
Movement Awareness for a Sentient Environment
Robert Headon

Laboratory for Communication Engineering
Department of Engineering, University of Cambridge, England

rph25@cam.ac.uk

Abstract— This paper describes a system that can observe,
recognise and analyse human movements, to provide this aware-
ness to context-aware applications. The movement recognition
and characterisation components of this sentient system are
described in detail. The system uses the ground reaction force to
classify and analyse movements in an non-clinical environment.
The signal is classified using statistical pattern recognition.
Equipped with knowledge of the movement, characterisation is
the process of analysing the ground reaction force to extract
parameters of the movement. The components of the movement
awareness system operate in a distributed computing environ-
ment.

I. INTRODUCTION

Active environments are populated with devices that can
sense, compute and communicate to provide information about
their surroundings to applications. A sentient system uses
sensing technologies in the environment, data processing and
supporting middleware to maintain a representation of physical
space in a world model, allowing shared perception between
computers and people [1]. Information from the model is
used by context-aware applications to change their behaviour
according to the physical space. Location awareness has long
been explored and motivated the development of many suc-
cessful location sensing technologies and applications. This
paper presents a new modality of awareness which allows
applications to include perception of human movement in their
operation.

In this paper movement is considered to be whole body, such
as a step, crouch, jump, rising to stand, and not transition such
as “moving backward”. Localised movement, such as waving
an arm, is considered to be a gesture. Movements can be
characterised for a more accurate description, e.g. the height of
a jump or distinguishing between left versus right foot during
a step, etc.

During movement the forces exerted on the environment
change. The force can be observed using a suitable sensing
system and used to classify movement patterns. This research
uses pressure sensors underneath a floor to observe the vertical
component of the ground reaction force (GRF). The GRF is
processed into feature vectors and Hidden Markov Models
(HMMs) are used to model the movement signals. These
models are used to classify movements, following which it
is possible to characterise the movement by analysing the
position and force information contained in the GRF vectors.

The processes that comprise the movement awareness sys-
tem operate in a distributed computing environment. The
sentient computing paradigm dictates that applications should

have ubiquitous access to awareness of the environment.
Distributed systems also allow flexibility in the location of
processing components, such as recognition. In this research
movements are represented as distributed CORBA objects.
There may be a large number of movement objects and
default servants are used to access the objects, providing a
scalable solution. Movement objects are persistently stored in
a repository.

Section II reports related work, considering approaches to
observing and recognising movement. Section III presents
an overview of the movement awareness system describing
the interactions between the processes involved. Section IV
exemplifies how movement affects the GRF and details the
development of the movement classifier. Section V describes
the repository and characterisation processes, including imple-
mentation, and considers jumping as a case-study. Section VI
concludes this paper.

II. RELATED WORK

Movement characterisation is an important technique in
clinical analysis. It is primarily a supervised process, using
the ground reaction force and manual recording techniques to
assess a movement, usually to diagnose an abnormality or to
appraise the rehabilitation of a patient. Clinical analysis has
different requirements, applications and operating environment
to a sentient system. Force plates are used to observe the
force exerted by the user to the floor. Each corner of the
force place sits on a load-cell, which are used to measure
the GRF in one, two or three dimensions. Commercial force
plates, such as Kistler [2], are expensive and unsuitable for
wide-spread deployment. A number of weight-sensitive floors
have been developed for deployment in active environments,
with different requirements. The Olivetti and Oracle Research
Laboratory (ORL) developed the Active Floor [3] to recognise
people using their GRF trace during gait. The system used a
custom array of nine force-plates, each 500 × 500 mm. This
work was later replicated at Georgia Tech using a different
feature set and a single force plate to model the GRF signal
during gait [4]. A large force plate (2400 × 1800 mm) has
been deployed to track a single moving person in an active
environment [5]. These systems use load-cells, which measure
the absolute force acting on the floor. VTT Information Tech-
nology developed a floor sensor using capacitive sensors that
respond to changes in the pressure rather than absolute force.
The floor is used to control immersive games [6] by sensing



the location of an individual player, or average location of a
group when there is more than one player.

