
Managing Big Data with Information Flow Control

Thomas F. J.-M. Pasquier, Jatinder Singh and Jean Bacon
Computer Laboratory, University of Cambridge

Cambridge, United Kingdom
Email: firstname.lastname@cl.cam.ac.uk

Olivier Hermant
MINES ParisTech

Paris, France
Email: hermant@cri.ensmp.fr

Abstract—Concern about data leakage is holding back more
widespread adoption of cloud computing by companies and public
institutions alike. To address this, cloud tenants/applications are
traditionally isolated in virtual machines or containers. But an
emerging requirement is for cross-application sharing of data, for
example, when cloud services form part of an IoT architecture.
Information Flow Control (IFC) is ideally suited to achieving both
isolation and data sharing as required. IFC enhances traditional
Access Control by providing continuous, data-centric, cross-
application, end-to-end control of data flows. However, large-scale
data processing is a major requirement of cloud computing and is
infeasible under standard IFC. We present a novel, enhanced IFC
model that subsumes standard models. Our IFC model supports
‘Big Data’ processing, while retaining the simplicity of standard
IFC and enabling more concise, accurate and maintainable
expression of policy.

Keywords—Information Flow Control; Data Management; Se-
curity;

I. INTRODUCTION
Concern about data leakage is holding back more

widespread adoption of cloud computing by companies and
public institutions. There is an increasing volume of applicable
legislation and regulation [1], but ensuring and demonstrating
compliance by cloud service providers and third parties is
problematic. In recent work we have explored the use of
Information Flow Control (IFC) for cloud and distributed com-
puting, based on a proof-of-concept implementation (FlowK)
of the standard IFC model as a basis for evaluation [2].

Based on this experience, we believe that the deployment of
IFC to augment traditional authentication and authorisation has
the potential to make a substantial contribution to the security
of distributed and cloud systems, both through enforcement
mechanisms and demonstration of compliance through audit.
However, the use of IFC for large-scale data sharing and
analytics is problematic using the standard IFC model. In
this paper we present an enhanced IFC model which, while
retaining the simplicity of expression and implementation of
the standard model, easily extends to large scale.

Much work remains to be done, particularly when cloud
services are incorporated as part of wide-scale distributed
systems, as in the Internet of Things (IoT). In a cloud con-
text, tenants/applications are traditionally isolated in virtual
machines or containers. An emerging requirement is for cross-
application sharing of data, particularly when cloud services
are used for IoT. IFC is ideally suited to achieving both iso-
lation and data sharing as required [3]. If IFC is incorporated
into cloud service provision as part of PaaS or SaaS clouds,
it can provide continuous, data-centric access control policy
within and across applications, see §II.

Traditionally, (principal/role-specific) access control is ap-
plied before data can be accessed by an entity, after which
no further control is exercised on where that data flows in the
system. IFC augments access control so that data flows are
monitored continuously, in context, to enforce more general
policy. This is achieved by associating labels with data and
the entities that process them. Labels comprise a number of
tags that describe the nature and/or source of the data such
as healthcare, personal, government-information, etc. Flows
are permitted only if the labels match, see §III. The challenge
in integrating multiple applications’ access control policy with
IFC is to create labels that express policy accurately, concisely,
naturally and efficiently, and in a way that makes policy
changes easy to implement. We believe the new tag design
we present here contributes substantially to this goal.

We have previously investigated how labels can be used to
enforce certain laws and regulations, such as “data originating
in the EU must not leave its boundaries, except to certain Safe
Harbors” [1], [4], [5]. A simple tag EU can be used for this
purpose. But access control policies in general have great rich-
ness and complexity whereas IFC should be simple to express
and enforce, to minimise runtime overhead while providing
evidence (logs) for audit and demonstrating compliance. A
major research question is “which aspects of access control
policies need to be embodied in IFC tags for continuous,
runtime, cross-application enforcement?” Essentially, problems
arise when some software can access all data items of a certain
kind, e.g., to perform analytics, generate statistics, anonymise
or encrypt, as required for ‘Big Data’, and other software is
restricted to access only one such item, see §II, §IV.

Here we propose two-component tags to represent the
concern of data and a specifier for an item of that kind,
for example 〈medical, bob〉 for Bob’s medical record. We
have implemented this in FlowK2 (FlowK 2-component).
Such a tag model more closely reflects the policy maker’s
intent than previous models, and current atomic tags can
easily be expressed in this way, such as 〈location,EU〉 or
〈regulation,EU111〉. We have experience of collaboration in
healthcare record management [6], [7] and monitoring [8] and
take examples from this domain to demonstrate this approach.

The main contribution of this paper is this enhancement
of standard IFC tags to make IFC feasible for ‘Big Data’
processing in the cloud and to allow better expression and
maintenance of policy. The ability to express Conflict of
Interest (CoI) is new in FlowK (§III-E) and CoI policy is more
powerful, concisely expressed and capable of maintenance in
FlowK2 (§V-C). We have presented a performance evaluation
of FlowK elsewhere [2] and here focus on a comparison of
the new tag model with standard IFC.

§II outlines IFC models and application level policy ex-
pression. §III presents the standard atomic tag model. §IV
gives some motivating examples, showing how two-component
tags solve problems of large-scale data processing under IFC.
§V presents the two-component tag model, extending that
of FlowK. §VI shows that the modifications can easily be
implemented and give comparable or improved performance.
§VII concludes.

II. BACKGROUND AND RELATED WORK
IFC tags are metadata that ‘stick’ to data, allowing every

flow to be controlled. Although sticky policies [9] are osten-
sibly similar, they are machine-readable, high-level policies
applied at domain boundaries and protected cryptographically.
Our aim is for brevity and simplicity, at fine granularity, in a
kernel-level, runtime, policy-enforcement mechanism.

