grant EP/K011510
CloudSafetyNet.

REFERENCES
[1] [n. d.]. Docker. ([n. d.]). https://www.docker.com.
[2] [n. d.]. General Data Protection Regulation. http://eur-lex.europa.eu/legal-content

/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:
TOC. ([n. d.]).

[3] [n. d.]. Health Insurance Portability and Accountability Act. https://www.gpo.go
v/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm. ([n. d.]).

[4] [n. d.]. OECD Guidelines on the Protection of Privacy and Transborder Flows of
Personal Data. ([n. d.]). http://www.oecd.org/internet/ieconomy/oecdguidelineso
ntheprotectionofprivacyandtransborderflowsofpersonaldata.htm.

[5] [n. d.]. The Sarbanes-Oxley Act of 2002. http://www.soxlaw.com/. ([n. d.]).
[6] Sherif Akoush, Ripduman Sohan, and Andy Hopper. 2013. Hadoopprov: Towards

provenance as a first class citizen in mapreduce. In Workshop on the Theory and
Practice of Provenance. USENIX.

[7] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. 2016. Correct
Audit Logging: Theory and Practice. In International Conference on Principles of
Security and Trust (POST’16). Springer.

[8] Elaine Angelino, Daniel Yamins, and Margo Seltzer. 2010. StarFlow: A script-
centric data analysis environment. In International Provenance and Annotation
Workshop. Springer, 236–250.

[9] Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, and Andy Hopper.
2013. OPUS: A Lightweight System for Observational Provenance in User Space..
In Workshop on the Theory and Practice of Provenance. USENIX.

[10] Andrew Banks and Rahul Gupta. 2014. MQTT Version 3.1. 1. OASIS Standard
(2014).

[11] Adam Bates, Kevin Butler, Alin Dobra, Brad Reaves, Patrick Cable, Thomas
Moyer, and Nabil Schear. 2016. Retrofitting Applications with Provenance-Based

https://www.docker.com
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.soxlaw.com/

Practical Whole-System Provenance Capture SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Security Monitoring. arXiv preprint arXiv:1609.00266 (2016).
[12] Adam Bates, Kevin RB Butler, and Thomas Moyer. 2015. Take only what you

need: leveraging mandatory access control policy to reduce provenance storage
costs. In Workshop on Theory and Practice of Provenance. USENIX, 7–7.

[13] Adam Bates, Dave Tian, Kevin Butler, and Thomas Moyer. 2015. Trustwor-
thy Whole-System Provenance for the Linux Kernel. In Security Symposium.
USENIX.

[14] Mick Bauer. 2006. Paranoid penguin: an introduction to Novell AppArmor. Linux
Journal 2006, 148 (2006), 13.

[15] Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen Cress-
well, Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker,
Simon Miles, James Myers, Satya Sahoo, Luc Moreau, and Paolo et al. Missier.
2013. Prov-DM: The PROV Data Model. Technical Report. World Wide Web
Consortium (W3C). https://www.w3.org/TR/prov-dm/.

[16] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer,
and Leendert van Doorn. 2006. vTPM: Virtualizing the Trusted Platform Module.
In Security Symposium. USENIX, 305–320.

[17] Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher. 2012. Declarative
rules for inferring fine-grained data provenance from scientific workflow execution
traces. In International Provenance and Annotation Workshop. Springer, 82–96.

[18] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where:
A characterization of data provenance. In International Conference on Database
Theory. Springer, 316–330.

[19] Peter Buneman and Wang-Chiew Tan. 2007. Provenance in databases. In SIGMOD
international conference on Management of data. ACM, 1171–1173.

[20] Lucian Carata, Sherif Akoush, Nikilesh Balakrishnan, Thomas Bytheway, Rip-
duman Sohan, Margo Selter, and Andy Hopper. 2014. A primer on provenance.
Commun. ACM 57, 5 (2014), 52–60.