Movement tracking has been an active area of computer
vision research for several years, and should be distinguished
from movement recognition. There are several approaches to
motion capture using vision; marker-based, edge detection and
motion-energy images. The latter technique is an interesting
untagged system for movement recognition. Motion-energy
and motion-history images are used to recognise movements
using temporal templates [7]. This approach represents motion
as changes between sequences of images and uses the patterns
of these changes to model a movement. Vision systems suffer
when occlusion or background movement is present, operate
in a limited workspace and tend to be resource intensive.

Accelerometers can be used to determine the angle between
limbs for biomechanical analysis. This requires careful place-
ment of the sensors and is a tagged, often tethered solution.
Wearable devices fitted with an accelerometer have been
demonstrated to decipher the user activity states of walking,
running, sitting or standing [8], [9].

A representation of physical space is maintained in a world
model, which allows shared perception of the physical world
between computers and people. The world model contains
information such as the the location and orientation of people
and objects, environmental conditions, device capability and
state, and perhaps a plan of the building. The SPIRIT [10]
project maintains a comprehensive model of the environment,
focusing on the location of objects and resource information.
The location and resource data are represented as a set of
persistent CORBA objects. These objects make up the world
model that is seen by applications. The Microsoft Easy Liv-
ing [11] system maintains a world model for an expected home
environment. The model focuses on geometry and location of
people and objects. They use pressure sensors to determine if
a person is sitting or standing as the occlusion of the chair
deteriorates the performance of their vision tracking system
and movement awareness may be a useful input to the system.
The objective of these systems is to maintain a model of the
physical world, allowing applications to use the physical space
as the interface with computers. Movement awareness is a new
modality for these world models.

III. THE MOVEMENT AWARENESS SYSTEM

This section describes the distributed components of a
sentient system used to recognise and characterise movements.
Figure 1 shows the component interactions. This middle-
ware layer enables all networked applications to access the
awareness of movements in the environment. All components
are implemented as CORBA objects. Communication is via
method invocations over the ORB, and a notification service
is used to communicate asynchronous events.

The system uses the Active Floor, which looks and feels
like a regular floor, to sense the GRF. The floor consists of
an array of load-cells beneath the floor to emulate an array of
force plates. The load-cells are connected to a data acquisition
device (DAQ) that samples the sensors at 1kHz and provides

the signal conditioning and A/D conversion required for strain
measurement, and is connected to a server. As the DAQ is
tightly coupled to the sensors of the Active Floor, which
is in turn distributed throughout the environment, the DAQ
is represented as a CORBA object and the sensor data can
be streamed over the LAN to other distributed applications
that process the data. The Ground Reaction Force Extraction
component takes the strain observations, and knowing the
arrangement of the load-cells, determines the magnitude and
location of the forces acting on the floor. These GRF vectors
can be used to track the location of an object on the floor and
for movement recognition and characterisation.

The Movement Recognition component processes streams
of GRFs. The first operation is to detect whether movement is
present, termed static detection. If a movement is present, the
magnitude of the GRF is processed into observation vectors
that are used in statistical classification of the signal. This
implementation uses HMMs and the HMM Toolkit (HTK) [12]
to implement the classification system. Observation vectors
are sent to the recogniser (HTKRecog), which returns a list of
results, i.e. the movements in the corresponding GRF stream.
The recognition component requests the Movement Repository
to create a movement object by invoking the appropriate
method and passing the recognition result and GRF vector.
The movement object is created and in doing so is intra-
characterised. A reference to the object (IOR) is returned.
The movement IOR and recognition result are presented as
a structured event and the OMG Notification Service [13] is
used to disseminate this event to clients.

The Movement Characterisation component seeks to relate
movements for inter-characterisation. This service listens to
movement events on the notification channel and compares
them to a list of previous movements to investigate if they are
related. If a relation is determined, the movements are inter-
characterised and attributes of the movement are updated. The
movement event is then re-sent to the notification channel to
notify clients that the movement has updated parameters.

The information generated by the system enables applica-
tions to respond to movement conditions and events in the
environment. One destination for the information could be
an existing world model, which acts as the mediating layer
between applications and the awareness of physical space. An
application could also use the information directly by receiving
movement events from the notification channel, accessing the
created movement objects through the default servants, and
observing the GRF if necessary. An example would be the
controller of a 3D first-person game which uses actions in the
real world and maps them to actions in the game [14]. When
a movement event, such as a jump, is received, the controller
causes the on-screen character to perform the same action.

