
Spatial Indexing for Location-Aware Systems
Robert K. Harle

Computer Laboratory
University of Cambridge

Cambridge, UK
Email: Robert.Harle@cl.cam.ac.uk

Abstract—As location systems provide increasingly fine-
grained locations for mobile entities, location-aware systems that
react appropriately and autonomously to location events will
be in demand. Although much research has been devoted to
indexing schemes for very large scale GIS applications (where
the systems are predominantly query-based), comparably little
attention has been given to the use of spatial indexing within
location-aware systems leveraging local positioning systems (pre-
dominantly event-based).

This paper reviews the notion of spatial indexing (the rep-
resentation of a tracked user’s space to facilitate spatialevent
generation based on incoming locations) for event-based systems.
It establishes the principles and requirements of a wide-area spa-
tial indexer, reviews the R-tree, Quadtree and RQ-tree methods
proposed before for indoor location-awareness, and significantly
adapts the latter to meet the requirements.

The proposed indexing method uses a combination of R-trees
(for high level spatial information, down to structural level) and
Quadtrees (for lower level representation of objects). It proposes
the use of linear Quadtrees to exploit the ease of direct node
movement rather than the re-rasterisation of polygons usedin
systems to date. This approach is compared in simulation with
other approaches.

I. I NTRODUCTION

With a continuing increase in the uptake of mobile comput-
ing devices and ever-advancing sensor technologies, interest
in large-scale context-aware systems is fast growing. Of par-
ticular interest in this paper is the subset of these systems
that exploit location information to derive context. The most
common of such systems are the so-called Location-Based
Services (LBS), closely linked to Geographical Information
Systems (GIS). These tend to be motivated by the wide
availability of GPS positioning and supply facilities suchas
“where am I” (local maps and directions) and “where is my
nearest...” (spatial queries).

In general a location-aware system has two primary
components—a location-determination system [5] and a com-
putational model of the space inhabited by tracked entities. The
locations provided by the former have very limited use without
the context provided by the latter. For LBS applications, the
computational model often amounts to little more than a street-
map. Indoors, however, it may be advantageous to model the
world in greater detail. Here, the context may be as simple as
inferring a meaningful room name from a co-ordinate location
or as complex as evaluating the optimal lighting, cooling or
security status for a space.

Much of the LBS applications envisaged can be viewed
as application pull—the model is one of many devices and

tracked entities, each making relatively infrequent demands
on the LBS. Users themselves tend to be responsible for
initiating queries when they know the LBS can help them.
Conversely, in an indoor environment, it has proven more
useful for a location-aware service to avoid user query initia-
tion. Here, information push is more appropriate since indoor
environments feature many more densely-packed objects of
potential interaction, higher location update rates, and more
local machinery that can be autonomously controlled. For
example, a system that automatically illuminates a user’s path
based on their location data should not require the user or their
digital agent to provide regular inputs to the system beyond
reporting position if necessary.

Thus, indoor location-aware systems tend to be predom-
inantly event-based, using a push model where no explicit
query is generated by the user. Instead, the user (or more
usually their agent) expects to be informed of spatial inter-
actions automatically. A simple example is a ‘friend alert’
application, where users are automatically notified if theyare
physically near to any of their friends. This could be achieved
by each user’s device continually querying the location ofall
possible friends and computing proximity. However, it would
be more efficient to have a notionally centralised system that
monitors spatial proximities andinforms the user’s devices
when a friend is nearby. This would be an event-based system.

Given such an event-based system, then, the question of how
to generate the required location events efficiently naturally
arises. For this, aspatial indexeris used. This is simply a
process that monitors for spatial interactions and generates the
events.