[21] Sheung Chi Chan, Ashish Gehani, James Cheney, Ripduman Sohan, and Hassaan
Irshad. 2017. Expressiveness Benchmarking for System-Level Provenance. In
Workshop on the Theory and Practice of Provenance (TaPP 2017). USENIX.

[22] Adriane P Chapman, Hosagrahar V Jagadish, and Prakash Ramanan. 2008. Effi-
cient provenance storage. In International Conference on Management of Data.
ACM, 993–1006.

[23] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2016. The good, the bad, and the differences: Better network diagnostics with dif-
ferential provenance. In Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference. ACM, 115–128.

[24] Christian Collberg and Todd A Proebsting. 2016. Repeatability in computer
systems research. Commun. ACM 59, 3 (2016), 62–69.

[25] Federal Trade Commission. 2007. Fair information practice principles. (2007).
[26] Jonathan Corbet. 2007. SMACK meets the One True Security Module. (2007).

https://lwn.net/Articles/252562/.
[27] Jonathan Corbet. 2016. The LoadPin security module. (2016). https://lwn.net/Ar

ticles/682302/.
[28] Daniel Crawl, Jianwu Wang, and Ilkay Altintas. 2011. Provenance for mapreduce-

based data-intensive workflows. In Workshop on Workflows in Support of Large-
scale Science. ACM, 21–30.

[29] Susan B Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram Ludäscher, Tim-
othy M McPhillips, Shawn Bowers, Manish Kumar Anand, and Juliana Freire.
2007. Provenance in Scientific Workflow Systems. IEEE Data Eng. Bull. 30, 4
(2007), 44–50.

[30] Jake Edge. 2015. Progress in security module stacking. Linux Weekly News
(2015).

[31] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime verification
of authorization hook placement for the Linux Security Modules framework. In
Conference on Computer and Communications Security. ACM, 225–234.

[32] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
5.

[33] S Frankel and S Krishnan. 2011. RFC 6071: IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap. Technical Report.

[34] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2005. Automatic placement of
authorization hooks in the Linux security modules framework. In Conference on
Computer and Communications Security. ACM, 330–339.

[35] Alexey Gaziev. 2015. How Ruby 2.2 can cause an out-of-memory server crash.
(2015). https://evilmartians.com/chronicles/ruby-2_2-oom.

[36] Ashish Gehani and Dawood Tariq. 2012. SPADE: support for provenance auditing
in distributed environments. In International Middleware Conference. ACM/I-
FIP/USENIX, 101–120.

[37] Laurent Georget, Mathieu Jaume, Frédéric Tronel, Guillaume Piolle, and Valérie
Viet Triem Tong. 2017. Verifying the reliability of operating system-level informa-
tion flow control systems in linux. In International Workshop on Formal Methods
in Software Engineering (FormaliSE 2017). IEEE, 10–16.

[38] Devarshi Ghoshal and Beth Plale. 2013. Provenance from log files: a BigData
problem. In Proceedings of the Joint EDBT/ICDT 2013 Workshops. ACM, 290–
297.

[39] Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome biology 11, 8 (2010), R86.

[40] Dawid Golunski. 2016. Wget Arbitrary File Upload Vulnerability Exploit.
(2016). https://legalhackers.com/advisories/Wget-Arbitrary-File-Upload-Vulne
rability-Exploit.html.

[41] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework.. In OSDI, Vol. 14. 599–613.

[42] Mark Greenwood, CA Goble, Robert D Stevens, Jun Zhao, Matthew Addis,
Darren Marvin, Luc Moreau, and Tom Oinn. 2003. Provenance of e-science
experiments-experience from bioinformatics. In Proceedings of UK e-Science All
Hands Meeting 2003. 223–226.

[43] Muhammad Ali Gulzar, Xueyuan Han, Matteo Interlandi, Shaghayegh Mardani,
Sai Deep Tetali, TD Millstein, and Miryung Kim. 2016. Interactive debugging for
big data analytics. In Workshop on Hot Topics in Cloud Computing (HotCloud’16).
USENIX, 20–21.

