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Abstract. Outdoor location-based services are now prevalent due to
advances in mobile technology and GPS. Indoors, however, even coarse
location remains unavailable. Bluetooth has been identified as a potential
location technology that mobile consumer devices already support, easing
deployment and maintenance. However, Bluetooth tracking systems to
date have relied on the Bluetooth inquiry mode to constantly scan for
devices. This process is very slow and can be a security and privacy risk.
In this paper we investigate an alternative: connection-based tracking.
This permits tracking of a previously identified handset within a field of
fixed base stations. Proximity is determined by creating and monitoring
low-level Bluetooth connections that do not require authorisation. We
investigate the properties of the low-level connections both theoretically
and in practice, and show how to construct a building-wide tracking
system based on this technique. We conclude that the technique is a
viable alternative to inquiry-based Bluetooth tracking.

1 Introduction

Location tracking is fast becoming an essential service for mobile devices. Under-
pinning this trend is the ubiquity and accuracy of GPS. However, GPS continues
to struggle indoors due to the failure of satellite signals to penetrate buildings.
To address this shortcoming, there have been many attempts at indoor loca-
tion tracking, achieving a wide range of accuracies [1]. None of the proposed
solutions have been widely adopted, primarily due to the cost of deploying and
maintaining building-wide location technology. We have therefore become inter-
ested in finding a reliable location technology that is viable for quick deployment
across entire buildings using standard infrastructure. This rules out fine-grained
tracking systems such as the Bat system [2,3] since these require the retro-fit of
dedicated infrastructure and the need to issue building occupants with custom
tracking devices.1

From our experiences with indoor location in many forms over many years, we
know that even coarse location can provide useful location-aware applications.
The Active Badge project [4] was adopted by many at the University of Cam-
bridge because the room-level location it provided was sufficient to enable a key
1 Our experience with the Bat system is that users tend to forget to wear their Bats.

Additionally, there is a constant maintenance task in keeping Bats operational (espe-
cially with respect to battery power) and keeping the model of the world up-to-date.
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application: finding co-workers quickly. This simple application demands only
that users can be reliably located with room-level accuracy. The usage of that
system waned because users forgot to carry their badges, didn’t take respon-
sibility for replacing batteries, and found that tracking failures were common
(badges were easily obscured by clothing).

We are seeking a technique that will permit room-level tracking, both for
colleague searching and for building optimisation. With the latter, we are par-
ticularly interested in dynamically optimising heating, cooling and computing
devices based on room usage — see [5] for more details. To achieve this we must
satisfy the following goals:

– The system must be able to locate users to a small area, ideally placing them
in a single room.

– The system must be able to track users as they move to permit dynamic
optimisation on timescales of the order of seconds.

– The system must be able to track multiple users simultaneously.
– The system must be easily adopted by a very high percentage of building

users and it must avoid the issue of users forgetting to enable tracking in
some way.

In order to meet the final criterion, we wish to derive indoor location from
the mobile telephones that people carry. These devices are ubiquitous in many
societies, feature an increasing array of communications technologies, are carried
everywhere by their owners and responsibility for charging them lies with the
user.

To obtain in-building tracking using unmodified mobile telephones, we wish
to overlay location tracking on established indoor communications technologies.
Such tracking has been demonstrated using signals from the mobile telephony
networks, using WiFi and using Bluetooth. At present, positioning from the
telephony networks is too coarse for in-building location [6]. WiFi-based tracking
has received much attention in recent years [7,8], but it is not ideal for general
tracking. It is associated with high power demands, difficulty in set up and
maintenance, small market penetration of suitable (WiFi-enabled) handsets and
difficulty in convincing users to leave handset WiFi turned on.

Bluetooth has more potential. It was designed for low power devices and
almost all deployed handsets support it. For this reason, it has been a popu-
lar choice for other location tracking projects [9,10,11,12,13,14,15,16,17]. These
projects all locate mobile devices based on the results of constantly scanning for
mobile devices from fixed devices (‘beacons’), or continually scanning for beacons
from mobile devices. The disadvantages of tracking by continual scanning are
studied in detail in the following section, but the key issues are the length of time
each scan takes (up to 10.24s) and the requirement for the device being scanned
to be discoverable (this is a serious privacy risk in the beacons-scan-handsets
scheme [18] and is not even possible on many of the latest phones).