IV. MOVEMENT RECOGNITION

This section describes the Recognition component of the
movement awareness system. An example is presented to re-
late the effects of movement on the GRF. The section continues
to specify the signal model and features used for classification.



���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Movement

Characterisation

Notification
Channel

HTKRecog

Movement 

IOR

Result + GRF

������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Active Floor

Ground Reaction
Force Extraction

Database

applications including:
Open and closed loop

Recognition
Movement

Movement event

Movement event Movement event

S
tr

ai
n

O
bservation

vectors

R
es

ul
t

Li
st

GRF

G
R

F

body = IOR

Server
Interface

DAQ

Access movement objects through
the default servants.

Default Servants

Repository
Movement

> computer games
> gym applications
> gesture recognition
> rehabilitaion
> fall detection for elderly
> ergonomics
> capturing experiences
> monitor user activity
> world model

Fig. 1. Components of the movement awareness system.

The model parameters are specified and performance of the
classifier evaluated.

A. The GRF and Movement

As body mass is short term fixed, the force experienced
by the floor is dependent on the acceleration of the body
acting upon it (treating the trunk as centre of mass). If
the GRF is less than body weight, then the weight of the
body is not being supported by the floor and this signifies
acceleration downwards. For example, when you crouch there
is a downward acceleration of the body and so the GRF will
be reduced. And conversely, when thrusting the body upwards
(as in a jump) additional force is required to propel upwards,
and this is experienced by the floor. The GRF for the crouch,
jump and drop-land movements is presented in Fig. 6.

B. Signal Model and Feature Selection

The statistical approach to pattern recognition represents
a pattern by d-features, viewed as a point in d-dimensional
space. Training patterns, defined from a large set of sampled
movements and captured under a range of conditions, are used
to determine the decision boundaries. The Hidden Markov
Model [15] is one type of statistical model and is chosen
for classifying the movements in this research. HMMs are
ideal as they implicitly model all of the many sources of
variability inherent in real movements, and are shown to work
well in practice. The duration of the movement is inherently
incorporated by the choice of HMM type (left-right model),
which has the property that as time increases, the state index
increases or remains the same. The duration is modelled by
the number of states and the state transition probabilities.

The choice of good features for time-series discrimination
is a fundamental step in statistical pattern recognition and

is a highly problem dependent task. Ideally features will
not be based on a person’s individual characteristics. The
addition of a new person would necessitate the training of
new models for each movement, and the addition of a new
movement would necessitate the training of a new model
for all the people. Futhermore the recognition process would
have many more models to evaluate which would degrade
performance. The underlying biomechanical process is similar
between individuals, in the normal case, and can be modelled
to classify movement. The major individual difference is body
weight, which scales the magnitude of the forces exerted
during movement. To eliminate this the GRF time-series is
normalised by body weight, determined during a period of
static. This results in an acceleration time-series which is used
in feature extraction.

The acceleration time-series is segmented into windows of
20 ms duration, i.e. 20 samples at 1kHz sample rate. Features
are extracted and represent this segment of the waveform. The
three primary features are the mean (x̄), the standard deviation
(s), and the slope (m). The mean provides information on
the intensity of the signal and is a simple description of
the underlying trend. The standard deviation is a measure
of the variation of the signal. The slope, calculated from
the acceleration time-series, captures the rate of change of
acceleration. The slope is that of a least-squares straight
line fit of the windowed data. These features (x̄, s, m)
represent a single window. Delta and acceleration (i.e. first
and second order regression) coefficients are appended to the
feature vector to add time derivatives between the windows.
The delta coefficients are computed from (1) for each of
the basic features (x̄, s, m), with ct representing the basic
feature to which the regression is applied. Applying (1) to the



computed delta coefficients yields the acceleration coefficients.
The feature vector is presented in Fig. 2, where xi represent
the normalised GRF data points of the window and y1 and yn
are the end-point values of the straight line fit in the window.

dt =

∑2
θ=1 θ(ct+θ − ct−θ)

2
∑2
θ=1 θ

2
(1)

C. Model Parameters and Performance

The movement classifier uses continuous density HMMs in
a Bakis-1 model configuration. This is a left-right arrangement
in which it is only possible to remain in the current state
or progress to the next. This form is chosen as it inherently
models the duration of the movement. It is necessary to
determine a suitable window size for feature extraction and
number of states for each model. An iterative search was
performed to determine these parameters, with the window
size evaluated in the range of 10-30 ms, and the number
of states ranging from 1-20. The models were trained using
embedded re-estimation. The window size was selected at
20 ms, and the number of states for the movement models
are specified in Table I.