[44] Xueyuan Han. 2017. michael-hahn/frap: v1.1.1. (2017).
DOI:10.5281/zenodo.571444, https://github.com/michael-hahn/frap.

[45] Xueyuan Han, Thomas Pasquier, Mark Goldstein, and Margo Seltzer. 2017. FRAP-
puccino: Fault-detection through Runtime Analysis of Provenance. In Workshop
on Hot Topics in Cloud Computing (HotCloud’17). USENIX.

[46] Steve Hoffman. 2013. Apache Flume: Distributed Log Collection for Hadoop.
Packt Publishing Ltd.

[47] Trung Dong Huyng, Michael Jewell, Amir Keshavarz, Danius Michaelides, Huan-
jia Yang, and Luc Moreau. 2013. The PROV-JSON Serialization: a JSON Represen-
tation for the PROV Data Model. Technical Report. World Wide Web Consortium
(W3C). https://www.w3.org/Submission/prov-json/.

[48] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data provenance support in spark. Proceedings of the VLDB Endowment 9, 3
(2015), 216–227.

[49] Trent Jaeger, Antony Edwards, and Xiaolan Zhang. 2004. Consistency analysis of
authorization hook placement in the Linux security modules framework. ACM
Transactions on Information and System Security (TISSEC) 7, 2 (2004), 175–205.

[50] Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: policy-reduced in-
tegrity measurement architecture. In Proceedings of the eleventh ACM symposium
on Access control models and technologies. ACM, 19–28.

[51] Jeffrey Katcher. 1997. Postmark: A new file system benchmark. Technical Report.
Technical Report TR3022, Network Appliance.

[52] Chongkyung Kil, Emre Can Sezer, Ahmed M Azab, Peng Ning, and Xiaolan
Zhang. 2009. Remote Attestation to Dynamic System Properties: Towards Pro-
viding Complete System Integrity Evidence. In Dependable Systems & Networks
(DSN’09). IEEE, 115–124.

[53] Aapo Kyrola, Guy E Blelloch, Carlos Guestrin, et al. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC.. In OSDI, Vol. 12. 31–46.

[54] Butler W Lampson. 2004. Computer security in the real world. Computer 37, 6
(2004), 37–46.

[55] Michael Larabel and M Tippett. [n. d.]. Phoronix test suite. ([n. d.]). http:
//www.phoronix-test-suite.com.

[56] Brian Lee, Abir Awad, and Mirna Awad. 2015. Towards secure provenance in
the cloud: a survey. In Utility and Cloud Computing (UCC), 2015 IEEE/ACM 8th
International Conference on. IEEE, 577–582.

[57] Barbara Lerner and Emery Boose. 2014. RDataTracker: collecting provenance in
an interactive scripting environment. In Workshop on the Theory and Practice of
Provenance (TaPP 2014). USENIX.

[58] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards
Practical Provenance Tracing by Alternating Between Logging and Tainting.
In 23nd Annual Network and Distributed System Security Symposium, NDSS
2016, San Diego, California, USA, February 21-24, 2016. The Internet Soci-
ety. http://www.internetsociety.org/sites/default/files/blogs-media/protracer-towar
ds-practical-provenance-tracing-alternating-logging-tainting.pdf

[59] Peter Macko and Margo Seltzer. 2012. A General-Purpose Provenance Library. In
Workshop on the Theory and Practice of Provenance (TaPP 2012). USENIX.

[60] Larry W McVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Performance
Analysis.. In USENIX annual technical conference. San Diego, CA, USA, 279–
294.

[61] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. 2007. The require-
ments of using provenance in e-science experiments. Journal of Grid Computing
5, 1 (2007), 1–25.

[62] James Morris, Stephen Smalley, and Greg Kroah-Hartman. 2002. Linux security
modules: General security support for the linux kernel. In Security Symposium.
USENIX.