The efficiency of a spatial indexer is particularly important
within an indoor environment. Here, objects and spaces are
frequently encountered and proximity may be highly transient.
AT&T Research Laboratories in Cambridge pioneered the idea
of programming with space. This introduced the notion of
user-defined spaces (“zones”) which were uniquely labelled.
Zones are simply 2D polygons anchored to some chosen
point in space. The paradigm proved to be highly effective,
and was used to enable building-wide location-awareness in
conjunction with a fine-grained tracking system for personnel
and objects. As an example of the basic concept, a virtual zone
might be attached to computer terminals. When a user interacts
with a terminal zone (by entering it), this is a signal which
implies physical proximity to the terminal. A very similar
technique to this was used at AT&T research to automatically

(a)

(b)

Fig. 1. Theprogramming with spacemetaphor. Objects are assigned local
virtual zones (illustrated in crossed hatch) and spatial events result from their
interactions (interacting zones shown in square hatch). Inthis example a user
enters the interaction zone of a computer.

and dynamically customise a terminal to an approaching user
(providing automatic hotdesking) [3]. Figure 1 illustrates the
concept.

The general lack of fine-grained tracking systems to date
has meant that surprisingly little attention has been given
to event-based spatial indexers. However, with commercial
indoor tracking systems now generally available [1] it is likely
that they will be in demand. In order to address this, this
paper seeks to develop the notion of spatial indexing for
location-aware systems which use the programming with space
metaphor. It documents the requirements of such a spatial
indexer, reviews previous attempts to meet them, and proposes
and evaluates a new approach.

II. REQUIREMENTS FOR ASPATIAL INDEXER

The requirements listed here are based on day-to-day ex-
periences with an indoor location system, accrued over many
years at both AT&T Research Cambridge and the University
of Cambridge, UK. A key event type has been room changes
(i.e. “Alice has entered room 100”). Such events must not
be ambiguous (it is not helpful to be reported as being in
two rooms simultaneously) and so it is useful to have a point
location for users and to test for room containment using a
point-in-polygon test with the room bounds. This is simple to
implement and, in principle, could be used for general spatial
interaction. This is more appropriate for outdoor, LBS appli-
cations where the physical extents of the user are orders of
magnitude smaller than the event-generating zones. However,
when the user’s extent is comparable to the zone size (as is
the case indoors) it is necessary to associate a zone relative to
the user’s point location. Monitoring in thiszone-basedmodel
requires constantly watching for interactions between multiple
polygons (overlap, containment, etc), rather than point-in-
polygon tests. It is this model of interactions that is addressed
herein.

An oft overlooked issue with the pure zone-based model
is how zones should interact with physical boundaries—in

general there will be spaces that should be cropped to local
physical boundaries, such as walls. This cropping recognises
that mobile entities on the other side of the boundary may
be within a given euclidean distance, but physical access will
require a different route. For example, a user would rather the
nearest telephonein their officerang for them, rather than the
nearest telephone, which may happen to be on the other side
of the wall in an inaccessible office!

Based on experience, there are four key requirements for a
spatial indexer in an event-based location-aware system:

1) The indexer must generate appropriate room or region
change events based on point location data;

2) The indexer must generate events describing ingress,
egress, and overlap of interaction zones;

3) The indexer must support “nearest neighbour” queries
for point data;

4) The indexer must account for immutable physical
boundaries (walls, etc) when generating certain spatial
events, whilst still supporting cross-boundary spatial
interactions.

III. R ELATED WORK

Location-based indexing has received much attention in the
space of GIS. Researchers have developed a variety of tree
structures, including B-trees, R-trees, Quadtrees, D-trees [11],
etc. Rigaux provides a good summary in [7] and many details
can be found in Samet’s books [8], [9]. The general consensus
is that no one structure is globally optimal, leading to hybrid
structures such as the QR-tree [6] which uses a Quadtree in
main memory linking to disk-based R-trees housing GIS data.
In general the work in the field of GIS has concentrated on
processing specific location queries efficiently on very large
scales. The primary location mechanism has been GPS and
the queries often user-initiated (e.g. “where’s my nearest...”,
“where am I”).

When applying the ideas indoors, the research field is less
developed. Research has tended to concentrate on creating a
GPS-like location system and less on how it might be used.
The general lack of deployed fine-grained indoor location
systems means there are few examples of event-based indoor
indexing systems in existence. However, the general GIS
techniques have been adapted. Here we summarise the most
important techniques and briefly review the adaptations.