In this paper, we explore a novel way to track almost any Bluetooth device
(following a one-off registration) without making it discoverable. The remain-
der of the paper looks at quantifying the properties of Bluetooth that we exploit
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when tracking, before going on to consider the architecture of a large-scale track-
ing system based on the technique.

2 Bluetooth Tracking of Mobile Devices

Most Bluetooth tracking systems are proximity-based [19,20]. That is, if a user
can be contacted by a base station, then the user is coarsely located to the
base station position. Bluetooth was designed as a short-range communications
system with range of comparable size to a room (class 2 Bluetooth devices
have a nominal range of 10m in free space, less indoors), so proximity-based
location is simple to implement and relatively reliable. Bluetooth tracking has
also been demonstrated using the RSS measurement techniques first developed
for WiFi location systems [16,21], either based on radio propagation models
or ‘fingerprinting’ (matching current radio conditions to a previously-measured
radio map).

As mentioned in the previous section, most of these methods locate a de-
vice using the inquiry, or scan, mode of Bluetooth. In this mode, a base station
transmits a discovery packet on each of 32 radio channels. Devices set to ‘dis-
coverable’ respond to this packet, identifying themselves. However, the response
follows a random delay in order to minimise the chance of response collisions
when multiple devices respond. The result of this protocol is that an inquiry
must run for 10.24s to reliably detect all devices in range (and longer still if the
radio conditions are unfavourable).

Initially, many systems tracked mobile devices by continually issuing inquiry
packets from a network of fixed beacons. This has the advantage that no cus-
tom code need be deployed on the handset, but is often perceived as a privacy
risk since anyone can track a handset by creating their own network of bea-
cons. Additionally, handset manufacturers are increasing security by changing
the ‘discoverable’ mode to be a time-limited handset state; this is the case for
the iPhone and the G1. Thus more recent tracking attempts have concentrated
on the mobile handset scanning for the fixed beacons. This is more secure since
Bluetooth does not require that a scan packet identify its source address. How-
ever, it requires custom application code on the handset, will typically draw
more power, and requires a data communications channel to publish positions.
Regardless of these issues, both schemes suffer from a series of further problems:

High Tracking Latency. Since each scan can take 10.24s, these systems have
a very slow update rate which does not support dynamic tracking.

Devices in the System must be Discoverable. In order for a scan to locate
a nearby device, that device must be discoverable. It therefore announces
itself to the world, and becomes a target for hackers regardless of whether
it is a handset or a beacon.

Connection Disruption. Each scan must flood the Bluetooth channels in
turn, disrupting normal Bluetooth communications whilst scanning a
channel that is in use.
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Ideally, then, Bluetooth tracking would not involve the inquiry process nor
require any device to be permanently discoverable.

3 Inquiry-Free Tracking

Inquiry-based tracking detects proximity between handsets and fixed beacons
by continually scanning for all devices. We introduce the alternative notion
of connection-based tracking, whereby two specific devices are characterised as
proximate if one can connect to the other i.e. if beacon B can connect to handset
H then B and H are proximate.

In many senses this is notionally similar to an inquiry-based system where each
inquiry targets a specific device rather than every device. This has the obvious
disadvantage that multiple such inquiries would be needed to find a multitude of
local devices. However, the specificity also allows devices to be targeted quickly
rather than with extended broadcasts i.e. a single inquiry should complete faster,
allowing for multiple inquiries.

The key motivation for investigating connection-based tracking is that its
Bluetooth implementation can potentially address the inquiry-based shortcom-
ings we have already identified. The remainder of this Section is devoted to
characterising the relevant properties of Bluetooth that permit this connection-
based tracking. This characterisation is done both theoretically and experimen-
tally. For all testing we used a desktop Linux machine (running Ubuntu 8.04
with the BlueZ 3.26 Bluetooth stack) with an attached class 2 generic Bluetooth
2.0 USB dongle and a range of mobile telephones taken as representative of those
available on the market (see Table 1).

