
OPUS: A Lightweight system for Observational Provenance in User Space
Nikilesh Balakrishnan, Thomas Bytheway, Ripduman Sohan, Andy Hopper

University of Cambridge, Computer Lab
{firstname.lastname}@cl.cam.ac.uk

Abstract

A variety of current provenance systems address the
challenges of provenance capture, storage and query.
However they require special setup and configuration,
do not capture all I/O operations and limit themselves
to specific specialised platforms. In this paper we pro-
pose the design of a data provenance capture and query
tool called OPUS. OPUS works entirely in user space,
is light-weight and requires minimum user intervention.
OPUS is based on a formal model for versioning prove-
nance objects that enables the succinct, complete repre-
sentation of I/O operations in a manner that abstracts it
from the details of the underlying operating system.

1 Introduction
The capture and use of provenance towards the goal of
reasoning about the lineage of data has recently become
a topical issue in computer science [2]. To this end, sem-
inal efforts such as PASS [3], StoryBook [4] and Bur-
rito [1] that focus on augmenting existing systems to sup-
port provenance have been well received.

While these proof-of-concept systems sought to
demonstrate that it is possible to retrofit, capture and
utilise provenance for useful purposes, it is our obser-
vation that one of the major barriers to the widespread
adoption of provenance in current environments is the
lack of a widely available, easily deployable, general pur-
pose provenance capture system. In this paper we out-
line our plans for OPUS (Observed Provenance in User
Space). OPUS is a lightweight general purpose prove-
nance capture tool designed to integrate into and operate
transparently in existing systems.

OPUS is inspired by previous work (in particular,
PASS). It differs from them, however, in the following
major dimensions:
Ease of Deployment: It is important that a general pur-
pose provenance capture system be deployable in pro-
duction systems without requiring operating system and
library changes. Previous systems have relied either on
custom kernels (e.g. PASS [3]) or bespoke kernel mod-
ules that communicate with specialised user space appli-
cations (e.g. StoryBook [4]). We observe that both ap-
proaches are unacceptable in production environments.

OPUS is designed to drop into existing systems and oper-
ate entirely in user space to transparently capture prove-
nance. It is expected that implementing OPUS entirely in
this manner will aid portability across different operating
environments.
Completeness: OPUS is designed to be complete in two
dimensions:

(i) Runtime context collection: Existing systems
record operations at system call level, associating them
with changes in file data to create relevant provenance
records. System call level records however disregard im-
portant runtime-specific context (e.g. library-to-system
call mappings, thread call stack etc), potentially useful
for facilitating construction of detailed provenance mod-
els. In OPUS we intend to explore the benefits of record-
ing runtime context with regard to provenance lineage.

(ii) Operation completeness: To support a wide range
of applications and provenance queries, OPUS captures
all operations that access or mutate file system entities.
In contrast, existing systems focus solely on major mu-
tating operations. It is expected that complete operation
capture will facilitate the creation of more detailed data
provenance models.
Formal Provenance Object Versioning: Data prove-
nance is commonly represented as state changes in en-
tities. Entities are typically represented as objects and
versioned in response to modifications by operations that
change their state. Versioning can thereby be defined
as the recording of object state at semantically relevant
epochs. The goal of versioning is to associate object state
with distinct, specific, time epochs in the object time-
line. In this manner, versioning assists in reasoning about
and optimising provenance queries.

Current provenance systems either perform no ver-
sioning or use one of two common versioning models:
“version on write” or “open-to-close”. Systems that per-
form no versioning associate all provenance for the en-
tity’s lifespan with a single object version. This can ren-
der provenance querying difficult to optimise as a po-
tentially large amount of data needs to be traversed for
queries. In contrast, versioning adds structure by segre-
gating data associated with different entity versions. Ver-
sioning allows us to easily and efficiently ignore irrele-
vant data when traversing the provenance graph thereby



potentially speeding up queries.
Systems that utilise “version on write” can exhibit

similar drawbacks as those that perform no versioning.
This is especially true for write intensive processes as ob-
jects are versioned on every write resulting in long prove-
nance version chains. Finally, there is no efficient way to
model non-mutating operations such as read or stat.

The “open-to-close” versioning model addresses some
of these drawbacks and provides some structure to the
provenance data. However, the inherent limitation within
“open-to-close” versioning is in its inability to express
operations other than open or close operations.