A. Quadtree Spatial Monitoring

The SPIRIT middleware ([2]) used a dedicated software
process (the “spatial monitor”) to monitor for spatial inter-
actions directly. This monitor was based on a pureQuadtree
dissection of space and used a patented analysis to determine
zone interactions [10]. The authors of SPIRIT have commer-
cialised the location-aware system in the form of Ubisense.
The basic principle of using a Quadtree persists today.

When using a Quadtree (more strictly aregion Quadtree)
for spatial indexing, each zone is represented as a filled two-
dimensional simple polygon. A square area is chosen such as
to encompass the entire area of interest (for example a wing

(a) (b)

(c)

(d)

Fig. 2. Quadtree zone approximation. (a) The zone. (b) Recursive division
of space according to zone overlap. (c) Filled leaf nodes. (d) Final tree
representation.

or floor of a building), which contains the zone. Every node in
a Quadtree is associated with a square area, and this particular
area associates with the root node. Each node is either a leaf
node or has four children, each corresponding to a quarter of
their parent node’s area. In representing an arbitrary shape,
the root node is recursively split until nodes are found that
are either fully contained by the shape, fully disjoint fromthe
shape or have reached a predefined maximum tree depth (See
Figure 2).

For the purposes of visualisation it may be preferable to
imagine a rasterisation of the zone onto a grid of square pixels,
where a pixel is a square that corresponds in size to a node
at the maximum tree depth,dmax (i.e. for a root node of size
s × s a pixel is of size2−dmaxs × 2−dmaxs). A Quadtree is
then an efficient representation of the resultant grid that saves
storage space by merging adjoining pixels of the same type
according to certain rules. The storage space requirementsare
an advantage, along with the general tree structure, which aids
search operations. Note that it is difficult to characterisethe
cost of the Quadtree rasterisation because it depends not just
on the number of vertices in the polygon but also on the spatial
layout of them.

The advantages of using a Quadtree are that the process is
conceptually straightforward, with the basic technique being
well-established. Additionally, the implicit tree structure is
appropriate for spatial searching. The primary disadvantage
centres around the ease with which the tree can become un-
balanced or skewed. Ideally spatial zones would be uniformly
distributed across the area covered by the tree root. However,

this is very unlikely to occur and the resultant unbalanced
tree hinders efficient operations. For this reason, a popular
alternative is the R-tree.

B. R-tree Spatial Indexing

An R-tree can be viewed as a height-balanced tree [9]
where each node represents a rectangular area that completely
contains the nodes below it. Rectangles may overlap. Their use
in spatial indexing amounts to indexing the bounding boxes
of each polygon and referencing the original shape from the
associated node. The insertion procedure is effectively a mini-
optimisation process that reforms all but the leaf nodes in order
to height-balance the tree. There are many variants of the R-
tree and their use is widespread in systems such as Oracle
SPATIAL.

It is important to realise that an R-tree operates only on
rectangular regions. Thus the use of the bounding boxes of
zones rather than the zones themselves when creating the tree.
As a spatial indexer, the R-tree is used to identify candidate
pairs of zones with overlapping bounding boxes. Further
tests must be performed on the associated zone polygons to
determine whether interaction actually occurs. R-trees are fast
and efficient for general spatial searching, but the additional
overhead of checking polygonal boundaries can be high when
there are many zones.

In [4] the authors of ASMod (a limited event-based spatial
indexer) propose a combined R-tree/Quadtree data structure
that they refer to as an RQ-tree. This uses an R-tree exactly as
described above. If the space is irregular, however, it associates
a Quadtree with the rectangle to further approximate the true
boundary and speed up operations on it. Details on the method
are very sparse, but ASMod seems to be designed on an
assumption of very few, relatively large zones. As a result it
just assumes point-locations of mobile objects, and associates
an entire Quadtree to each zone. Whilst the core of this idea is
exploited herein, ASMod as described in [4] is not appropriate
as a general spatial indexer due to these design decisions.

IV. D EVELOPING A NEW SPATIAL INDEXING SYSTEM

In previous spatial indexing systems for location-awareness,
little attention has been given to the types of spatial zones
which are possible. Here two primary categories are defined:

• Free zones. These zones are completely unrestricted in
where they lie or the physical boundaries they cross.