3.1 Bluetooth Connections

The Bluetooth standard defines three different types of connection which are
layered to form the Bluetooth stack. Only two of the three are appropriate for
connection-based tracking. The most fundamental is the Asynchronous Connec-
tionless Link (ACL). No more than one ACL can exist between any two Blue-
tooth devices at any given time, and it must be established before any other
connection can be made. An ACL will disconnect only when no higher-layer
connections have existed for a certain time (2s seems to be the preferred value
of current stacks).

Directly above the ACL is the Logical Link Control and Adaptation Protocol
(L2CAP) layer. This is a packet-based layer that provides guaranteed packet

Table 1. The test handsets used

Handset Description

T-Mobile G1 Android
Apple iPhone 3G iPhone OS 2.2
Nokia 6300 Series 40 3rd Edition, Feature Pack 2
Nokia N80 Series 60 3rd Edition (Symbian OS 9.1)



124 S. Hay and R. Harle

sequencing and a selectable degree of delivery reliability. Once established, an
L2CAP connection remains open until either end explicitly closes it, or the Link
Supervision Time Out (LSTO) expires. The LSTO is the time for which com-
municating devices are out of range before the L2CAP connection is destroyed.
The default LSTO is 20s in many stacks, but can be configured dynamically
per-ACL.

Above L2CAP sits the Radio Frequency Communications (RFCOMM) layer,
which is the reliable stream-based protocol used by most Bluetooth applications.
It represents the type of connection most people mean by ‘Bluetooth connection’.
It is almost never feasible to use this layer for connection-based tracking due to
authorisation requirements (see the subsequent Section) and we do not consider
it in any detail here.

3.2 Connection Authorisation

The biggest obstacle to connection-based tracking using RFCOMM connections
is the requirement for explicit pairing of every handset with every fixed beacon.
The pairing process is governed by the Bluetooth security manager and involves
creating a shared secret (a passphrase or PIN) between the two devices. Because
each pairing operation requires human input, it is not practical to pair every
handset with a large deployment of beacons.

There are some communications services, however, that do not usually re-
quire this level of authentication. In particular, the creation of an ACL and a
basic L2CAP connection is almost universally authorisation-free. Although the
resultant connections are limited in use for communications (they support little
more than low-level testing) they are sufficient for tracking usage because if they
are successfully established, the two devices must be within range of each other.
Additionally, the low-level tasks they do support, such as RSSI measurement
and L2CAP echo requests (directly analogous to the familiar ICMP ping packet
in IP), allow continual monitoring of the connection.

3.3 Connection Time

A connection-based tracking system will constantly make connections between
devices. The expected latencies in tracking will be dictated by the connection
times, which we seek to quantify here.

Bluetooth uses frequency hopping for channel robustness. Every device con-
tinually retunes its transceiver to one of 79 Bluetooth channels. The precise
sequence of changes is derived from its address and its local Bluetooth clock.
For two devices to communicate they must have the same hopping sequence and
phase at any given moment. To reach this state, Bluetooth defines a protocol
that the two devices must follow. The protocol is known as paging and involves
the master device sending search packets (‘pages’) addressed to the slave device
until it replies. It is useful to consider the behaviour of the master and the slave
separately, and Figure 1 may help in understanding the process.

Slave. The slave device periodically listens for page requests on a particular
radio channel for 11.25ms. A total of 32 channels are used for paging, and the
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Fig. 1. The paging process. A slave periodically listens on a single frequency for
11.25ms. When paging, the master pages the 16 A frequencies in turn, each cycle
taking 10.24ms. After Twindow seconds, it repeats using the B frequencies. In this ex-
ample, shaded cycles for the master indicate the cycles needed to connect to the slave
shown.

frequency the slave listens on is changed every 1.28s according to a sequence
also derived from its clock and its device address. If the slave does not detect
a page, it sleeps for set period of time, Tscan. The Bluetooth specification
defines three SR modes which a device can adopt and which provide a limit
on Tscan. These modes are R0 (Tscan = 0), R1 (Tscan ≤ 1.28s) and R2
(Tscan ≤ 2.56s). The default mode is R1, but some mobile devices adopt R2
to save power.