We posit that the problems described with these ver-
sioning models can be solved by formalising the side-
effects of operations with regard to object versioning.
To this end, we introduce Provenance Versioning Model
(PVM), an elementary model designed to enable prove-
nance systems to (i) formalise the versioning side effects
of any (possibly concurrent) noteworthy operations on
file system entities in a clear and consistent manner and
(ii) allow systems to abstract underlying I/O system se-
mantics to provide consistent versioning semantics re-
gardless of operating or file system.

2 PVM: A Provenance Versioning Model
This section outlines the provenance versioning model
which attempts to address the versioning problems out-
lined in the previous section. We present the challenges
facing the creation of an accurate and concise versioning
model with reference to specific use cases. Full details
of the model are available in a separate document1.
Concurrent access to a shared data resource: In
POSIX more than one process can access a given file
system entity simultaneously. How can provenance be
accurately represented in this scenario? To explain this
in detail, we study an example using the open-to-close
versioning model:

Let P1 and P2 be two processes accessing file F . Pro-
cess P1 first opens file F in write mode and obtains a
local handle to it. At a later stage process P2 opens file
F in write mode and also obtains a local handle. This is
illustrated in Figure 1(a), step 1, where both processes P1
and P2 are associated with file provenance object version
F0. Operations such as write, stat, etc., made on file F by
processes P1 and P2 result in provenance being associ-
ated with provenance object F0. Finally, when processes
P1 and P2 perform a close on their local handle to file
F , the provenance object F0 is versioned to F1 and F2
respectively as shown in Figure 1(a), step 2 and 3.

Maintaining links between the various provenance ob-
ject versions for file F allows us to easily traverse its
provenance history. This example shows that using open-
to-close versioning can be effective in representing sim-
ple concurrent access scenarios.

P1 F0 P2 1

2

(b)

?

U

P1

F0

P2

F1

1

2

3

(c)

h0

ϕh1

h2 F2

U

P1

F0

F1

1

2

3

(d)

h0

h1

h2 F2

P2

ϕG0

G1

F3 G2 4

L

P1 F0 P2

F1

F2

1

2

3

(a)

Using Open-to-Close

Unlink Using PVM Link using PVM

Process Local ObjectProvenance/Global Object

Figure 1: PVM case studies

We now try to use the open-to-close versioning model
for a more complicated scenario as shown in Figure 1(b).
This example is similar to the one in Figure 1(a) where
two processes P1 and P2 access file F concurrently.
However in step 1 of Figure 1(b), process P2 unlinks file
F while process P1 still holds a local file handle to file
F . This presents three problems, (i) The unlink opera-
tion causes the filename to disappear from the file sys-
tem, yet using the open-to-close versioning model there
is no clear way to create a new version for the provenance
object of file F . (ii) What happens to subsequent writes
made by process P1? From process P1’s perspective, the
local handle to file F is still valid and writes to the local
handle will return successfully. (iii) The unlink operation
does not act on a local handle to file F since the opera-
tion takes a file path as argument. How can operations
that do not explicitly act on file handles be represented in
the provenance graph?

To solve the first problem we chose to abstract the
operations that trigger versioning in the open-to-close
model i.e. open or close into a more generic form of
acquiring or releasing references to file system entities.
Thus acquiring or releasing a reference to an entity will
cause the provenance object for that entity to version. We
will later describe how this concept is applied to our un-
link example while explaining Figure 1(c).

The second problem manifests itself due to the exis-
tence of two perspectives, (i) a process’s local view of
the system and (ii) the global view of the system as seen
external to any process. A process can only perceive the
system through handles that it currently holds. We ex-
press this duality by introducing the concepts of local
and global objects. Therefore we effectively replace the
term ‘provenance object’ with ‘global object’. Local ob-
jects represent the provenance of process local handles
and allow us to associate provenance information to the
point of interaction between a file and a process. This
gives us the capability to associate provenance to a local
object even if it is no longer bound to a global object (as
in the unlink scenario).

Using the concepts introduced in solving the previous
two problems, the third problem can be solved as fol-
lows: operations that do not explicitly use local file han-



dles (e.g. unlink, rename, stat) are represented using a
virtual file handle referred to as φ. This virtual handle
is used to associate the provenance information for any
operation that does not normally utilise file handles.