• Associated zones. These zones are associated with objects
and must be clipped against the physical boundaries of
the containment unit they are in (see Figure 3).

Whatever the spatial data structure in use, it should be ap-
parent that it is more efficient to create a single structure with
information about multiple zones rather than an individual
structure for each zone. For a classic R-tree this is a given,
since it deals with bounding boxes, each associated with a
different zone. For a Quadtree, however, this is not a standard
requirement. Quadtrees are traditionally associated withbinary
image arrays, and nodes are eitherblack(filled pixels) orwhite
(empty pixels). For a location-aware system, the first major

Fig. 3. Free (square hatch) and associated (crossed hatch) zones. Associated
zones must be clipped to lie within the physical extents (theclipped portion
is shaded dark grey).

extension to this is to associate multiple labels with a given
node.

Thus we can extend the notion of the RQ-tree by imple-
menting three key changes:

• Quadtree nodes support multiple zone labels;
• R-tree nodes map to the subset of zones that correspond

to immutable physical containers (generally rooms), and
nothing smaller. Point locations can then be used to
identify the physical container of interest and the relevant
Quadtree.

• Free zones are stored in a separate RQ-tree, where no
clipping will occur.

Using R-tree nodes to map rooms and nothing smaller is
particularly efficient when the boundaries are rectangular(as
many rooms are for ease of tessellation). Inevitably, however,
not all rooms will be perfectly rectangular, meaning that room
determination will be ambiguous where the bounding boxes
of two or more rooms overlap. This can be solved either by
asserting that R-tree nodes may not overlap (i.e. multiple nodes
may be needed per room), or by also representing the room as
a zone within the associated Quadtree. In the latter case, when
multiple R-tree nodes are returned for a given point location,
the Quadtree representation can be used to determine which is
correct. In the majority of environments this would be a rare
occurrence.

Thus this adapted RQ-tree meets the requirements of a
spatial indexer for the real world. In implementation, however,
there may be optimisations to be made. The remainder of this
paper assumes the adapted RQ-tree approach just defined and
concentrates on trying to optimise the Quadtree structure con-
tained by the R-tree nodes. The R-tree itself is not discussed
in detail for reasons of brevity,1

A. Quadtree Representations

We adopt the terminology used to describe Quadtree nodes
used by Samet. Each node has adepth that increases mono-

1The use of an R-tree throughout is exactly as in established literature.

tonically along a tree branch (the root node has depth 0, it’s
children have depth 1, etc). Equivalently we speak of a node’s
level, which is defined asl = dmax − d, whered is the node
depth anddmax is the maximum depth of the tree.

Broadly speaking, Quadtree representations can be divided
into pointer-based and linear. The former has a node that
contains five pointers to other nodes as its fundamental data
container. Four of these pointers point to its children (if it has
any) and the remainder points up the tree to its parent. In addi-
tion, each node must store a list of zone identifiers that record
any zones associated with it. Implementing such a Quadtree
is simple, and traversing it is generally efficient, involving a
chain of pointer evaluations. It is a favoured representation for
existing spatial indexers. However, movement of a group of
nodes within such a tree is complicated since a single node
cannot be removed or created without destroying or creating
the relevant parent hierarchy. Adding support for multiplezone
labels per node only magnifies this problem since it means any
node (not just leaf nodes) may be labelled and more tests must
be performed to determine which branches to cull and which
to create.

An alternative representation is a linear Quadtree, which
represents a node by an entry (itslocational code) in a flat
list structure. If this structure associates each entry with a
single zone label, support for multiple zones is easily achieved
by allowing multiple entries with the same code. In effect,
the list is a sparse representation of the tree where only
labelled nodes are stored. For example, to represent Figure
2(d), a pointer-based tree would create 21 nodes and link their
pointers together to form the tree. A linear tree would store
only entries for the six filled nodes, implicitly defining the
parent tree nodes. This makes the procedures for insertion and
deletion much simpler since they require a single list insertion
and deletion, respectively. Contrast this with a pointer-based
Quadtree, where deleting a single node is likely to involve
restructuring the entire branch if it no longer contains a true
leaf node, and insertion involves the creation of the necessary
parent node hierarchy.