We first introduce IFC, with an overview of IFC implemen-
tations. We then highlight the importance of what IFC poten-
tially delivers when offered as part of cloud service provision.
Finally we consider the well established area of authorisation
policy as a basis for establishing which aspects should be
carried forward into IFC tags for runtime enforcement.

A. IFC Models & Implementations
Motivated by the deficiencies in standard security tech-

niques, such as firewalls and access control mechanisms, in
1976, Denning [10] proposed a Mandatory Access Control
(MAC) model to track and enforce rules on information flow
in computer systems. In this model, entities are associated
with security classes. The flow of information from an entity
a to an entity b is allowed only if the security class of b
(denoted b) is equal to or higher than a. This allows the
no-read up, no-write down principle of Bell and LaPadula
[11] to be implemented to enforce secrecy. By this means a
traditional military classification public, secret, top secret can
be implemented. A second security class can be associated
with each entity to track and enforce integrity (quality of
data) during reading down and writing up, as proposed by
Biba [12]. A current example might distinguish information
from a government website in the .gov.uk domain from that
from “Joe’s Blog”. Using this model allows one to control and
monitor information flow to ensure data secrecy and integrity.

In 1997 Myers [13] introduced a decentralised IFC model
(DIFC) that has inspired most later work. This model was
designed to meet the changing needs of systems from global,
static, hierarchical security levels to a more fluid system, able
to capture the needs of different applications. Each entity has
two labels: a secrecy label and an integrity label, to capture
respectively the privacy/confidentiality of the data and the
reliability of a source of data. Each label comprises a set of
tags, each of which represents some security concern. Data is
allowed to flow if the security label of the sender is a subset
of the label of the receiver, and conversely for integrity.

We describe in §III the model we use in FlowK that
follows this general idea. Details of implementations of IFC
at language [14], language library and operating system level
are given in [2], [15]. She et al. [16], use run-time dependency
and information flow control to track information within and
between services in a cloud service composition chain. Roy
et al. [17] and Akoush et al. [18] propose to implement
IFC in a MapReduce framework to prevent the computation
provider leaking data from the data provider. Airavat [17] is

limited in the expressiveness of the policy due to its reliance
on SELinux, as acknowledged by the author “While [DIFC]
would provide far greater flexibility [...] only prototype DIFC
operating systems exist”. MrLazy [18] only verifies IFC policy
at sink-points, forcing the entire data-processing to be re-done
or data discarded. Finally, Xie et al. [19] propose IFC to secure
stream processing in the cloud, to prevent data disclosure
between competing organisations, in a Chinese Wall policy.
Our model, see §III, achieves this through Conflict of Interest
groups. In this paper we focus on using IFC for flexible
expression and enforcement of application level policy.

B. The need for IFC in Cloud Computing
IFC controls the use of data beyond applications’ access

control points, throughout its whole life cycle. Therefore users
and applications can safely share and exchange data, if they are
willing to trust the cloud provider as a policy-enforcing third-
party. This is not unreasonable, given the existing contractual
relationships between tenants and cloud providers and the role
of regulators that operate in many jurisdictions. IFC allows
the nature of the shared data usage to be defined precisely
and enforced [20] (e.g. data labelled as medical can only
flow to applications that have been authorised and labelled
to manipulate medical data). The trust relationship is greatly
simplified as only a common, well-defined party needs to be
trusted (i.e. the cloud provider). Such an approach potentially
leads to more data sharing and the emergence of cross-silo
innovative applications.

Our IFC design is such that application instances need not
be aware that their execution is controlled by IFC. We built a
framework for web service provision [2] where an application
manager is privileged to create a security context for each
application instance, see §III. This involves creating tags and
assigning labels to application instances.

IFC enforcement takes place on every system call and
inter-machine data exchange. It is therefore a natural place
for an audit log to be created; moreover, such a log is in
terms of applications’ data flows rather than low-level system
concerns. Such an audit log can be used by cloud providers to
demonstrate compliance with laws, regulations and contracts.
It can also be used to show whether a claimed data leak did in
fact occur. Such logs may be considered ‘Big Data’ and tools
are needed to process them efficiently. Provenance systems
already gather such logs, e.g. [18].

Authorisation policy tends to be application-specific. When
data is used by more than one application, policy differences
and conflicts can occur. When data is labelled for IFC, access
policy is enforced across all entities that use the data. As
data sharing becomes more pervasive, for example when cloud
services are incorporated into IoT applications, system-wide,
end-to-end policy enforcement will be crucial.

IFC does not have cybersecurity as its main focus but it
strictly contains data flows and detects attempted illegal flows,
so can contribute to early detection and/or damage limitation.

C. Role Based Access Control
RBAC is a mature, widely used access control scheme

with a large literature and existing standards [21], [22].1 Role
definitions in RBAC tend to be functional in their scope, being

1http://csrc.nist.gov/groups/SNS/rbac/

application- or organisation-specific. Administrative roles are
also included to capture the need to manage RBAC itself.

In work on RBAC by ourselves [7] and others [23], [24],
parametrised roles were found to provide elegant expression
of policy and avoid explosion in the number of roles required.
For example, certain company software such as “Payroll” may
need to access all employees’ data whereas each employee can
access only their own data record. To achieve this, a company
either creates a role per employee e.g. employee smith or
parametrises a single role, for example employee(smith) etc.
The Payroll software can then access employee(*), where *
indicates all employees. In this paper we argue that the IFC
label model needs similar refinement in order to carry forward
to runtime such aspects of application policy, thus following
the Principle of Least Privilege (PoLP).

Role parametrisation allows relationships between parame-
ters and exclusions to be checked. For example the role treat-
ing doctor(doctorID, patientID) allows the role to express the
dynamic set of patients for each doctor for controlling access
to records. An exclusion is expressed as a rule on a parameter
value to indicate, for example, “all doctors can access my
records except doctorID”, see [7]. In §IV we argue that such
checks are most appropriately carried out at authorisation
points within the application. Environmental/context checks
such as “A Pharmacist can only authorise the issuing of drugs
while on duty in the Pharmacy” can be enforced continuously
by IFC using appropriate label design.