[63] Thomas Morris. 2011. Trusted Platform Module. In Encyclopedia of Cryptography
and Security. Springer, 1332–1335.

https://www.w3.org/TR/prov-dm/
https://lwn.net/Articles/252562/
https://lwn.net/Articles/682302/
https://lwn.net/Articles/682302/
https://evilmartians.com/chronicles/ruby-2_2-oom
https://legalhackers.com/advisories/Wget-Arbitrary-File-Upload-Vulnerability-Exploit.html
https://legalhackers.com/advisories/Wget-Arbitrary-File-Upload-Vulnerability-Exploit.html
https://github.com/michael-hahn/frap
https://www.w3.org/Submission/prov-json/
http://www.phoronix-test-suite.com
http://www.phoronix-test-suite.com
http://www.internetsociety.org/sites/default/files/blogs-media/protracer-towards-practical-provenance-tracing-alternating-logging-tainting.pdf
http://www.internetsociety.org/sites/default/files/blogs-media/protracer-towards-practical-provenance-tracing-alternating-logging-tainting.pdf

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA T. Pasquier et al.

[64] Thomas Moyer and Vijay Gadepally. 2016. High-throughput Ingest of Provenance
Records into Accumulo. In High Performance Extreme Computing. IEEE.

[65] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A Holland, Peter Macko, Di-
ana L MacLean, Daniel W Margo, Margo I Seltzer, and Robin Smogor. 2009. Lay-
ering in Provenance Systems.. In USENIX Annual technical conference. USENIX.

[66] Kiran-Kumar Muniswamy-Reddy, David Holland, Uri Braun, and Margo Seltzer.
2006. Provenance-Aware Storage Systems. In USENIX Annual Technical Confer-
ence, General Track. 43–56.

[67] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo I Seltzer. 2009. Mak-
ing a Cloud Provenance-Aware.. In Workshop on the Theory and Practice of
Provenance. USENIX.

[68] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo I Seltzer. 2010. Prove-
nance for the Cloud.. In Conference on File and Storage Technologies (FAST’10),
Vol. 10. USENIX, 15–14.

[69] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and
Juliana Freire. 2014. noWorkflow: capturing and analyzing provenance of scripts.
In International Provenance and Annotation Workshop. Springer, 71–83.

[70] Thomas Naughton, Wesley Bland, Geoffroy Vallee, Christian Engelmann, and
Stephen L Scott. 2009. Fault injection framework for system resilience evaluation:
fake faults for finding future failures. In Proceedings of the 2009 workshop on
Resiliency in high performance. ACM, 23–28.

[71] Thomas Pasquier. 2017. CamFlow/camflow-dev: v0.2.1. (2017).
DOI:10.5281/zenodo.571427, https://github.com/CamFlow/camflow-dev.

[72] Thomas Pasquier. 2017. CamFlow/information-flow-patch. (2017). https://doi.or
g/10.5281/zenodo.826436

[73] Thomas Pasquier and David Eyers. 2016. Information Flow Audit for Trans-
parency and Compliance in the Handling of Personal Data. In International
Workshop on Legal and Technical Issues in Cloud Computing (CLaw’16). IEEE.

[74] Thomas Pasquier and Xueyuan Han. 2017. CamFlow/camflow-query: v0.1.0.
(2017). DOI:10.5281/zenodo.571433, https://github.com/CamFlow/camflow-que
ry.

[75] Thomas Pasquier, Jatinder Singh, Jean Bacon, and David Eyers. 2016. Information
Flow Audit for PaaS clouds. In International Conference on Cloud Engineering
(IC2E). IEEE.

[76] Thomas Pasquier, Jatinder Singh, David Eyers, and Jean Bacon. 2015. CamFlow:
Managed data-sharing for cloud services. IEEE Transactions on Cloud Computing
(2015).

[77] Thomas Pasquier, Jatinder Singh, Julia Powles, David Eyers, Margo Seltzer, and
Jean Bacon. 2017. Data provenance to audit compliance with privacy policy in
the Internet of Things. Pervasive and Ubiquitous Computing, Special Issue on
Privacy and IoT (2017).