B. Locational Codes and Movement

An interesting observation is that the majority of opera-
tions on the spatial data structures described herein will be
associated with themovementof tracked entities, rather than
the execution of explicit spatial queries. Indeed, much of
the effort in indexing for a fine-grained event-based location-
aware system is expended on capturing movement which is
unlikely to elicit an event. Users are highly dynamic and
associated zones must be frequently moved to capture their
current position. Typically this is done by deleting the current
zone and re-rastering a new, shifted version elsewhere on the
tree. It may, however, be faster to operate not on the polygonal
zone representation when determining the new representation
but on the old Quadtree representation. To understand how
this might work, we briefly review the formation of locational
codes.

(a) (b)

Fig. 4. Locational codes. (a) Quadrant labelling. (b) Node Ahas code 1101.

A locational code is formed by labelling each quadrant 0, 1,
2, or 3 in a predefined order (e.g. Figure 4(a)). This ordering
is chosen because, in the two-bit binary representations of
the quadrant number, the first bit corresponds to the row
(or y-value) and the second to the column (or x-value). The
locational code is simply the concatenation of the binary labels
of the quadrants involved. For example, in Figure 4(b), node
A lies within quadrant 3 (11 in binary) after one division,
and quadrant 1 (01) after the second. Thus the locational code
3,1 concatenates to 1101 in binary. Note that the code is an
interleave of the x and y divisions (1101 is 10 interleaved
with 11)—when operating on nodes it is often necessary to
interleave, deinterleave and reinterleave codes.

Notice also that the length of the locational code as de-
scribed is dependent upon its depth (a greater code means
more concatenations and thus a longer result). It is generally
preferable to use an FD linear code, in which every code has
the same length as a pixel. This is achieved by zero-padding on
the right (so 1101 would be 110100 in a tree of depth three).
A node is then identified by a pair{code, depth} (in general a
given code refer to up todmax nodes if no depth is specified).
This has the distinct advantage that, when numerically sorted
by code and sub-sorted by depth in a list, traversing the list
traverses the tree depth first.

Returning to the issue of movement, we observe that a zone
in a linear FD Quadtree is simply a group of nodes. Thus, if
we can move one node, moving a zone is a trivial extension.
A sample algorithm is given for translation in the x-direction
in Algorithm 1; extension in the y-direction is trivial. Whether
it is advantageous to use this algorithm depends on the cost of
the splitting and condensing functions (which in turn depend
on the zone shape, the maximum tree depth, and the movement
vector) compared with the cost of re-rasterising the polygon
at the new location.

However, merely moving2 the nodes is not sufficient for
a spatial indexer, which must determine whether the moving
zone has egressed from any other zones, or ingressed on
others. By the nature of a quadtree, ascending the tree from a
given node to the root will visit all containing zones, whilst
recursively descending the tree to the leaf nodes will visit
all contained zones. A delete-and-insert movement algorithm

2Note that throughout this paper, it has been assumed that zones are
symmetrical and thus that translation is all that is required. For more complex
scenarios, rotation may also be of importance. Fortunately, efficient rotation
in a linear tree is possible and the basic principle applies (see Samet [8]).

implicitly descends the tree from the root on the insert
operation and this can be leveraged by using the rasterisation
process to simultaneously build up the containing zones. Itis
still necessary to descend the tree from the inserted node. The
movement algorithm described above avoids the re-raster and
so must perform an additional ascent of the tree compared to
the other methods.

As hinted at, any traversals within a linear tree are simplified
by the natural ordering of the nodes in a sorted list. Starting
at a given node, the tree can be ascended by successively
decrementing the depth, d, and zeroing the 2dth and (2d+1)th

bits of the code. Descending the tree is simply an iteration
down the list starting at the given node and ending when the
depth of the current node matches that of the start node.