Master. With each page sent out, the master needs to estimate the frequency
that the slave will be listening on. The device’s address tells it the hopping
sequence, but it can only know the current sequence position by having an
estimate of the Bluetooth clock on the slave. Assume temporarily that it has
such an estimate. It then computes the most likely frequency to transmit
on. However, in the 11.25ms that the handset listens for, it has time to send
pages to 16 channels. Thus it chooses a set of 16 frequencies that are adjacent
in the hopping sequence and centred on its best estimate of the listening
frequency. This set of 16 frequencies is known as ‘train A’ and allows for
a degree of error in the estimate of the slave’s clock. It then cycles over
this train of frequencies continuously for some for Twindow ≥ Tscan seconds.
Assuming the slave is listening on a train A frequency, it will hear the page
and respond, implicitly syncing the two devices. On average this should take
1
2Tscan to complete.

How does the master get that important estimate of the slave’s clock? Nor-
mally it gets this by completing a lengthy inquiry process. If it does not have
an estimate (e.g. inquiry is avoided as in the connection-based technique) it
is forced to centre train A on a randomly chosen paging frequency. There is
now a 50% chance that the slave will not be listening on a train A frequency.
After Twindow seconds without a reply, the master repeats the entire process
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using the other 16 frequencies; ‘train B’. On average, the pager will have to
use train B half of the time. Thus, the average connection time is

< Tconn > =
1
2
.
1
2
Tscan +

1
2
(Twindow +

1
2
Tscan) (1)

=
1
2
(Tscan + Twindow) (2)

and Tscan ≤ 2Twindow.

So, for default values of Tscan = 1.28s and Twindow = 2.56s a successful page
will take 0.64s on average if we know have a good clock offset estimate between
master and slave, and 1.92s on average if not. In the worst possible case, a page
should complete within 5.12s, which is still twice as fast as an inquiry.

It should be noted that once a connection is established, the master can cache
the clock offset for the slave and use it for subsequent connections to the slave.
Over time, however, the clocks drift apart and the estimate will degrade.

None of this analysis, however, incorporates any setup overheads at the master
or slave once paging has succeeded. We expect there to be a systematic increase
to the connection times. Figure 2 shows the connection times to an Apple iPhone.
For each datum, a new connection was created and its creation time measured
using the UNIX C function gettimeofday() on the connecting system. The start
of each connection was spaced by 5000ms, chosen to be indivisible by 1280ms.

Since the iPhone has Tscan = 1.28s, each subsequent connection attempt
would start at a different point in the page scan cycle of the iPhone2. Ignor-
ing connection overheads, the connection time should move linearly between
zero (connection starts just as the slave’s page cycle does) and 1280ms (the
connection starts just after the cycle ends). We observed that the experimen-
tal connection times incorporate an additional offset of approximately 200ms,
which is the connection setup overhead. Additionally, one connection attempt
failed altogether, resulting in a connection time of two page slots.

Ideally, connection would be near instantaneous for connection-based track-
ing. With unmodified handsets, it is realistic to expect connection times to be
bounded by 1.28s. Until a connection is established or 1.28s has elapsed, a given
beacon will not be able to verify whether or not a handset is in range. The equiv-
alent figure for inquiry-based searching is 10.24s, although as noted previously,
multiple handsets can be queried simultaneously.

3.4 Disconnection Time

Bluetooth connections can be either be shutdown in an orderly fashion by either
end or severed when out of range. For the latter, a complete disconnection occurs
after LSTO seconds have elapsed without communication. However, we have
experimented with our test phones and found that when a connection was lost
2 Note that BlueZ cached the clock offset so we expect all connections to occur in

train A.
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Fig. 2. Experimentally measured L2CAP connection times for the iPhone

due to range, the connection did not re-establish itself if the handset re-entered
the radio range before the LSTO completed. This means that if a handset leaves
communications range of a host and returns within the LSTO, we may not be
able to ‘see’ it from the original host until the LSTO has expired. The LSTO
value can be set dynamically and it is logical to set this to a small value since
we expect frequent disconnection resulting from mobility.

3.5 Connection Monitoring

Once a handset and beacon are connected, a forced disconnection signals that
they are no longer co-located. Whilst this is useful information, it may be possible
to infer more by monitoring the connection quality.