Movement # States # Samples # Correct # Insertion
Crouch 11 102 102 1
Sit 6 34 34 0
Jump 8 102 102 0
Step 8 27 27 0
Rise to Stand 8 34 34 0
Drop-land 7 102 102 0
Static 1-2 (ergodic) 315 312 0

TABLE I

EVALUATION OF RECOGNITION SYSTEM.

Data not previously used for training the models is used to
show the performance of the classifier. Several minutes of new
GRF data were recorded and the movements were also video-
taped. Using the video recording the sequence of movements
was manually labelled. The GRF was put through the classifier
which generated a list of recognised movements. This list is
compared to the manual observation. Table I shows the number
of test sequences for each movement, together with the number
of correct identifications and insertion errors. An insertion
error occurs when a movement is incorrectly recognised as
being present when it was not physically performed. This
experiment is somewhat limited in the number of movement
samples and the performance should be considered an upper-
bound.

The results show that the classifier can correctly recognise a
sequence of movements and provides no information regarding
the alignment of the movement boundaries. Accurate boundary
marking is crucial for characterisation. Static detection marks
the start and end times of a movement period and consecutive
movements may occur (e.g. crouch into jump) in this segment.
The start and end times of these movements are determined
by the classifier. To show the alignment accuracy a new GRF
time-series composed of several movements was classified.

Figure 3 shows this GRF signal on which the movement
boundaries are indicated and the movements labelled. It should
be noted that the movements were segmented by the HMMs
alone and static detection was not used.

V. MOVEMENT CHARACTERISATION AND STORAGE

The result of classifying a GRF stream is a sequence of
movements. The GRF can then be analysed, with knowledge
of the movement type, to express features of the movement.
Additional parameters can be determined when considering
the relationship between movements and characterisation may
be performed several times for a movement. This section
describes the Movement Repository and Characterisation com-
ponents. The Movement Repository is both a factory for
creating movement objects and offers a persistent store for
movements. The Characterisation component implements a
technique for identifying the relationship between movements,
necessary for inter-characterisation. A case-study is presented
to illustrate the concept of movement characterisation.

A. Movement Repository

Processes in the distributed computing environment require
access to the attributes or characteristics of movements, which
are represented as CORBA objects defined in IDL (interface
definition language). IDL is platform neutral and has map-
pings to all major programming languages. Movements are
represented as objects, in preference to structures, as they
contain both data and methods, and inheritance in IDL is
only possible for interfaces, not structures. An IDL interface is
equivalent to a class declaration. There are common attributes
for every movement and it is desirable to use a movement base
class from which all subsequent movements are derived. This
approach also allows flexibility in defining new movement
types which may subclass other movements, for example a
horizontal leap or vertical jump may inherit from the jump
class. The IDL interface of the movement base class is
presented in Fig. 4. Within the body of an interface fields are
declared as attributes, with a type and name. Defined types,
i.e. types declared by the programmer, and basic types are
supported as attributes.

interface Movement
{

readonly attribute Timestamp time;
readonly attribute unsigned long duration;
readonly attribute Stabilogram stblgrm;
readonly attribute Location loc;
readonly attribute HTKRecog::Result recogResult;
void setNextMovement (in Movement m);
void setPreviousMovement (in Movement m);

};

interface Step : Movement
{

readonly attribute Phase heelContact;
// ...

};

Fig. 4. IDL definition for Movement and Step (partial) interfaces showing
inheritance.



Mean Standard Deviation Slope 1st Diff. 2nd Diff.

x = 1
n

∑n
i=1 xi s =

√∑n

i=1
(xi−x)2

n m = yn−y1

n delta× 3 acceleration× 3

Fig. 2. Feature vector.