III. ATOMIC TAG MODEL
IFC augments authorisation by enforcing dynamically that

only permitted flows of information can occur, end-to-end,
across applications. Entities to which IFC constraints are
applied include cloud web applications [2], a web worker
instance [18], a file, a database entry [25], etc. IFC is applied
continuously, typically on every system call for an IFC-enabled
OS. IFC policy should therefore be as simple as possible,
to allow verification, human understanding and to minimise
runtime overhead.

A. Enforcing Safe Flows via Labels
A tag within a label’s set of tags represents a particular

security concern for a category of data. In our IFC model
two labels are associated with every entity A: a secrecy label
S(A) and an integrity label I(A). The current state of these
two labels (sets of tags) is the security context of an entity.

A flow of information from an entity A to an entity
B, denoted A → B, is allowed if the following rules are
respected:

A→ B, iff S(A) - S(B) ∧ I(B) - I(A) (1)

where - is any preorder (here it is mere inclusion ⊆, it will be
refined for our two-component tag model in §V). These checks
are simple to understand and apply, involving only matching
of the tags at the communication endpoints.

Consider the read and write functions of the Bell-LaPadula
model [11] and the Biba model [12]. In the IFC world read is
the equivalent of an incoming flow and write is the equivalent
of an outgoing flow. The subrule concerning secrecy labels
ensures that an entity only passes information to an entity
that is allowed to receive it, thus enforcing the “no read
up, no write down” policy of the Bell-LaPadula model. The
subrule concerning integrity labels enforces quality of data

during reading down and writing up, as proposed by Biba
[12]. It is therefore possible to represent traditional security
requirements as IFC constraints, although we use labels to
represent more general security contexts, e.g., integrity can
also indicate authority, such as to send an actuation command
to a vehicle or home automation device.

Example – secrecy: Suppose a hospital patient Bob, on being
discharged to his home, is issued with a heart monitor. Data
from this device is stored in his home system and also flows to
a process in the hospital’s system, which carries out an analysis
of his condition. Because Bob’s health data is private, the heart
monitor and data are labelled with S = {medical , bob}. In
order to receive this data, the hospital process’s S label must
also include the tags medical and bob.

Example – integrity: The hospital process is only allowed
to receive data from a hospital-issued device and to achieve
this is labelled I = {hospital-issued}. In order to send data
to the hospital process, Bob’s device and data must also be
labelled I = {hospital-issued}. Suppose Bob’s heart monitor
is capable of remote actuation, e.g. to change the sampling rate
if analysis detects a possible health problem. The device must
only accept actuation commands from authorised sources, e.g.
also labelled I = {hospital-issued}.

B. Creation of an Entity
We define A⇒ B as the operation of the entity A creating

the entity B. We have the following rules for creation:

if A⇒ B, then S(B) := S(A) and I(B) := I(A) (2)

That is, the created entity inherits the labels of its creator.
Examples are creating a process in a Unix-style OS by fork
and creating passive data such as files or messages.

C. Privileges for Managing Tags and Labels
Certain active entities (e.g. an application manager) have

privileges that allow them to modify their labels. An entity has
two sets of privileges for removing tags from its secrecy and
integrity labels (P−S for S and P−I for I), and two sets for
adding tags to these labels (P+

S for S and P+
I for I). That is,

for an entity A to remove the tag ts ∈ S(A), it is necessary
that ts ∈ P−S (A), similarly to add the tag ti to the label I(A)
it is necessary that ti ∈ P+

I (A).
For an entity A, a label X(A) (where X is S or I) and a

tag t, a change of the label is authorised if the following rule
is respected:

X(A) := X(A) ∪ {t} if t ∈ P+
X (A) or

X(A) := X(A) \ {t} if t ∈ P−X (A)
(3)

For example, in order to receive information from an entity
B, an entity A will need to set its labels (if it has the privilege)
such that the flow constraints expressed by the tags associated
with B are respected; i.e. such that the flow B → A respects
the safe flow subrules in rule (1). We propose the following
notation: for a process and its labels (A,S, I) (A,S′, I ′) is
the modification of the process labels following rule (3).

Only privileged processes can change their security context.
We envisage application instances running within a constant
security context and being unaware of IFC [2]. A privileged
application manager creates these instances, and privileged
processes are invoked transparently.

Example – declassification: Suppose the hospital that
receives health monitoring data from its patients at home
wishes to make this data available for research on the effi-
cacy of home monitoring. Before releasing such a data set
it must be anonymised, i.e. individual patients must not be
identifiable from the data. A process that carries out the
anonymisation must have the privilege to read the private
data before anonymisation; i.e. the input data set and the
process may be labelled S = {medical , private}. After
anonymisation, the process must reclassify the data with label
S = {medical , anonymised}. The anonymisation process
must therefore have the privilege to remove the tag (declassify)
private from its S label and add the tag anonymised before
outputting the data.

In the case where data needs to become more carefully
controlled and less widely available, e.g., after decryption, the
reverse process of reclassification would involve, e.g. adding
a tag private .

Example – endorsement: Endorsement usually involves
adding a tag to an I label. For example, a process might
receive data from the network, carry out a verification process
then output the data with tag valid data . Such a process may
be involved in data format conversion if non-standard data
came from a remote source. A similar endorsement process
can be used for many kinds of input data such as PhP
scripts, downloaded software, indeed, any input amenable to a
validation process.

In our hospital example, the patient may have received
some treatment in another hospital or clinic and have a
treatment record there, where the data format may differ. A
process is charged with checking the patient’s identity and
verifying the data, including reformatting. The data is then
output with tag valid data and can be safely processed within
the hospital domain.