We can now begin to describe the operations in Fig-
ure 1(c). In step 1, process P1 opens file F causing the
global object F0 to be created, this also creates a local
object h0 which is bound to the global object F0. In
step 2 the process P2 performs an unlink operation on
the file F causing a virtual handle φ to be created. The
unlink operation first acquires a reference to file F caus-
ing the global object F0 to version to F1 and binds φ
to F1. Then, the unlink operation removes file F from
the filesystem’s namespace. This causes local object h
to lose its binding to the file F although this will not be
reflected in the diagram until its next version. Finally the
unlink operation releases its reference to the file F and its
local object φ, thus causing F1 to version to F2. In step 3,
note that from process P1’s perspective the local object
h2 is still valid even though it is unbound from global
object F2. Any operation performed by process P1 on
the local handle to file F will now be associated to the
local object h2. Observe that the model has accurately
captured all operations and their versioning side-effects
in a complete and concise manner.
Hard and Soft links POSIX supports the concept of
hard and soft links. Representing the provenance for both
these link types poses two questions. (i) In case of a
group of names representing hard links to a file, should
the provenance information associated with any given
name in the group be associated to all members in the
group? (ii) Depending on the operations performed on
soft links, the provenance information generated could
be associated to either the soft link itself or to the canon-
icalised file the soft link references. How should our
model demarcate this provenance information and asso-
ciate it to the appropriate provenance objects?

In order to address the first question, we use the ex-
ample in Figure 1(d) and provide a step by step expla-
nation for the same. In step 1, process P1 performs an
open operation on file F , creating a global object version
F0. During step 2, filenames F and G are hard linked.
The provenance for the hard link operation is represented
by acquiring a temporary local object φ and binding φ
to global objects F1 and G0. The global objects F and
G are then marked as equivalent. The local object φ is
released which causes the versioning of global objects
F1 to F2 and G0 to G1 respectively. The side effects of
marking global objects F and G equivalent results in all
local objects associated to F being bound to G and vice
versa, thereby unifying the provenance data associated
with both F and G.

We see in step 3 that global object versions F2 and G1
are shown as being equivalent, represented by ↔. The

Query Tools

Connection 
Manager

Key/Value 
Database

Provenance 
Analyser

Storage Interface

Storage Interface

Query API

User 
Processes

Process 
Operation 

Logger

Event 
Orderer

Persistant 
Log

Back-end

Front-end

Storage SystemQuery System

Figure 2: OPUS Architecture

local object h2 used by process P1 is now bound to both
F and G. Finally as shown in step 4 when process P1
releases its reference to file F , global objects F2 versions
to F3 and G1 versions to G2.

Soft links, however, are selectively canonicalised de-
pending on operation. This selectivity allows us to cap-
ture and associate provenance information to the soft link
itself or to the underlying physical entity as appropriate.
For example the open operation applied to a soft link af-
fects the underlying object whereas the unlink operation
affects the soft link itself.

2.1 Operation Mapping
Based upon the objects, relations and conventions de-
scribed above, a formal model for provenance object ver-
sioning, PVM has been established. PVM semantics in-
volve a set of transformations that allow us to describe
the state of a system at any given time. We expect that
any operation can be defined in terms of these transfor-
mations. By defining operations in terms of these trans-
formations, we can give a clear and consistent definition
of an operation’s versioning behaviour. Using PVM sim-
plifies the design and implementation of provenance sys-
tems as only the transformations defined by PVM need
to be implemented rather than every potential operation.
The complete mapping of POSIX operations using PVM
semantics is available in the PVM mapping document1.

By using PVM we give ourselves a rigorous method
for defining versioning for any operation, express con-
current interactions between applications over a shared
data resource and have a consistent versioning semantic
regardless of the underlying platform.

3 OPUS Architecture
OPUS is a single host provenance capture and analysis
system for systems implementing the POSIX I/O inter-
face. Similar to PASS it captures changes to file system
entities. At its core OPUS employs our POSIX PVM
mapping. We have mapped 180 libC calls into our PVM
model giving us the equivalent of 54 system calls worth
of capture coverage, the full details of which can be
found in the PVM mapping document1.



OPUS runs entirely in user space thereby simplifying
its implementation and setup. It also allows for a faster
development cycle as there are a plethora of tools and
components available for user space application devel-
opment. OPUS is designed to always be active as a sys-
tem service and is expected to capture and analyse prove-
nance data for all applications in the system.