0 2000 4000 6000 8000 10000 12000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1 − Static (feetonly)

2 − Rise to stand

3 − Static (stand)

4 − Crouch

5 − Jump

6 − Static (noload)

7 − Dropland

8 − Static (stand)

9 − Sit

10 − Static (feetonly)

1 2 5 6 9

milliseconds

7 83 4 10

no
rm

al
is

ed
 G

R
F

Fig. 3. Labelled recognition showing movement boundaries.

The Movement Repository provides an interface to allow
distributed processes to create a movement object. An object
is created by invoking createMovement(. . . ) on the repository,
passing the recognition result and GRF time-series, which
returns the object reference (IOR) for the newly created
movement. The method examines the recognition result and
instantiates a movement object of the correct type. The GRF
is used to intra-characterise the movement in the constructor.
The Movement Repository also provides persistent storage of
movement objects, and it is necessary to uniquely identify each
object using the time and location of the movement. This URI
functions as the primary key for the tables in the movement
database, and also forms the ObjectID part of the IOR to
identify the object in the portable object adaptor (POA). This
is necessary for implementing the default servants.

In this implementation movement objects do not have their
own servants and instead default servants provide access to
the objects. Default servants can be used where objects are
not required to have their own servants. The scalability aspects
of this cannot be overemphasised as they provide the ability
to store a very large number of objects in a fixed about
of memory. There is one default servant for each class of
movement, and one POA for each default servant. The state
of the object, e.g. attributes, are stored in a database, using
the URI as the primary key. The default servants use the
PortableServer::Current interface to extract the URI for the
movement from the ObjectID, thus identifying it. The servant
can then identify the required record in the database and access
the attributes of the movement. For example a client wants to
retrieve information on the heel-contact phase of a step and

requests the attribute from an object reference. This request
is in fact processed by the default servant that represents
and services requests for all step objects. The default servant
extracts the URI for the movement from the ObjectID. It then
uses a wrapper class to generate the SQL command required
to retrieve the record from the database and also to convert
the data stored in the field to the appropriate CORBA type,
including defined types. The result is returned to the caller.
This operation is transparent to the client which simply invokes
operations on an object reference.

B. Implementation of the Movement Repository

The Movement Repository is implemented in C++ using
omniORB4 and a mySQL database for the storage of objects.
omniORB is a high performance ORB and version 4 has
support for the PortableServer::Current interface, necessary
for implementing default servants. omniORB also provides a
mechanism for serialising defined types allowing them to be
stored in binary fields of a database. mySQL was chosen as
the database primarily as there was an existing installation at
the laboratory, and it is freely available, although any database
capable of storing binary data would suffice.

Each movement is specified as an interface in an IDL
module. This specification is parsed to generate the code (SQL
and C++) required for the specification of tables, creation and
updating of table records, and implementation of the default
servant attribute accessor methods.

A database table definition is required for each interface.
The columns of the table correspond to the attributes of the
interface, and the rows correspond to the movement objects.
The columns have suitable mySQL types to store the attribute



types specified in the interface. IDL basic types are mapped to
mySQL basic types, and defined types, i.e. those declared and
defined in that or a related module, are serialised and mapped
to BLOB (binary large object) types in mySQL. The BLOB
type can hold a variable amount of binary data. The defined
types are serialised using cdrMemoryStream, proprietary to
omniORB 1. Each table also has a URI column which is used
to identify the movement and is the primary key. Inheritance
is also supported and is described using an example. If Step
inherits from Movement, then for each row in Step table, there
is a corresponding row in Movement table, with the same value
in the URI field. The IDL module is parsed to generate the
table definitions in SQL.

The IDL module is again parsed to generate the appropriate
SQL statements to insert, retrieve and update records in the
database. Helper functions are used to convert defined types to
and from serialised form, and to apply database specific escape
characters for binary data storage. These helper functions also
convert from mySQL types to the appropriate CORBA types.