Integrity tags may need to be removed after an anonymisa-
tion process, as the quality of data may have been degraded by
the process. For example, if detailed information is removed,
the data may no longer be proper to use as the source of an
actuation command.

D. Creation and Privileges
On creation, labels are automatically inherited by a created

entity from its creator (rule 2), but privileges are not. If the
child is to be given privileges over its labels, they must be
passed explicitly. We denote the flow generated by an entity

A giving selected privileges t±X to an entity B as A
t±X
↪→ B (for

example allowing t to be removed from S, would be denoted

A
t−S
↪→ B). In order for a process to delegate a privilege to

another process it must own this privilege itself. That is,

A
t±X
↪→ B only if t ∈ P±X (A) (4)

E. Conflict-of-Interest (CoI)
A policy maker may need to specify a CoI (or Separation

of Duty) between principals and/or roles [26], [27]. A CoI
may arise when a principal could give professional advice to
a number of competing companies. Separation of data access
may be enforced by a Chinese Wall policy [27]

We believe CoI support in IFC is unique to FlowK. We
define a set C of tags that represents some specified conflicting

interests. In order for the configuration of an entity A to be
valid with respect to C, rule (5) must be respected:∣∣∣(S(A)∪I(A)∪P+

S (A)∪P+
I (A)∪P−

S (A)∪P−
I (A)

)
∩C

∣∣∣≤1 (5)

That is, an entity is non-conflicting in this context if the set
of its potential tags (past, present and future) contains at most
one element from the set of tags within the related CoI group.
In detail, by potential tags we mean the tags in its current S
and I labels and those tags that it has the privilege to add to
S(A) (i.e. P+

S (A)) and to I(A) (i.e. P+
I (A)) or that it may

have removed from S(A) (i.e. P−S (A)) and from I(A) (i.e.
P−I (A)). CoI rules should be checked every time a privilege
is granted.

Example – Conflict-of-Interest: A CoI can arise when data
relating to competing companies is available in a system. In
a hospital context, this might involve results of analyses of
the usage and effects of drugs from competing pharmaceutical
companies. The companies might agree to analysis only if their
data is guaranteed to be isolated, i.e. not leaked to competitors.

The hospital may be participating in drug trials and want to
ensure that information does not leak between trials: suppose
a conflict is C = {Pfizer ,GSK ,Roche, ...} and some data
(e.g. files) are labelled PfizerData[S = {Pfizer}, I = ∅] and
RocheData[S = {Roche}, I = ∅]. The CoI described ensures
that it is not possible for a single entity (e.g. an application
instance) to have access to both RocheData and PfizerData
either simultaneously or sequentially, i.e. enforcing that Roche-
owned data and Pfizer-owned data are processed in isolation.

IV. MOTIVATING USE CASES
In this section we motivate the use of two-component

tags in FlowK2’s label model. Our model is designed for a
distributed system or cloud platform where there is likely to be
a large amount of user data stored with persistent labels in files,
databases, key-value stores, etc. In a company context, data
records may relate to individual employees; in a public health
context, data may represent the medical records of patients;
in an educational context, data may relate to students, staff
etc. Specifying and enforcing access to all, some specified
subgroup or only one data record of a given type is a universal
requirement, discussed in the literature on policy.

Suppose a principal is allowed access to a subset of
records, e.g. doctors may be able to access only the records of
the patients they are currently treating. Temporally separated
processes are likely, i.e. to deal with one patient’s records at a
time. Each time, current authorisation policy is enforced and
is translated into labels to ensure correct behaviour at runtime.
Note that as a doctor’s group of patients under treatment
changes, a lookup of current patients at the authorisation point
in the application will ensure that labels are created only for
current patients, selected at runtime from the entire database.

The first use case below arises from the need of certain
software to perform computations on all health records of
a given type, whereas other software is authorised only to
access records on behalf of a single individual. The second
considers a system log containing records from all running
applications relating to large numbers of principals. These
problems are akin to the role proliferation that motivated role
parametrisation in RBAC, as mentioned in §II.

We have solved these problems by making our tags more

〈medical , patient id〉

〈∗, patient id〉

〈∗, anonymised〉

〈statistics, anonymised〉

〈statistics, anonymised〉

〈private, patient id〉

Figure 1: ‘Big data’ Directed Graph Computation (as in Dryad
[28]) showing secrecy labels.

expressive to reflect the intended policy more accurately.
Also, this new tag structure correctly represents the trust
that should be placed in certain entities, according to PoLP.
We use two-component tags, where a tag is of the form
〈concern, specifier〉. We use 〈concern, ∗〉 to indicate all tags
of the specified concern and 〈∗, specifier〉 for tags of all
concerns with the given specifier. 〈∗, ∗〉 then indicates all tags
in some naming domain. In §V we present this label model
more formally.

A. Data Analysis
In the healthcare domain, statistical analysis of the medical

records of patients is needed for various purposes including
public health, environmental concerns, clinical practice etc. We
are concerned with the privacy and confidentiality of medical
data and will therefore discuss the construction of the IFC
secrecy label for a statistical analysis program.

In the standard atomic tag model a tag represents a single
security concern. To express the idea of Bob’s medical data, we
would use two tags bob data and medical data . The entity
carrying out the statistical analysis of the medical data would
then need to have not only the medical data tag, but also
a tag corresponding to every patient’s data, for rule (1) to
be satisfied. This makes the use of IFC infeasible for such
purposes: (1) The performance implications are significant.
We have shown [2] that the processing overhead induced by
the number of tags in labels is not insignificant (especially at
such a scale). (2) Enumerating “all” tags would be prone to
error as the database state changes, with records being added
and removed. (3) This entity would be over-privileged by the
PoLP, being able to receive any data labelled only with the
tag bob data although our intention was for it only to be
concerned with medical data . It would also be privileged to
declassify, see §III-C, over all the patients’ personal tags and
trusted not to leak information about any patient. An alternative
would be to define different tags for every category of user data
such as bob medical data , bob tax data , bob home data
and many more. The performance issues caused by huge
numbers of tags would still hold. Also, an entity running on
behalf of Bob could not simply have a label with a single tag
bob data but would have to enumerate all the particular types
of Bob’s data it could process.