OPUS has two major components the front-end and
the back-end. The front-end is a thin light-weight library
that captures raw provenance data propagating it to the
back-end. The back-end receives raw provenance data,
logs, orders and analyses provenance information before
persisting it to the database as provenance objects. The
various sub-components in the front-end and back-end
can be replaced or extended due to their modular nature.

The system’s major components as illustrated in the
Figure 2 are described below:
Process Operation Logger: The process operation log-
ger component is a Linux DSO implemented in C++ in-
voked using the linker’s LD PRELOAD2 feature. The
preliminary version of the operation logger will over-
ride the application symbol table during startup enabling
OPUS to intercept and capture provenance at the C li-
brary level. In the future we expect to augment this func-
tionality to intercept statically compiled executables by
implementing binary rewriting at application load time.
Using this approach, provenance capture becomes unob-
trusive and seamless from a user’s perspective. Captured
information is relayed to the back-end for further pro-
cessing.
Persistent Log File: The Persistent log file stores raw
provenance data received from front-end processes by
persisting data to stable storage. The persistent log file
provides the ability to reconstruct provenance trails in
the event of system or process crashes. This is achieved
by maintaining periodic checkpoint indexes for rollback.
The persistent log file further enables offline processing.
Event Orderer: Maintaining a correct view of the or-
dering of events in the system is critical especially in
cases where two or more processes share entities. Thus,
the event orderer in the back-end ensures provenance
data being forwarded to the analyser is ordered correctly.
Provenance Analyser: The provenance analyser is the
heart of the OPUS back-end. It will take ordered prove-
nance data as input, apply the transformations defined for
a given operation as specified in our POSIX PVM map-
ping and convert the provenance data into provenance
objects and relations. The processed provenance data is
then persisted using the storage system.
Storage System: The storage system will use levelDB3,
a key/value database to store provenance objects. A stor-
age interface will be used by various components in the
system to store and retrieve provenance objects from the
database.

Query System: The query system will provide a query
API with a range of functionality to retrieve provenance
objects using the storage interface. Query tools ranging
from command line to GUI driven can use the query API
in order to access the database and retrieve provenance
information.

4 Open Questions
Deploying OPUS as an always-available aspect of sys-
tem infrastructure in production environments will re-
quire addressing the following open issues:
Intra-host Provenance Capture And Analysis: In or-
der to precisely capture data provenance in distributed
computing environments it will be necessary to capture
and analyse data provenance across hosts. We anticipate
achieving this will require extending the PVM to model
distributed systems such that intra-host data and analysis
algorithms can be extended across hosts.
Performance: The concept of OPUS as a core, concep-
tual component of system infrastructure has the implica-
tion that the spatial and temporal overheads of logging
provenance information needs to be minimised in order
to ensure adequate performance. To this end we are ex-
ploring the concept of hardware-accelerated provenance
capture.

5 Conclusion
In this paper we have provided the motivation for a
provenance versioning model (PVM). We also described
the high level design for our provenance system OPUS
which internally uses PVM semantics in order to version
objects.

Acknowledgements
We acknowledge George Coulouris, Lucian Carata and
Sherif Akoush for their advice on shaping this paper.

References
[1] GUO, P. J., AND SELTZER, M. Burrito: wrapping your lab notebook in

computational infrastructure. In Proceedings of the 4th USENIX conference
on Theory and Practice of Provenance (Berkeley, CA, USA, 2012), TaPP’12,
USENIX Association.

[2] KAVANAGH, J., AND HALL, W. Grand challenges in computing research
2008. In Grand challenges in computing research 2008 (United Kingdom,
2008), GCCR’08, UK Computer Research Committee.

[3] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U., AND
SELTZER, M. Provenance-aware storage systems. In Proceedings of the
annual conference on USENIX ’06 Annual Technical Conference (Berkeley,
CA, USA, 2006), ATEC ’06, USENIX Association.

[4] SPILLANE, R., SEARS, R., YALAMANCHILI, C., GAIKWAD, S., CHINNI,
M., AND ZADOK, E. Story book: an efficient extensible provenance frame-
work. In First workshop on on Theory and practice of provenance (Berkeley,
CA, USA, 2009), TAPP’09, USENIX Association.

Notes
1http://www.cl.cam.ac.uk/research/dtg/www/research/
2http://linux.die.net/man/1/ld
3http://code.google.com/p/leveldb/