A default servant is specified for each movement interface.
In this system the primary role of the default servants is to
provide access to the attributes of the movements stored in
the database. Again the IDL module is parsed to implement
the accessor functions for each attribute in the interface. The
functions use a helper class that allows them to indirectly
access records of the database and have the helper function
query the database and convert from the mySQL type to the
appropriate CORBA type. The default servant simply provides
a pointer to the database, table name (from the IDL interface
name), URI for the movement, and the attribute name. Figure 5
shows a piece of C++ code used to retrieve the heel-contact
phase from a step object. This code is automatically generated
by parsing the Step interface defined in IDL.

C. Inter-movement Characterisation

Analysing a movement in isolation provides some character-
istics, but there is a wealth of information contained between
movements. The role of the Movement Characterisation com-
ponent is to identify relationships between movements to sup-
port inter-movement characterisation. Movement objects can
be informed of their next and previous movement relationships
and use this information to update their attributes accordingly.

It is non-trivial to identify movement relationships when
the system operates in stand-alone mode. The identity of
the person that generated the movement is unknown. Some
systems can identify people using the GRF during a step [3],
[4], [16], but this is restricted to one movement, under certain
circumstances and requires many training patterns. It is not
believed that all movements can be used to identify a person,
and the system would require a significant number of training
patterns for each movement for each person. A high-resolution
location sensing technology such as the Active Bat [17] could
be used to identify who generated the force by considering the
respective location of the person and the force. The system

1c.f. MemBufStream in previous versions of omniORB.

could use this information when available, but a solution to
the problem of identifying related movements in stand-alone
mode is sought. The Movement Characterisation process uses
a set of predictions, generated for each movement, to identify
a relationship between movements.

The Movement Characterisation service consumes move-
ment events. These events consist of the recognition result,
presented in structured fields, and an object reference to the
movement. The service stores object references in Movement-
Container objects that hold a list of related movements and
the prediction set. These predictions are the set of feasible
proceeding movements in terms of time, type, position, direc-
tion and movement specific attributes. When a new movement
event arrives it is matched to the prediction set in each
container to see if a feasible relationship exists. If the new
movement is related then it is added to the corresponding
container and the movements already in the container are
subsequently re-characterised. An event is sent to notify that
the movement object has been updated and a new set of predic-
tions are formed. These predictions can also provide feedback
to the movement recognition and GRF extraction components.
The containers self-destroy when no more feasible movements
are possible, e.g. when the maximum time to the next feasible
movement is exceeded.

D. Case-study: Jumping

A case-study is presented to illustrate the GRF for a set of
related movements and to indicate some of the characteristics
that can be determined during the jump movement. The
interested reader is referred to [18] for further information
on characterising the jump and other movements.

The three movements of crouch, jump and drop-land are
combined in this description as they have a logical association
when considering a jumping movement. Notably, a person
must lower their body by hip and knee flexion to generate
enough potential to leave the ground with sufficient velocity
to reach a height (greater than ground height), despite the
acceleration due to gravity. A drop-landing is common after a
jump.

The GRF for a jumping movement was recorded and Fig. 6
presents the magnitude and position traces of this recording.
The sequence of movements includes crouch, jump and drop-
land. Temporal parameters are computed from the magnitude
of the GRF and the position component of the GRF yields spa-
tial parameters. The magnitude is used to determine the phases
of the jump movement, i.e. thrust, take-off and flight. The first
two phases can be fully specified during intra-characterisation,
with the duration of the flight phase remaining unspecified or
estimated until the corresponding drop-land has been observed
and related. The height of the jump can be determined by the
duration of the flight phase, or by the amount of force exerted
during the thrust phase. The distance of the jump can be
computed as the distance between the start position of the jump
and the end position of the drop-land. A line of progression is
defined between these two points and indicates the direction
of the movement. There are two classes of jump: vertical jump



inline virtual CHAPS::Phase heelContact()
{
return getUserField<CHAPS::Phase> (db, ‘‘Step’’, getMovementURI(), ‘‘heelContact’’);

}

Fig. 5. Snippet of auto-generated C++ code taken from the Step default servant showing the call to retrieve an attribute from the database.