The problems are solved by using two-component tags,

where a tag is of the form 〈concern, specifier〉. In Fig. 1,
we illustrate how such IFC tags can be used to constrain the
flow of data within a ‘big data’ computation graph. The first
computation phase aggregates medical and private information
belonging to individual patients. The second phase anonymises
these aggregates and the third generates statistical data from
the anonymised data.

In detail, suppose each input record has an S la-
bel containing a tag such as 〈medical, patient id〉 or
〈private, patient id〉. We express that the first phase pro-
cessing components can access all data belonging to a pa-
tient by including the tag 〈∗, patient id〉 in their S labels,
where ∗ indicates all records with specifier patient id . These
components output equivalently labelled data (§III rule (2))
which is input to the second phase components (also labelled
〈∗, patient id〉) for anonymisation. The anonymisers must
change their security context (see §III-C) in order to output
data labelled 〈∗, anonymised〉.

The third phase processes (also labelled 〈∗, anonymised〉)
input the anonymised data and carry out statistical analysis.
These processes must change their security context in order
to output data labelled 〈statistics, anonymised〉. Finally, the
anonymised statistical data is used, the results being output
without need of a further security context change.

By specifying for each task the expected input and output
security context and enforcing them in the operating system
and across machines, we are able to guarantee that no data
leakage can occur between concerns (e.g. from private to
medical) or between specifiers (i.e. patients).

B. Log Audit
Consider a system log comprising labelled records that

several active entities are able to access for different purposes.
A process concerned with digital forensics requires access to
the whole log to detect and investigate suspicious patterns
of behaviour. Applications, e.g. cloud tenants, and individual
users should be able to audit the use of their own data.

With the standard atomic tag model an entity performing
audit over all log records would need access to all relevant
concerns and specifiers: in the two-component tag model
〈∗, ∗〉. It would need declassification privileges over all those
data for the audit result to be readable as required, see §V. An
entity performing audit over data logs for specified applications
would need 〈application name, ∗〉 and again, the privilege to
declassify over all specifiers. The tag needed by the entity
performing audit on behalf of an individual over all their data
(from any application) would be 〈∗, person name〉. The entity
would need the privilege to declassify the output, see §V.

In this section we have given the intuition and motivating
examples for the two-component tag model of FlowK2. In
the next section we present the formal notation, extending the
standard atomic tag model.

V. TWO-COMPONENT TAG MODEL
A major aim for FlowK (our prototype cloud-IFC imple-

mentation using atomic tags [2]) was simplicity, for ease of
understanding and verification, and efficient enforcement. This
section presents the formal notation for the two-component
tag model (implemented in FlowK2), as motivated in §IV.
We will show that policy, particularly for large-scale data
processing, is expressed more concisely using the FlowK2 tag
model and is easier to maintain. Also, tag-checking overhead

is comparable for small-scale processing and is reduced for
large-scale processing.

We propose to decompose a tag t into a pair 〈c, s〉 with
c the concern of type C and s a specifier of type S . For
example, the pair 〈medical, bob〉 represent Bob’s medical
data. A statistical analysis over a set of patients’ medical
data is represented as 〈medical, statistical analysis〉 and
anonymised medical records as 〈medical, anonymised〉.

As we saw in §IV, a major requirement is to be able to
specify all data records of a certain kind without enumerating
all possible tags, as required by current models. Therefore
for any concern c and specifier s we establish the following
subtyping relation:

〈c, s〉

〈∗, s〉〈c, ∗〉

〈∗, ∗〉� �

��

That is, a tag t = 〈c, s〉 is a subtype of t′ = 〈c, ∗〉 and
t′′ = 〈∗, s〉 which are themselves subtypes of t′′′ = 〈∗, ∗〉. For
instance, 〈medical, bob〉 (Bob’s medical data) is a subtype of
〈medical, ∗〉 (medical data) and a subtype of 〈∗, bob〉 (Bob’s
data) which are each subtypes of 〈∗, ∗〉 (all data in the current
naming domain).

A. Changes to Flow Constraints
To adapt rule (1) from §III-A for the flow A → B, we

need only redefine the - binary relation between sets of tags
X and Y as follows:

X - Y iff ∀t ∈ X ∃t′ ∈ Y : t � t′ (6)

Together with rule (1), this entails that a flow A → B is
allowed if and only if for all secrecy tags of A there exists
a supertype in the secrecy tags of B and that for all integrity
tags of B there exists a supertype in the integrity tags of A.

Example – secrecy: The examples illustrating the atomic
tag model given in §III, relate to hospital patients being
monitored in their homes. We saw that the process receiving
Bob’s heart rate data, labelled with S = {medical , bob},
also needed to have the tags medical and bob in its S
label. This process would need a tag for every such patient
(S = {medical , alice, bob, charlie, donald , etc....}) and the
(large) set of patients’ tags would need to be kept consistent
with the current set of home-monitored patients. Instead, in
FlowK2, we propose to label the process S = {〈medical, ∗〉}.
This expresses the intended policy concisely and accurately,
without the need to maintain the current set of patients’ tags.
In the implementation, the tag matching overhead on every
system call is linear with the number of tags [2]. This overhead
is reduced by using the single 2D tag 〈medical, ∗〉.
Example – integrity: Consider a home control (domotic)
system. An entity A labelled I(A) = {〈actuator, ∗〉} is
able to send data (an actuation instruction) to an entity B
labelled I(B) = {〈actuator, alarm〉} or an entity C labelled
I(C) = {〈actuator, light〉}. The entity A could represent the
central domotic control system with B and C being actuators
in the house. In a patient monitoring context the controller
might be sending actuation commands to a variety of patient

monitoring devices, e.g., to start, stop or change the monitoring
intervals or thresholds. Since actuation affects the physical
world, including people’s health and safety, it is important that
the authority of the actuation command is established.