In general there are three metrics used to monitor a Bluetooth connection: Re-
ceived Signal Strength Indicator (RSSI); Link Quality (LQ); and echo response
time. The standard does not require a Bluetooth chip to report the RSSI or LQ,
although most do. We assume that the Bluetooth chip of the beacons, where we
wish to measure the metrics, can be chosen to support these features.

The advantage of using the RSSI or LQ measurements are twofold. Firstly,
they do not involve sending extra data wirelessly and so do not consume power
at the mobile handset. Secondly, our experiences indicate that many manufac-
turers update the reported RSSI value at 1Hz or even faster, allowing for fast
monitoring of a link if so desired.

An alternative method to monitor the connection is to use the round-trip time
for an echo packet (c.f. ICMP ping). Table 2 shows the experimentally-measured
maximum rate of echo requests for each of our test handsets when close to the
sending host.

We have found the round-trip time to be of the order of 40ms for a strong
connection, so update rates faster than 1Hz are easily achievable. However, we
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Table 2. Experimentally measured ping rates for different handsets

Handset Echo process rate (Hz)

T-Mobile G1 13.00
Apple iPhone 3G 20.14
Nokia 6300 21.97
Nokia N80 20.26

note that this approach does require the handset to be more active and therefore
reduces its battery lifetime; we investigate this shortly.

RSSI/LQ And Proximity. Having established that the metrics can be read,
there is value in asking how useful they are. There is a growing body of work on
the use of RSSI values for location determination through fingerprinting tech-
niques [19,20,22]. We note that ideas described thus far could be used to gather
RSSI readings at a higher rate than the usual approach (using inquiries) and
so may improve those methods. However, fingerprinting requires detailed sur-
veying (and continual re-surveying) which does not meet our goals of minimal
maintenance and we do not pursue fingerprinting here.

There have also been many attempts to relate the RSSI or LQ values to
absolute distances with which to derive position estimates [21]. We feel that
such approaches have demonstrated only limited success to date and opt for
much coarser use of the RSSI.

We surveyed a series of offices using an iPhone to measure RSSI and a co-
located Bat [3] to simultaneously measure locations to within a few centimetres.
The traces from three hosts are shown in Figure 3. Figure 4 shows the observed
relationship between the reported RSSI and the distance from the fixed Blue-
tooth master, based on data collected for 10 different masters. Note that an
RSSI of -13 is actually a disconnection. Madhavapeddy and Tse performed fur-
ther studies of Bluetooth propagation in our offices using a similar technique
[23]. It is clear from Figure 4 that there is no deterministic relationship between
distance and RSSI, but that there is a qualitative trend (larger distances are
associated with more negative RSSI values). We simply use this trend to asso-
ciate a falling RSSI reading with a handset leaving the area, which is generally
sufficient for our purposes.

3.6 Battery Costs

Battery power is always a key issue for mobile devices. Providing any new func-
tionality such as tracking ability is useless if users disable it to save power. It is,
however, very difficult to accurately model the energy cost of the components of
a generalised handset. Instead we created a custom rig for the T-Mobile G1 and
Nokia N80 handsets that allowed us to accurately sample instantaneous power
draw at 1kHz. The apparatus involved a replacement battery connected to the
real one via circuitry to monitor the voltage and current, based on the design
used by Hylick et al. [24] to analyse hard drive energy consumption. We used



Bluetooth Tracking without Discoverability 129

(a) (b) (c)

Fig. 3. Experimentally measured RSSI values from three hosts, plotted against loca-
tions recorded using the Bat system

this rig to investigate the power draw associated with monitoring a connection
using either RSSI or echo response times.

The results are reported in Table 3, each given a unique test ID for reference
here. Tests 1–3 provide baseline power draws; tests 4–6 provide power draws for
continuous connection states; tests 7–15 provide power draws for discontinuous
state (e.g. the connection was created, an RSSI taken and the connection shut
down until the next update time). For all of these tests, we ensured that the
handset screen was powered off, no SIM card was in place, no other connections
were active and no applications (apart from any operating system requirements)
were running on the devices. The power draws were computed by averaging over
appropriate time periods (mostly 10 minutes).

