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Abstract

We present a novel method of using reflected
pulses in indoor ultrasonic positioning systems to
infer the details of reflective objects in the envi-
ronment. The method is termed Single Reflection
Spatial Voting (SRSV), and we perceive its ma-
jor use to be in the field of pervasive computing,
where automated object and surface discovery is
emerging as an important feature.

We demonstrate use of the method in the case
of searching for vertical walls using an existing
ultrasonic position sensor system (the Bat sys-
tem). We find that valuable information can be
extracted from reflection data using SRSV, and
are able to construct a model of the room using a
simple algorithm. We conclude that this method
can be used to extract base data upon which to
build hypotheses about the environment, given
further sensor analysis.

We also briefly address the potential uses
of SRSV in Ultra-Wideband positioning, au-
tonomous navigation, and map building.

1 Introduction

Much of the current research in location sys-
tems concentrates on creating an accurate and re-
liable indoor positioning system, the perceived
use of which is as a major component of a per-
vasive, context-aware computing system. Indoor
positioning systems typically rely on the propa-
gation of a physical wave phenomenon, such as

ultrasonic or radio waves. The prevalence of re-
flecting surfaces in indoor environments drasti-
cally reduces the accuracy and reliability of posi-
tions returned from such systems. We present a
method to turn this apparent weakness into a po-
tential strength. We use reflected signals to help
automate the process of modelling the environ-
ment within which the sensor network is operat-
ing.

Our experiences with a context-aware system
[1] tell us that useful and reliable applications
stem from having both an accurate position for
an object or person, and from knowing details
about the environment within which they are po-
sitioned. Presently, such environmental informa-
tion is painstakingly entered by hand (for exam-
ple, wall vertices, table positions, workstation lo-
cations) to allow a meaningful virtual model of
the world to be formed (see Figure 1).

Once a useful model is established, it must also
cope with the inherent dynamic nature of human
environments. The applicability of a model di-
minishes rapidly as it loses synchronisation with
the world. To remain useful, context-aware sys-
tems must be able to adapt to changing environ-
ments. Our experiences suggest that such adapta-
tion can only stem from the coordination of sen-
sor systems and processing methods. In this pa-
per, we present a powerful method based on the
principle that important environment information
is superimposed on the positioning signals, in
particular the reflections.

Given details of reflecting surfaces, we can de-
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Figure 1: A screen shot from a real-time environment monitoring application in daily use.

velop better models of the world, allow for dy-
namic reconfiguration of the environment, and
potentially provide feedback into a positioning
system to improve accuracy. We stress that,
whilst we present much of the paper in the con-
text of an ultrasonic positioning system (the Bat
system), the general method has potential uses
outside of ultrasonic systems.

The essential requirement of the method is
that the positioning medium interacts with ob-
jects within the environment, giving rise to re-
flected signals. Standard media used in position-
ing systems to date (ultrasound [16, 12, 14], radio
[2, 3]) all suffer from environmental reflections,
and this has traditionally been a large source of
error. In addition, technologies expected to offer
ubiquitous positioning in the future, such as Ultra
Wideband radio, are susceptible to reflections.

2 The Bat Ultrasonic Location Sys-
tem

The Bat system is a real-time positioning sys-
tem for people and objects in an indoor environ-
ment [16]. The system has previously been im-
plemented as a major component of a context-
aware, pervasive computing system [1]. One

installation of the Bat system covers the upper
floor of the Laboratory for Communication Engi-
neering, encompassing an area of approximately
55Om2, and provides a true context-aware com-
puting environment in daily use.

As described in [1], the Bat system is based
around wireless active tags (“Bats”) worn by
users or attached to objects. A radio signal from
a central controller triggers each Bat in turn, at
a known time. When triggered, each Bat emits
an ultrasonic pulse, which is received by a ma-
trix of receivers placed at accurately known loca-
tions in the ceiling. By measuring the time de-
lays between emission and reception of pulses,
we gain estimates of the distance travelled by the
pulse to each receiver within range. We then use a
multilateration algorithm to convert the distance
measurements to a location for the Bat in three-
dimensional space [10].