Moving a zone within a linear tree, then, can proceed in
one of two ways:

• Delete-and-insert. A cache of current zone overlaps is
maintained. When a zone is deleted the associated nodes
are directly deleted and the cache used to determine any
egresses this causes. Then the zone polygon is moved and
rastered onto the tree whilst maintaining a list of zones
associated with any nodes encountered in the process.
Finally, the tree is descended from each new node and
any encountered zones are recorded in the same list.

• Direct movement. A cache of current zone overlaps is
maintained and used to build a list of egresses when
a node is deleted. Each node associated with the zone
is shifted according to Algorithm 1. The tree is then
ascendedand descended, building up a list of interacting
zones.

Both approaches result in two lists that can be cross-
referenced to determine the true changes in zone interactions.

C. Performance Comparison

Theoretical comparison of indexing algorithms rarely pro-
vides insight into subsequent performance as a spatial indexer.
This is because each algorithm typically depends on quantities
that are very hard to relate (polygon tests depend on the
number of vertices, Quadtrees depend on the number of nodes
the polygon makes after rasterisation, R-trees depend on the
total number of zones inserted). It is thus better to evaluate
algorithms based on simulations of realistic scenarios. Ineach
case the solution was coded using C++, compiled using GNU
g++ and executed on an Intel Pentium 4 3.20GHz CPU.

1) Basic Quadtree Movement:To examine the choice of
movement algorithm within a Quadtree, a simulated 4m×4m
room was used. An 18-sided regular polygon was used to
approximate a circular interaction zone of radius 0.4m. Such
a zone is representative of the interaction zone that might be
assigned to a tracked user. The zone was initially centred on
(1,1) and then moved around a square path of side 2m in
increments of 0.2m. The mean time for a complete circuit
versus the maximum depth of the Quadtree is shown for three
different movement algorithms in Figure 5. The algorithms are
denoted PB (a pointer-based Quadtree that used delete-then-
insert), LID (an FD-linear tree that used delete-then-insert),

Algorithm 1 Movement algorithm for a linear node moving in the x-direction
Input:
Integernode, locational code of node to move;
Integerl, level of node;
Realx0, last known x-position of zone;
Realx1, new x-position of zone;
Realpw, width of a pixel;

Procedure:
Compute number of whole pixels moved (⌊(x1 − x0)/pw⌋) and store inTx;

Find lowest bit position ofTx and store inj;
if j ≥ l then

Bit-deinterleavenode into nodex andnodey (1010→{11,00});
Bit-interleave{nodex+Tx, nodey} and store innewnode;
Insertnewnode into the Quadtree list with levell;
Deletenode from the Quadtree list with levell;

else
Deletenode from the Quadtree list with levell;
Insert the four child nodes ofnode with level l − 1;
Recursively apply this procedure to the four child nodes;

end if

Condense the list structure to ensure each full set of siblings is replaced by a single parent node;

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 3 4 5 6 7 8 9 10 11

M
ea

n
ci

rc
ui

t t
im

e
(s

)

Maximum tree depth

PB
LID
LM

Fig. 5. Variation in mean circuit time with tree depth.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
ea

n
ci

rc
ui

t t
im

e
(s

)

Number of pixel-sized zones

PB
LID
LM

Fig. 6. Variation in mean circuit time with number of inserted nodes.

and LM (an FD-linear tree that used the movement algorithm
advocated here).

There is little to choose between the LID and PB schemes,
both of which rise exponentially, approximately doubling with
each depth increment. This trend derives from the fact that
the zone is highly non-rectangular and each division approx-
imately doubles the number of nodes around the perimeter
(which make the majority of the constituent nodes in a
Quadtree representation) as the raster ‘converges’ to a true
circle. The increased number of nodes leads to a proportional
increase in operation time.

The LM scheme has a much lower execution time for small
depth, but rises faster as depth increases. The extra cost derives
again from the growing number of nodes needed to represent
the circle, and the need to recursively divide and rebuild them
(moving the same distance on a tree with smaller pixels means
it is less likely that nodes will simply move rather than be
split/condensed). At a depth of approximately 10 we observe
that the LM algorithm offers little benefit over the LID equiva-
lent. This observation vindicates the use of pointer-basedtrees
when using a single Quadtree for indexing very large spaces
since a larger total area requires a greater maximum depth
to achieve the same pixel size and the resultant linear tree
would perform badly using the LM algorithm. However, the
approach advocated here has a Quadtree per physical area,
each of which requires a smaller maximum depth to achieve
the same pixel size (typically a depth of 7 is sufficient), and
thus the advantages of a linear tree can be exploited.