The results are broadly as expected. A handset that is page scanning need
only take action every Tscan seconds, and then only for 11.25ms. Thus we ob-
serve only a small associated cost. Saturating a permanent connection with echo
requests (test 5) is very energy-intensive, whilst continually measuring its RSSI
lies between the two extremes (and equates to the energy cost of maintaining an
L2CAP connection).

When considering less frequent monitoring, instead of holding a connection
open it may be more energy efficient to connect, take the reading, and then
disconnect. Tests 7–15 concerned connection monitoring with such a model and
we observe that, within error bounds, there is little to choose between using an
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Fig. 4. Measured RSSI against euclidean distance from the host

echo packet or reading an RSSI. The main cost lies in creating and destroying
a connection, which is relevant to both metrics. These data show that if the
update period exceeds 5s, it is more efficient to break the connection and reform
it when it is next needed than maintain the connection. For period less than

Table 3. Experimentally measured power draws

Test ID Handset State G1 (mW) N80 (mW)

1 Idle 12.81 19.44
2 WiFi connected but idle 170.66 438.08
3 Bluetooth on, discoverable, unconnected 15.45 22.17

4 Bluetooth on, continually being scanned by host 16.07 31.80
5 Continuous Bluetooth echo at maximum rate 321.07 234.43
6 Continuous Bluetooth RSSI measurement 74.97 89.20

7 Bluetooth echo every 30s (with reconnect) 23.76 26.17
8 Bluetooth echo every 20s (with reconnect) 25.19 28.17
9 Bluetooth echo every 15s (with reconnect) 28.02 –
10 Bluetooth echo every 10s (with reconnect) 30.53 42.27
11 Bluetooth echo every 5s (with reconnect) 40.13 50.61

12 Bluetooth RSSI every 30s (with reconnect) 29.93 28.05
13 Bluetooth RSSI every every 20s (with reconnect) 35.86 29.93
14 Bluetooth RSSI every every 10s (with reconnect) 47.59 36.04
15 Bluetooth RSSI every every 5s (with reconnect) 75.72 51.88
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5s it is unlikely to be possible to disconnect since the underlying ACL does not
close with the L2CAP connection.

3.7 Connection Saturation

The Bluetooth specification states that a Bluetooth device can maintain up to
seven simultaneous connections to other devices. To reduce power consumption
and complexity, however, there are reports that some handset manufacturers
have reduced this limit in their handsets. We attempted to verify this, but were
unable to find a handset that did not support the full seven connections. We
speculate that handset capabilities are now sufficiently advanced to permit full
specification compliance without adverse impact.

4 A Tracking System

Having characterised the fundamental properties of Bluetooth in the context of
connection-based tracking, we now turn to the issue of exploiting these properties
to build a wide-area tracking system.

4.1 System Architecture

We assume a large building, within which a large number of inexpensive Class
2 Bluetooth radios are distributed. Each radio must be connected to a host
machine of fixed, known location and the host machines must be networked
together in some way. In most scenarios, we envisage simply adding a Bluetooth
dongle to desktop PCs, making deployment both quick and easy. We refer to
these fixed machines with Bluetooth simply as hosts.

A central system that can connect to any host maintains a database of handset
device IDs, their owners and any known properties of the handset (Tscan etc).
Each entry in the database is the result of a one-off registration of the handset
with the system.

The central system then maintains a model of where people are and uses
this to instruct hosts to monitor associated handsets at appropriate times. For
example, as a user left their office the system may instruct hosts at either end
of the corridor to monitor the handset in order to infer the direction in which
he or she went.

4.2 Distributed Clock Offsets

This system involves continually connecting and disconnecting hosts and hand-
sets and so it is extremely important to minimise the connection times. From
the analysis of Section 3.3, we seek to ensure that the host always incorporates
the handset’s current listening frequency within the paging train A. If only one
host was involved, this could be achieved by accepting a lengthy first connection
and thereafter caching the clock offset associated with that handset.

However, the connection/disconnection here involves many hosts, typically in
sequence. We propose that, once a host discovers the offset between its local
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Bluetooth clock and that of a handset, it distributes the offset to other hosts.
For this to work, each host must be able to estimate the offset between its
local Bluetooth clock and that of the handset. The estimate must be sufficiently
accuracy that the host predicts a listening frequency for the handset that is
within 8 frequency hops of the true value. This ensures that the true frequency
will be in train A.