B. Changes to Privileges
Rule (3) from §III becomes (where X is S or I):

X(A) := X(A) ∪ {t} if ∃t′ ∈ P+
X (A) : t � t′ or

X(A) := X(A) \ {t} if ∃t′ ∈ P−X (A) : t � t′ (7)

We also add special privileges noted 〈c,∆〉, 〈∆, s〉 and
〈∆,∆〉 that allow removal only of the tags 〈c, ∗〉, 〈∗, s〉 and
〈∗, ∗〉 respectively.

The privilege delegation rule (4), becomes:

A
t±X
↪→ B only if ∃t′ ∈ P±X (A) : t � t′

Example – declassification: A process A, with the priv-
ilege P−S (A) = {〈medical,∆〉} and the label S(A) =
{〈medical, ∗〉, 〈medical, anonymised〉} is able to declassify
to S(A) = {〈medical, anonymised〉}, but does not have
the privilege to remove 〈medical, anonymised〉. The use of
∆ privileges therefore allows the trust placed in a certain
entity to be precise and is particularly useful when speci-
fying declassifier privileges. Without it, we would have had
only P−S (A) = {〈medical, ∗〉} and no guarantee that the
process would not declassify to S(A) = ∅ (also removing
〈medical, anonymised〉), thus allowing universal access to
the anonymised data, rather than to medical research processes
with the tag 〈medical, anonymised〉.
Examples – integrity label changes: A process A, with the
privilege P−S (A) = {〈actuator,∆〉} and the label I(A) =
{〈actuator, ∗〉, 〈actuator, alarm〉} is able to remove the tag
〈actuator, ∗〉 but not the tag 〈actuator, alarm〉. A process A,
with the privilege P−S (A) = {〈local,∆〉} and the label I(A) =
{〈network, ∗〉, 〈local, ∗〉} is able to remove the tag 〈local, ∗〉,
after endorsing local input but not the tag 〈network, ∗〉.

C. Changes to Conflicts of Interest
There are now three types of policy we must express: con-
straints applied to whole tags, to concerns and to specifiers.
We define three operations on a tag’s pair, the projections π1
in C , π2 in S and the identity function id:

π1 : C×S → C π2 : C×S → S
π1(〈c, s〉) = c π2(〈c, s〉) = s

(8)

We extend these operations to sets, such that:

π1 : ℘(C×S)→ ℘(C) π2 : ℘(C×S)→ ℘(S)
π1(T) = {π1(t) | t ∈ T} π2(T) = {π2(t) | t ∈ T}

= {c | 〈c, s〉 ∈ T} = {s | 〈c, s〉 ∈ T}
(9)

For an entity A we note the union of its labels and privileges:

SU(A)=S(A)∪I(A)∪P+
S (A)∪P−

S (A)∪P+
I (A)∪P−

I (A) (10)

A conflict of interest is denoted PCoI (f, C) where f is π1,
π2 or id and C is a set of conflicting tags. Rule 5 in §III-E
becomes:

∀PCoI (f, C), |f(SU(A)) ∩ C| ≤ 1 (11)

Here we note:

• {a, b, c} ∩ {∗} = {a, b, c};
• {〈a, b〉, 〈a, d〉, 〈c, d〉} ∩ {〈a, ∗〉} = {〈a, b〉, 〈a, d〉};
• |{∗}| =∞, |{a, ∗}| =∞ and |{∗, a}| =∞.
The conflict of interest rule: PCoI (π1, {medical, private})

means an entity can handle the concern medical or private but
not both. PCoI (id, {〈private, ∗〉}) means an entity can only
ever manipulate the private data of a single user.

Example – conflict of interest: Consider the example used in
§III-E on isolating application instances that access drug trial
data for different companies. If a new company was to use
the application, a new tag would need to be added to the CoI
group. For a rule applying to a more rapidly changing set this
could prove problematic.

Using the two-component model, we have application
instances labelled: [S = {〈drug ,Roche〉}, I = ∅], [S =
{〈drug ,Pfizer〉}, I = ∅] etc. and the CoI policy is expressed
as: PCoI (id, {〈drug , ∗〉}). This is simple to read and under-
stand (i.e. an application instance can manipulate information
for only one specifier of concern drug) and this policy will not
change over time as companies come and go.

D. Compatibility with Atomic Tags
Some tags function adequately as atomic tags, e.g.,

〈network-input〉 may be included in an integrity label to indi-
cate that input data should not be trusted. The tags 〈EU-data〉
and 〈US-data〉 can be used to enforce the geographical location
of stored data to allow laws and regulations to be enforced.
Such tags do not need to be two-component tags but can
conveniently be expressed as such, e.g. 〈input, network〉 or
〈location,EU〉. Policy may sometimes be conveniently ex-
pressed for such tags using ∗, but if ∗ is never used, our two-
component tag model degrades gracefully to what is effectively
a conventional atomic tag model since both components must
match for data to flow, as for two separate tags. Backwards
compatibility with policies defined for atomic tags, could be
achieved e.g. by a convention that the single tag should become
a specifier of a null concern in a two-component tag.

E. Is More General Tag Complexity Needed?
A major research question (§I) is “which aspects of access

control policies need to be embodied in IFC tags for contin-
uous, runtime, cross-application enforcement?” It is possible
to design tags that capture every aspect of e.g. parametrised
RBAC with environmental constraints [7]. But for IFC to be
deployed in practice it needs to be simple to understand and
evaluate and to impose minimal overheads due to management
and enforcement. Further work is needed on IFC label design
for specific (cross-application) use cases, but our experience to
date is that few tags are needed to capture legal/regulatory and
compliance requirements at runtime [4], [29] and many checks
need only be done at authorisation points in applications. In
this work we have shown the need to generalise tags for a
specific style of application that is central to cloud service
provision, i.e. large-scale data analytics.