0 500 1000 1500
100

120

140

160

180

200

220

240

260

280

300

Jump distance

0 500 1000 1500 2000 2500 3000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

no
rm

ali
se

d G
RF

milliseconds

mm

mm

In-flightJumpCrouch Drop-land

Crouch

Jump
Drop-land

Line of progression

Ground

Jump
height

Thrust Take-off FlightPhases:

Fig. 6. Jump characterisation: the jump phases and magnitude and position of the forces during the crouch, jump and drop-land movements.

or horizontal leap. This jump movement is determined to be
a horizontal leap by considering the jump distance.

VI. CONCLUSION

Movement awareness is a new modality to the sentient
computing model and enables the development of context-
aware applications that respond in real-time to human move-
ments. This paper presents an overview of the distributed
components and their interactions that comprises the move-
ment awareness system. The concept of movement recognition
and characterisation is introduced and their operation and
implementation is described. The movement classifier is shown
to correctly identify a set of whole body human movements.
The development of the characterisation process resulted in a
system of default servants and persistent storage of CORBA
objects. This approach provides a scalable solution to manage
large numbers of movement objects. The majority of the
default servant and repository code is auto-generated from

IDL definitions and the same process can be applied to other
objects with specified IDL interfaces. It is advantageous to
expand the set of movements that can be recognised and
characterised. Specifically the recognition and characterisation
of the complex related movements involved in the lifting
task presents a useful measure of assessing the technique and
risk of lifting in manual materials handling, the cause of the
majority of work related back injuries.

ACKNOWLEDGEMENT

The author thanks Andy Hopper, Rupert Curwen, AT&T
Laboratories Cambridge, the Cambridge European Trust and
Selwyn College.

REFERENCES

[1] A. Hopper, “The Clifford Paterson Lecture, 1999 Sentient Computing,”
Phil. Trans. R. Soc. Lond., vol. A (2000), no. 358, pp. 2349–2358, 2000.

[2] “Kistler force plate,” http://www.kistler.com/.
[3] M. Addlesee et al., “The ORL Active Floor,” IEEE Personal Commu-

nications, vol. 4, no. 5, pp. 35–41, October 1997.



[4] R. J. Orr and G. D. Abowd, “The Smart Floor: A Mechanism for
Natural User Identification and Tracking,” in Proceedings of the 2000
Conference on Human Factors in Computing Systems, The Hague,
Netherlands, 1-6 April 2000.

[5] A. Schmidt et al., “Context Acquisition Based on Load Sensing,” in
UbiComp 2002, G. Borriello and L. E. Holmquist, Eds., vol. LNCS
2498. Springer-Verlag, 2002, pp. 333–350.

[6] “Lumetila,” http://www.vtt.fi/tte/projects/lumetila.
[7] G. Bradski and J. Davis, “Motion Segmentation and Pose Recognition

with Motion History Gradients,” in WACV, 2000, pp. 238–244.
[8] C. Randall and H. Muller, “Context awareness by analysing accelerom-

eter data,” in The Fourth International Symposium on Wearable Com-
puters, B. MacIntyre and B. Iannucci, Eds. IEEE Computer Society,
October 2000, pp. 175–176.

[9] R. DeVaul and S. Dunn, “Real-Time Motion Classification for Wearable
Computing Applications,” December 2001, MIT Technical Report.

[10] “SPIRIT,” http://www.uk.research.att.com/spirit/.

[11] B. Brummit et al., “EasyLiving: Technologies for Intelligent Environ-
ments,” in Handheld and Ubiquitous Computing, September 2000.

[12] S. Young et al., The HTK Book (for HTK Version 3.0). Microsoft
Corporation, 2000, http://htk.eng.cam.ac.uk/.

[13] O. Management Group, “Notification Service Specification,” June 2000.
[14] R. Headon and R. Curwen, “Movement awareness for ubiquitous game

control,” Personal Ub Comp, vol. 6, no. 5-6, pp. 407–415, 2002.
[15] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, February 1989.

[16] P. C. Cattin, D. Zlatnik, and R. Borer, “Biometric System using Human
Gait,” in Mechatronics and Machine Vision in Practice (M2VIP), Hong-
Kong, August 2001.

[17] A. Ward, A. Jones, and A. Hopper, “A New Location Technique for
the Active Office,” IEEE Personal Communications, pp. 42–47, October
1997.

[18] http://www-lce.eng.cam.ac.uk/˜rph25/MovementCharacterisation/.