The handset advances its listening frequency every 1.28s. Thus, hosts other
than the original may incorporate an error of up to 8 × 1.28 = 10.24s in their
clock offset and still connect using train A. Therefore distributing clock offsets
can be trivially achieved by using NTP to synchronise the system clocks of all
hosts, and having them report two offsets: the clock offset between their system
clock and their Bluetooth clock, and the offset between their Bluetooth clock
and that of the handset.

We verified this approach in principle. We first time-synchronised two desk-
top machines using NTP. We connected both machines in turn to a particular
handset and measured the offsets between the local Bluetooth clock and both
the handset clock and the local system clock. We were able to predict the offsets
of one machine given only the data from the other to an accuracy far greater
than was required to connect in train A. In practice, however, we have found
that the BlueZ code that permits specifying the clock offset to use for a partic-
ular connection is not yet functional. We believe, therefore, that it is justifiable
to assume that all connections take place within Tscan seconds, which gives an
expected connection time of 0.64 seconds in the default case.

4.3 Search

At its simplest level, this setup can be used to emulate an inquiry-based system
for a single user. A subset of hosts that represents the minimum set needed
to cover the entire building would simultaneously be instructed to connect to
the associated handset. Any successful host(s) then report back, allowing the
central system to localise the user. Those devices that are out-of-range and still
attempting to connect after localisation has completed can simply cancel their
paging, allowing the user to be localised quickly and the next update to begin.

Whilst this algorithm will localise the user significantly faster than an equiv-
alent inquiry-based system, it does not scale well with the number of users. An
inquiry-based system may only provide position updates every 10.24s, but it
handles multiple handsets simultaneously. We would expect a connection-based
system used in the manner described to be able to localise around ten handsets
in the time that an inquiry-based handset would localise almost all handsets.

We can start to address this shortcoming in two ways. The first is to use
the connection monitoring techniques of Section 3.5 to identify those users are
moving away from their nearest host (the current ‘home’ host) and who therefore
need to be tracked. From our previous analysis of people’s working habits we
know that the vast majority of workers will be sedentary at any given time [5]
and therefore the number of mobile users should be small enough to localise all
users within reasonable time-frames.
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The second is to limit the extent of search where possible. If, for example,
a user’s current home reported a very weak RSSI (indicating lost proximity)
t seconds ago, the only hosts that can reasonably observe him now are those
within vt of the reporting host, where v is the speed of the user. This type of
information permits simultaneous searching for different handsets known to be
in different building areas. This, combined with the fact there may be disjoint
subsets of hosts that completely cover any given region, should permit tracking
of many users simultaneously with update rates similar to that of inquiry-based
tracking. However, the system will struggle to cope with many users moving at
once or collected within a small area with few covering hosts. In such a scenario,
the update rate for tracking will degrade, but the system will self-heal when the
crowd disperses.

4.4 Bootstrapping

The discussion so far has ignored how a registered handset returning to the
building will get discovered before being tracked. We currently have two options:

Constant Round-Robin Polling. The obvious solution is to continually cy-
cle through all the registered handsets that are not being tracked and poll
them from a variety of hosts. Because a connection can take up to 5.12s to
connect (worst case), cycling through 100 registered handsets can take over
eight minutes to complete. Additionally, it places an extra load on hosts that
may be in use for monitoring tracked handsets, reducing update rate.

Out-of-Band Events. Our preferred solution is to use out-of-band events to
signal that a particular handset is likely to be in the building. These events
can be easily generated from computer system events (e.g. the associated
user logs in) and from building security (e.g. the user gains access to the
building by swiping their ID card). It may also be possible to infer presence
based on cell-ID from the mobile telephony network.

Additionally, we note that many people follow a daily routine which there is
potential to learn autonomously. Doing so would allow prediction of when a
user is likely to arrive, permitting for targeted polling of the subset of expected
handsets rather than all handsets.