2.1 Identifying Reflections
Multilateration Algorithms

Through

The Bat system operates in indoor office-like
environments, which contain many objects and
surfaces that specularly reflect ultrasound (such
as computer monitors and walls). The pulse emit-
ted by a Bat may travel directly to a receiver (a
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Figure 2: Illustration of multipathed signal propagation between a receiver, r, and a transmitter, ¢

direct-path signal), but may also arrive after a re-
flection from one or more objects or surfaces in
the environment (a multipathed signal). Multi-
pathed signals do not provide information about
the true (direct-path) distance of the Bat from the
receiver, and hence it is important to identify and
eliminate them from further processing.

In situations where a direct-path signal reaches
a receiver, the Bat system can be sure that any
subsequent pulse arrivals correspond to multi-
pathed signals, because any reflected paths must
necessarily be longer than the direct-path (Fig-
ure 2(a)). However, it is not always the case that
the direct-path signal reaches the receiver, and in
these situations the first signal to arrive at the re-
ceiver will, in fact, be a multipathed signal (Fig-
ure 2(b)). The positioning algorithm used in the
Bat system is therefore designed to identify and
reject multipathed signals, and we present here
a simplified overview of that algorithm and the
heuristics it uses (further details are available in
[16]).

Following the emission of a pulse by a Bat,
and its subsequent reception, we have a series of
time-of-flight measurements. We convert these
time measurements to distances using the well-
documented temperature variation of the speed
of sound [6]. We wish to derive four quantities
from this information; the components of the Bat
location (z,y,z), and an estimate of the position-
ing standard error. To do so, then, we require a
minimum of four (non-multipathed) readings.

The process of identifying and excluding mul-
tipathed signals begins by forming a nonlinear
model [13] of all the data, providing an estimate
of the four quantities we are interested in. The

error estimate is used to evaluate the model fit.
If it exceeds the known accuracy of the system
(approximately 3cm), we evaluate the residuals
for each distance measure and order them numer-
ically. Traditional nonlinear model algorithms or-
der the magnitude of these residuals and discard
the data associated with the largest and reprocess,
thereby removing the outliers and improving the
result. We use a different approach to capture the
physical principle that no signal may arrive at a
receiver early (corresponding to movement faster
than the speed of sound), but only late (corre-
sponding to a multipathed measure).

If we define d,eqsureq @S the measured dis-
tance from a Bat to a particular receiver, d,,oqe:
as the distance calculated by the model for the
same quantity, then we can define the residual, e,
as being directly proportional to

e X (dmeasured - dmodel) (1)

If we assume that the model has converged spa-
tially close to the correct position, this quantity
is negative when the model requires the signal
to exceed the speed of sound, and positive when
the signal appears to be multipathed (relative to
the model predictions). We can adopt this as a
general heuristic, since it fails only in the un-
likely case of the majority of received signals be-
ing multipathed due to a specular object, causing
the model to converge on a reflection image.
Since the speed of sound is fixed, but multi-
pathed signals are likely, we maintain the sign
of the residual, and discard the largest positive
residual as multipathed. We repeat the process
of modelling and discarding the measurement as-
sociated with the largest positive residual until



we reach the required accuracy level, or until
there are less than four measures remaining (a
failure). Consequently, when we return a posi-
tion, we have classified the initial distance mea-
sures into two groups; consistent with the posi-
tion (assumed non-multipathed), and inconsistent
(assumed multipathed). The Bat system receivers
are also capable of recording the time-of-arrival
of any second pulse they receive (which corre-
sponds, as described earlier, to a multipathed sig-
nal). With each position, then, we can identify
multipathed signals by:

1. Rejection from the positioning algorithm as
described above.

2. Reception of a second pulse at a receiver that
returned a first pulse consistent with the po-
sition calculated.

Whereas the Bat system rejects this reflection in-
formation as being of no use in computing loca-
tion information, we now turn our attention to a
method of using this data to derive information
about the environment.

3 Single Reflection Spatial Voting
(SRSV)

Barshan has described a spatial voting scheme
for determining two dimensional surface profiles
using ultrasonic rangefinders mounted on a mo-
bile robot [5, 4]. The method associates a circu-
lar arc centred on the known position of the ultra-
sonic transceiver for each range measure, with a
radius equal to half the distance covered by the
ultrasonic pulse. By collecting a series of re-
sults from sufficiently different transceiver posi-
tions (generated by a number of rangefinders on
the robot and/or by moving the robot platform),
we expect to observe the highest density of arc in-
tersections along the locus of the surface, as illus-
trated in Figure 3. Spatial voting splits the two di-
mensional plane into a regular grid of cells. With
each cell, we associate a number representing the
number of arcs which intersect its bounds. We
can then extract a representation of the surface,
quantised to the cell size, by searching the grid
for high densities of intersections.