[78] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012.
Hi-Fi: Collecting High-Fidelity whole-system provenance. In Annual Computer
Security Applications Conference. ACM, 259–268.

[79] Dean Povey. 1999. Optimistic security: a new access control paradigm. In Work-
shop on New security paradigms. ACM, 40–45.

[80] Ira Rubinstein and Joris Van Hoboken. 2014. Privacy and security in the cloud:
some realism about technical solutions to transnational surveillance in the post-
Snowden era. (2014).

[81] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. 2004. Design
and Implementation of a TCG-based Integrity Measurement Architecture.. In
USENIX Security Symposium, Vol. 13. 223–238.

[82] Can Sar and Cao Pei. 2005. Lineage File System. (2005). http://crypto.stanford.
edu/~cao/lineage.

[83] Casey Schaufler. 2016. LSM: Stacking for major security modules. (2016).
https://lwn.net/Articles/697259/.

[84] David Silveiro. 2016. TCPDump 4.5.1 - Crash (DoS). (2016). https://www.expl
oit-db.com/exploits/39875/.

[85] Yogesh L Simmhan, Beth Plale, and Dennis Gannon. 2005. A survey of data
provenance in e-science. ACM Sigmod Record 34, 3 (2005), 31–36.

[86] Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing SELinux
as a Linux security module. NAI Labs Report 1, 43 (2001), 139.

[87] Anil Somayaji and Stephanie Forrest. 2000. Automated Response Using System-
Call Delay.. In Security Symposium. USENIX, 185–197.

[88] Anil Buntwal Somayaji. 2002. Operating system stability and security through
process homeostasis. Ph.D. Dissertation. The University of New Mexico.

[89] Lily Tsai and Aaron Bembenek. [n. d.]. prov-compress. ([n. d.]). https://github.c
om/aaronbembenek/prov-compress.

[90] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and
Dawn Wilkins. 2010. A comparison of a graph database and a relational database: a
data provenance perspective. In Proceedings of the 48th annual Southeast regional
conference. ACM, 42.

[91] Daniel J Weitzner. 2007. Beyond secrecy: New privacy protection strategies for
open information spaces. IEEE Internet Computing 11, 5 (2007), 96–95.

[92] Allison Woodruff and Michael Stonebraker. 1997. Supporting fine-grained data
lineage in a database visualization environment. In International Conference on
Data Engineering. IEEE, 91–102.

[93] Yulai Xie, Dan Feng, Zhipeng Tan, Lei Chen, Kiran-Kumar Muniswamy-Reddy,
Yan Li, and Darrell DE Long. 2012. A hybrid approach for efficient provenance
storage. In International Conference on Information and Knowledge Management.
ACM, 1752–1756.

[94] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Darrell DE Long, Ahmed Amer, Dan
Feng, and Zhipeng Tan. 2011. Compressing Provenance Graphs.. In Workshop on
the Theory and Practice of Provenance. USENIX.

[95] Tom Zanussi, Karim Yaghmour, Robert Wisniewski, Richard Moore, and Michel
Dagenais. 2003. relayfs: An efficient unified approach for transmitting data from
kernel to user space. In Linux Symposium. 494.

[96] Olive Qing Zhang, Markus Kirchberg, Ryan KL Ko, and Bu Sung Lee. 2011. How
to track your data: The case for cloud computing provenance. In International
Conference on Cloud Computing Technology and Science (CloudCom). IEEE,
446–453.