2) Multiple Zone Handling:The previous results assumed
no zones were installed in the room. In a real monitoring
scenario, the presence of zones causes a degradation in
performance since there are more spatial events to process.

Figure 6 shows the variation in execution time at a given
maximum depth of six when a series of pixel-sized interaction
zones were distributed uniformly across the space before
executing the simulated movement as before. In all cases,
the cost of movement is increased; for PB the tree is larger,
complicating deletion and insertion and the subsequent search
for zone interaction; for LID and LM the number of tree nodes
increases in the tree lists and thus list operations are slower.
The LM trend mirrors that of LID but with a faster operation
time, attributable to the more efficient movement of cells.

V. FURTHER WORK

The scheme presented here is unlikely to be the optimal
and complete solution to the event-based spatial indexing
problem. However, the results are promising and a combi-
nation of detailed code optimisation and adapted approach is
likely to yield good results. In particular, there has been an
implicit assumption that the maximum depth of the Quadtree
is immutable. A maximum depth that varies with object type
would permit static objects to be well approximated using a
high depth, whilst more mobile objects could be approximated
using a smaller depth. It may even prove worthwhile varying
the depth dynamically according to the apparent mobility of
the associated object. It is also interesting to note that noth-
ing prevents a linear Quadtree from using either movement
algorithm, dynamically selecting the most appropriate.

VI. CONCLUSIONS

This paper has made three primary contributions:

• It has identified and described the requirements for a
spatial indexing system in a fine-grained event-based
location-aware system;

• It has significantly adapted previous work to create a hy-
brid R-tree/Quadtree indexing structure that meets these
requirements;

• It has described, evaluated, and compared Quadtree rep-
resentations to better optimise the structure for typical
tracking scenarios.

The resultant scheme has been shown to be an improvement
on previous attempts, and offers scope for further improve-
ment. The full indexer is intended to appear within a location-
aware middleware being developed at Cambridge, UK.

VII. A CKNOWLEDGMENT

The author would like to thank the researchers that con-
tributed to the SPIRIT system developed at AT&T Research
Laboratories for their insight into indoor location-awareness.
The author is also grateful for the comments received by the
reviewers, which have greatly improved this manuscript.

REFERENCES

[1] Ubisense. http://www.ubisense.net.

[2] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward,
and A. Hopper. Implementing a sentient computing system.IEEE
Computer, 34(8), August 2001.

[3] N. Adly, P. Steggles, and A. Harter. SPIRIT: a resource database for
mobile users. Proceedings of ACM CHI’97 Workshop on Ubiquitous
Computing, Atlanta, Georgia, March, 1997.

[4] Hongliang Gu, Wei Wei, Wei Wang, Xiaoyong Guo, Jun Liang,Liping
Shao, Jifeng Chen, and Na Ye. ASMod: A core model supporting
location-aware computing in smart classroom.International Journal
of Computer Science and Network Security, 6(3A):161–168, 2006.

[5] J. Hightower and G. Borriello. Location systems for ubiquitous com-
puting. Computer, 34(8):57–66, Aug 2001.

[6] Bo Huang and Qiang Wu. A spatial indexing approach for high
performance location based services.The Journal of Navigation, 2007.

[7] P. Rigaux. Spatial Databases: With Application to GIS. Morgan
Kaufmann Publishers, 2001.

[8] H. Samet.Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, 1990.

[9] H. Samet.The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

[10] P.J. Steggles. United states patent 6718278.
http://www.patentstorm.us/patents/6718278.html, 2000.

[11] Jianliang Xu, Baihua Zheng, Wang-Chien Lee, and Dik LunLee.
The d-tree: An index structure for planar point queries in location-
based wireless services.IEEE Transactions on Knowledge and Data
Engineering, 16(12), 2004.