VI. EVALUATION
Our IFC platform comprises a local OS IFC enforcement

system [2] and a messaging middleware for inter-process
communication [30]. Above these components it is possible
to build a PaaS (and by extension SaaS) platform as discussed
in [2], [3]. Performance evaluation of FlowK was carried out

0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

Figure 2: Performance comparison, normalised over FlowK with
label size 0, for unmonitored and 0-100 tags: FlowK (cross), FlowK2
compatibility mode (circle), FlowK2 * policy (square).

on a quad-core 2.2Ghz Intel i7 with 6GiB of RAM running
Fedora 20 (kernel version 3.14). Our aim here is strictly to
compare the impact on performance of the two-component tag
model compared with atomic tags and not to evaluate a specific
implementation, already available in [2].

Suppose a data analysis worker needs to be given access
to the data belonging to several users (see §IV). We assume
each user’s data is uniquely labelled. To run under IFC, the
number of tags needed by the analyser increases linearly with
the number of users.

First, we run the atomic tag model’s IFC constraints algo-
rithm over an increasing number of secrecy tags: users would
have data labelled S = {medical, alice}, S = {medical, bob}
etc. and the analysing process S = {medical, alice, bob, ...}.
Secondly, we run the two-component tag model in atomic
tag compatibility mode (see §V-D); i.e. the medical tag
is translated as 〈∅,medical〉 and personal tags as e.g.
〈∅, alice〉 etc. Therefore the analysing process is labelled
S = {〈∅,medical〉〈∅, alice〉, 〈∅, bob〉, ...}. Finally, we use the
full power of our proposed two-component tag model. That
is, the data to be analysed is labelled S = {〈medical, alice〉}
etc., and the analysing process S = {〈medical, ∗〉}.

The normalised overhead measured for each of the above is
shown in Fig. 2. We take an analysis process with a label size
varying from 0 to 100 tags, the data label is taken from the tags
present in the process’s label. We repeat the operation 100,000
times and average the result. We see clearly that when using
the {∗} specifier in policy, the performance is not dependent
on the number of users. This is extremely important in a cloud
environment where the number of tags required to analyse user
data could scale to millions.

As discussed previously and presented in [2], there is
a cost to security interposition that is not affected by the
complexity of the policy to be enforced. The worst case
complexity of the atomic tag policy algorithm is O(n). The
worst case complexity of our two-component tag model is
O(n2). However, we have seen that in scenarios when label
complexity has an impact on performance (i.e. the number of
tags n is high), the two-component tag model will most likely
reduce the number of tags necessary to express the policy.

In practice, IFC would be deactivated or data aggressively
declassified in order to perform such analyses when using an
atomic tag model. Indeed, the management of such a policy for
an existing list of user-associated tags would rapidly become
impossible for services with a large user base, without con-
sidering performance issues. Our proposed model allows such

operations to remain controlled by IFC with good performance,
simple policy management, and with control over where the
output of such analyses flows.

VII. CONCLUSION AND FUTURE WORK
The feasibility of IFC has been demonstrated in prac-

tical systems: in the database domain [25], [31], for web-
applications [32], for cloud-service composition [16], within
operating systems [2], [33], across distributed systems [30],
[34], for PaaS [3], for networks [35] and for hypervisors
[36]. It has been shown that, with careful design, IFC does
not require changes to cloud tenant applications [2], [17], but
would require some engineering effort by the cloud provider.

The benefit of providing IFC as part of cloud services is
that IFC supports both application isolation and data sharing
between applications as required. Cross-application data shar-
ing, as opposed to strong isolation, is of increasing importance,
particularly when cloud services form part of IoT architectures.
As clouds become akin to utilities that provide computing
services, proof of compliance with regulations and contracts
will become necessary. IFC naturally provides audit at a
meaningful data-specific level, rather than via system logs.

Previous IFC implementations have followed the standard
atomic tag model which is simple to express and enforce, but
is infeasible for use in large-scale data analysis, where the
number of tags required to enforce individuals’ privacy scales
with the number of entities to be processed. For large-scale
cloud data processing, only limited SELinux-style IFC [17] or
taint tracking has been attempted [18] to date. In this paper, we
have shown that a simple extension of the standard IFC model
to two-component tags allows IFC to be used for large-scale
data analysis, with equivalent (or improved) performance and
enhanced policy expression and maintenance.

ACKNOWLEDGEMENT
This work was supported by UK Engineering and Physical

Sciences Research Council, grant EP/K011510. We acknowl-
edge the support of Microsoft through the Microsoft Cloud
Computing Research Centre.

REFERENCES
[1] C. J. Millard, Ed., Cloud Computing Law. OUP, 2013.
[2] T. F. J.-M. Pasquier, J. Bacon, and D. Eyers, “FlowK: Information

Flow Control for the Cloud,” in 6th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, 2014.

[3] T. F. J.-M. Pasquier, J. Singh, and J. Bacon, “Information Flow
Control for Strong Protection with Flexible Sharing in PaaS,” in IC2E,
International Workshop on Future of PaaS. IEEE, 2015.

[4] T. Pasquier and J. Powles, “Expressing and Enforcing Location Require-
ments in the Cloud using Information Flow Control,” in IC2E Interna-
tional Workshop on Legal and Technical Issues in Cloud Computing
(Claw’15). IEEE, 2015.

[5] K. Hon, C. Millard, C. Reed, J. Singh, I. Walden, and J. Crowcroft,
“Policy, Legal and Regulatory Implications of a Europe-Only Cloud,”
Queen Mary University of London, School of Law, Tech. Rep., 2014,
accessed: 30th April 2015. [Online]. Available: http://papers.ssrn.com/
sol3/Delivery.cfm/SSRN ID2527951 code1577160.pdf

[6] T. Pasquier, B. Shand, and J. Bacon, “Information Flow Control for a
Medical Web Portal,” in e-Society 2013. IADIS, 2013.