4.5 Inverted System

There is, of course, the possibility to invert the system and have the handset
as the master, connecting to the hosts as slaves. This would require custom
software on the handset and a wireless data channel to receive a model of the
host positions and addresses. This has the advantage that no bootstrapping
would be necessary since the handset localises itself. However, care would be
needed to ensure that a given host was not saturated with connection requests
from a series of nearby handsets. Hence a degree of centralised control is still
likely to be needed.
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We note that such inversion is common for the inquiry-based approach be-
cause it permits the handset to localise itself and still remain anonymous. Unfor-
tunately, in the inverted connection-based model, whenever a handset connects
to a host it must explicitly identify itself and anonymity is broken. Given also
that paging is more power-hungry than page scanning, the inverted technique is
not compelling for connection-based systems.

5 Discussion

We believe we have demonstrated that connection-based tracking is a viable
alternative to inquiry-based tracking, although neither is ideal. We characterise
the advantages of connection-based tracking as:

Faster Update Rate. Connections can generally be established faster than a
scan can be completed. Connections can be monitored at a very fast rate.

Variable Update Rate. The rate can be adapted to suit the context of the
mobile device and preserve battery life. If, for example, we believe the user
to be sedentary, we can choose to reduce the query rate.

No Scanning. The lack of need for constant inquiries is a significant enhance-
ment to Bluetooth usage, security and privacy.

Privacy. Users retain their right to opt out of being tracked by switching off
Bluetooth on their handset.

There are, however, a number of drawbacks:

Devices must be Known. Connection establishment requires that at least
one party knows of the existence of the other in order that it can issue a
connection request; however, this convenience drawback is also a privacy
advantage.

Security Policies are not Universal. Not all Bluetooth security policies per-
mit L2CAP connections without authorisation. Similarly, not all Bluetooth
chips permit querying the connection metrics such as RSSI. However, such
queries are performed on the beacon’s Bluetooth chip, which we are free to
choose.

Connection Limits. Care must be taken to ensure Bluetooth limits on the
number of connections are not reached.

Table 4 compares connection and inquiry based tracking side by side.
Ultimately, Bluetooth was designed as a short-range wireless communications
protocol and as such it is unreasonable to expect it to provide ideal location
tracking. Nonetheless, both inquiry-based and connection-based tracking are at
least feasible, and both can be implemented without modifying handset software
or hardware, which is an important consideration.

In terms of security and privacy, we note that any handset with Bluetooth
turned on is likely to be trackable by the techniques in this paper if an observer
knows the Bluetooth address of it (this requires the handset to have trusted the
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Table 4. Comparison of inquiry-based and connection-based tracking
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Works on Unmodified Handsets Most Some Almost all
Requires Custom Handset Software Yes No Yes
Deployability Med High High
Requires Discoverable Handset No Yes No
Requires Separate Data Channel Yes No No
Location Update Frequency ∼0.1Hz ∼0.1Hz Varies (0-20Hz)
Supports Dynamic Update Rates <0.1Hz <0.1Hz Yes
Scalability Simple Simple Complex
User Privacy High Low Med–High
Handset Power Drain High Low Varies (Med)

third party at some point in the past). This means a third party can potentially
track specific handsets without their knowledge.

Looking forward, we believe that connection-based tracking will improve in
the short-term as handsets advance. Already we see handsets that incorporate
accelerometers (which could be used to infer movement or the lack of it, or
to dynamically update the monitoring rate). Similarly, advanced development
platforms for mobile devices are emerging and these will hopefully provide low-
level access to handset subsystems such as Bluetooth. This in turn will permit
handsets to be more active in the location process since APIs and behaviours
will standardise and applications will be easier to deploy.

6 Conclusions and Further Work

In this paper we have identified and evaluated an alternative to inquiry-based
Bluetooth tracking in the form of connection-based tracking. This form of track-
ing does not demand that devices be permanently discoverable (something which
is no longer possible on many mobile devices), nor that the mobile handsets are
modified in any way.

We have studied the properties of Bluetooth that enable connection-based
tracking both theoretically and experimentally and concluded that there is po-
tential for the approach. There is little doubt that inquiry-based and connection-
based tracking have their advantages and disadvantages (many of which do not
overlap). We recognise that neither makes the ideal tracking system, but both
have very little in the way of deployment costs, allowing the construction of large
testbeds. We intend to develop the tracking algorithms and evaluate them by
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deploying a connection-based tracking system across our building and encour-
aging many users of it.
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