A AVAILABILITY
The work presented in this paper is open-source and available for
download at http://camflow.org under a GPL-3.0 license. Detailed
installation instructions are available online.a

A.1 Running CamFlow
To get started with the system presented in this paper install Vagrantb

and VirtualBoxc then run the following commands:

1 g i t c l o n e h t t p s : / / g i t h u b . com / CamFlow / v a g r a n t . g i t
2 cd . / v a g r a n t / b a s i c−f e d o r a
3 v a g r a n t p l u g i n i n s t a l l v a g r a n t−v b g u e s t
4 v a g r a n t up
5 # t e s t i n g t h e i n s t a l l a t i o n
6 v a g r a n t s s h
7 # check i n s t a l l e d v e r s i o n a g a i n s t CamFlow head
8 camflow −v
9 uname −r

10 # check s e r v i c e s
11 c a t / tmp / a u d i t . l o g # a u d i t s e r v i c e l o g s
12 c a t / tmp / camflow . c l g # c o n f i g u r a t i o n l o g s

Listing 4: Running CamFlow demo in Vagrant.

Alternatively, CamFlow can be installed and kept up to date
via the package manager. The packages are distributed via pack-
agecloudd and available for Fedora distributions. Installation on a
Fedora machine, do as follow:
1 c u r l −s h t t p s : / / p a c k a g e c l o u d . i o / i n s t a l l / r e p o s i t o r i e s /

camflow / p r o v e n a n c e / s c r i p t . rpm . sh . rpm | sudo bash
2 sudo dnf i n s t a l l camflow

Listing 5: Installing CamFlow on Fedora.

A.2 Repeating Evaluation Results
The instructions for reproducing the results presented in § 6 are
online.e We assume that a Linux kernel running CamFlow has been
installed. To run the various tests please follow the instructions:

1 g i t c l o n e h t t p s : / / g i t h u b . com / CamFlow / benchmark . g i t
2 cd benchmark
3 make p r e p a r e
4 # choose t h e c o n f i g t o run t h e t e s t s unde r
5 make <whole / s e l e c t i v e / o f f >
6 make run
7 # f o r more a c c u r a t e r e s u l t s you may want
8 # t o run t e s t i n d i v i d u a l l y and r e b o o t
9 # a f t e r each . Run f o r example :

10 make run_lmbench

Listing 6: Reproducing evaluation results.

https://github.com/CamFlow/camflow-dev
https://doi.org/10.5281/zenodo.826436
https://doi.org/10.5281/zenodo.826436
https://github.com/CamFlow/camflow-query
https://github.com/CamFlow/camflow-query
http://crypto.stanford.edu/~cao/lineage
http://crypto.stanford.edu/~cao/lineage
https://lwn.net/Articles/697259/
https://www.exploit-db.com/exploits/39875/
https://www.exploit-db.com/exploits/39875/
https://github.com/aaronbembenek/prov-compress
https://github.com/aaronbembenek/prov-compress
http://camflow.org

Practical Whole-System Provenance Capture SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

NOTES
ahttps://github.com/CamFlow/CamFlow.github.io/wiki/Getting-Started
bhttps://www.vagrantup.com/
chttps://www.virtualbox.org/
dhttps://packagecloud.io/camflow
ehttps://github.com/CamFlow/benchmark

https://github.com/CamFlow/CamFlow.github.io/wiki/Getting-Started
https://www.vagrantup.com/
https://www.virtualbox.org/
https://packagecloud.io/camflow
https://github.com/CamFlow/benchmark

	Abstract
	1 Introduction
	2 The Scope of Provenance
	3 Provenance Data Model
	4 Capturing System Provenance
	4.1 Capture mechanism
	4.2 Cross-host Provenance Capture
	4.3 Hardware Root of Trust
	4.4 User Space Interface
	4.5 Application-level Provenance

	5 Tailoring Provenance Capture
	6 Evaluation
	6.1 Maintainability
	6.2 Performance
	6.3 Generated Data Volume
	6.4 Completeness and expressiveness

	7 Example Applications
	7.1 Demonstrable Compliance
	7.2 Intrusion Detection
	7.3 Data Loss Prevention
	7.4 Retrofitting existing applications

	8 Related Work
	9 Conclusion
	References
	A Availability
	A.1 Running CamFlow
	A.2 Repeating Evaluation Results