[7] J. Bacon, K. Moody, and W. Yao, “A Model of OASIS Role-based
Access Control and its Support for Active Security,” ACM Transactions
on Information and System Security (TISSEC), vol. 5, no. 4, pp. 492–
540, 2002.

[8] J. Singh and J. Bacon, “On Middleware for Emerging Health Services,”
Journal of Internet Services and Applications, vol. 5, no. 6, pp. 1–34,
2014.

[9] S. Pearson and M. C. Mont, “Sticky Policies: An Approach for
Managing Privacy across Multiple Parties,” Computer, vol. 44, July
2011.

[10] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, no. 5, pp. 236–243, 1976.

[11] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathemat-
ical Foundations and Model,” The MITRE Corp., Bedford MA, Tech.
Rep. M74-244, 1973.

[12] K. J. Biba, “Integrity Considerations for Secure Computer Systems,”
MITRE Corp., Tech. Rep. ESD-TR 76-372, 1977.

[13] A. C. Myers and B. Liskov, “A Decentralized Model for Information
Flow Control,” in 17th Symposium on Operating Systems Principles
(SOSP). ACM, 1997, pp. 129–142.

[14] A. Sabelfeld and A. Myers, “Language-based Information-Flow Secu-
rity,” Journal on Selected Area in Communication, vol. 21, no. 1, pp.
5–19, 2003.

[15] J. Bacon, D. Eyers, T. Pasquier, J. Singh, I. Papagiannis, and P. Pietzuch,
“Information Flow Control for Secure Cloud Computing,” IEEE TNSM
SI Cloud Service Management, vol. 11, no. 1, pp. 76–89, 2014.

[16] W. She, I.-L. Yen, B. Thuraisingham, and S.-Y. Huang, “Rule-Based
Run-Time Information Flow Control in Service Cloud,” in International
Conference on Web Services (ICWS). IEEE, 2011, pp. 524–531.

[17] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat:
Security and Privacy for MapReduce,” in 7th Symposium on Networked
System Design and Implementation. USENIX, 2010, pp. 297–312.

[18] S. Akoush, L. Carata, R. Sohan, and A. Hopper, “MrLazy: Lazy
Runtime Label Propagation for MapReduce,” in 6th Workshop on Hot
Topics in Cloud Computing (HotCloud). USENIX, 2014.

[19] X. Xie, I. Ray, R. Adaikkalavan, and R. Gamble, “Information Flow
Control for Stream Processing in Clouds,” in Symposium on Access
Control Models and Technologies (SACMAT’13). ACM, 2013, pp.
89–100.

[20] N. Kumar and R. Shyamasundar, “Realizing Purpose-Based Privacy
Policies Succinctly via Information-Flow Labels,” in Big Data and
Cloud Computing (BdCloud’14). IEEE, 2014, pp. 753–760.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47,
1996.

[22] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST Standard for Role-based Access Control,”
ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, 2001.

[23] L. Giuri and P. Iglio, “Role Templates for Content-Based Access
Control,” in Workshop on Role-based Access Control. ACM, 1997,
pp. 153–159.

[24] E. Lupu and M. Sloman, “Reconciling Role Based Management and
Role Based Access Control,” in Workshop on Role-based Access Con-
trol. ACM, 1997, pp. 135–141.

[25] D. Schultz and B. Liskov, “IFDB: Decentralized Information Flow
Control for Databases,” in European Conference on Computer Systems
(Eurosys’13). ACM, 2013, pp. 43–56.

[26] R. Sandhu, “Separation of Duties in Computerized Information Sys-
tems,” in Database Security IV: Status and Prospects, 1990.

[27] D. Brewer and M. Nash, “The Chinese Wall security policy,” in IEEE
Symposium on Security and Privacy, 1989, pp. 206–214.

[28] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59–72, 2007.

[29] J. Singh, J. Bacon, J. Crowcroft, A. Madhavapeddy, T. Pasquier, W. K.
Hon, and C. Millard, “Regional Clouds: Technical Considerations,”
University of Cambridge, Tech. Rep. UCAM-CL-TR-863, 2014,
accessed: 30th April 2015. [Online]. Available: http://www.cl.cam.ac.
uk/techreports/UCAM-CL-TR-863.pdf

[30] J. Singh, T. Pasquier, J. Bacon, and D. Eyers, “Integrating Middleware
with Information Flow Control,” in International Conference on Cloud
Engineering (IC2E). IEEE, 2015.

[31] D. Schoepe, D. Hedin, and A. Sabelfeld, “SeLINQ: Tracking Infor-
mation Across Application-Database Boundaries,” in 19th SIGPLAN
Conference on Functional Programming. ACM, 2014, pp. 25–38.

[32] T. F. J.-M. Pasquier, J. Bacon, and B. Shand, “FlowR: Aspect Oriented
Programming for Information Flow Control in Ruby,” in 13th Interna-
tional Conference on Modularity. ACM, 2014.

[33] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information Flow Control for Standard OS Abstrac-
tions,” in Symposium on Operating Systems Principles. ACM, 2007,
pp. 321–334.

[34] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing Dis-
tributed Systems with Information Flow Control,” in 5th USENIX
Symposium on Networked System Design and Implementation, 2008,
pp. 293–308.

[35] A. Alghothami and F. Kammuller, “Network Information Flow Control:
Proof of Concept,” in Systems, Man, and Cybernetics (SMC’13). IEEE,
2013, pp. 2957–2962.

[36] Y. Mundada, A. Ramachandran, and N. Feamster, “Silverline: Data and
network isolation for cloud services,” in HotCloud’11. USENIX, 2011.