We present here a novel and significant ex-
tension to Barshan’s method which uses a three
dimensional Single Reflection Spatial Voting
(SRSV) grid. This approach differs from that of

Figure 3: An illustration of the two dimensional
surface extraction based on rangefinders (shown
as black circles). The grey area represents the
surface of interest, and the arc of each circle seg-
ment corresponds to the range reading from a
specific rangefinder.

Barshan, since we use a physically distinct ul-
trasonic transmitter and receiver, an infrastruc-
ture that is in place and static, and a series of
only multipathed measurements. SRSV is par-
ticularly suited to the pervasive computing envi-
ronment because it allows incremental updating
as more reflections are captured, but does not re-
quire that the details for each reflection be indi-
vidually stored, thereby reducing storage require-
ments. We make the assumption that multipathed
pulses have reflected only once; we have demon-
strated that the method is sufficiently robust that
multiple reflections do not render the method in-
valid in practice. In three dimensions, with a
separate receiver and transmitter, the two dimen-
sional circular arcs described by Barshan become
prolate spheroids with foci at each of the receiver
and transmitter locations, and the SRSV grid seg-
ments the volume into regular cubes (“cells”).
Analysis of the density of spheroid intersections
in each cell provides data about the environment,
such as the locations of walls and specular ob-
jects.

3.1 The Prolate Spheroid of Reflection

Consider two points in three dimensional space
representing a transmitter, t, and a receiver, r,
and a signal that propagates between them via a
single specular reflection from a point on a sur-
face, P. If the distance travelled by the signal
is known (through time-of-flight measurement
for example), the allowed locus of the reflection
point is a prolate spheroid with major axis b and



Figure 4: The reflection geometry for a single reflection from a point P between a transmitter at t and
a receiver at r, with a multipathed length of I = m + n. The thick outline (right) shows the associated
prolate spheroid, and the thin outline shows the elliptical locus of P if we assert that it is on a vertical

wall.

minor axis a (the shape formed by rotation of a
two dimensional ellipse about its major axis), as
shown in thick outline in Figure 4. Such a sur-
face can be described in its principal co-ordinate
frame (marked S’ in Figure 4) by the matrix for-
mulation,

x'TA'x' =1 )

where x' represents a general three dimensional
vector in S’, and the matrix A’ has components,

A= ®)

o o]
of~ o
o o

where a and b are are the major and minor axes
as shown in Figure 4. We derive these quanti-
ties from the path length travelled by the reflected
pulse, [, as defined in Figure 4. Using simple ge-
ometrical arguments, we find:

V2=t =1 @)

N =~ N =

To describe this in co-ordinate frame S, our ‘real
world” frame, we apply a translation to make the
origins coincident, and use Rodrigues’ rotation
formula[11] to calculate the relevant rotation ma-
trix, R, such that

X' = R(x — (t + %(r—t))) —R(x-u) (5

By transforming a regular three dimensional
grid in system S to S’ we can use geometry to
calculate the intersection of this prolate spheroid
with the cells, forming an SRSV grid for arbi-
trary surfaces. However, in pervasive systems we
are usually able to restrict our interest to a subset
of surfaces such as vertical walls, near-vertical
screens, horizontal tables, etc. Such restrictions
allow refinement of the method. As an example,
in this paper we will be primarily interested in
vertical surfaces, for which we wish to restrict the
locus of P to spheroid points with a normal lying
in the horizontal plane of S. To see this, consider
the function,

f) =[x —t[+[x—r| (6)

which represents the path length for t to x to r.
The quantity V f (x) will point in the direction of
the sum of the unit vectors of (t —x) and (r —x),
which bisects the angle between these two vec-
tors. Thus, V f(x) points in the direction of the
normal to the reflecting surface for a specular re-
flection from t to r. The spheroid is defined by
the relation

fx) =1 ()
and hence V f(x) points in the direction of the
normal to the spheroid at x. i.e. The tangent
plane at any point on the spheroid is the reflecting
surface that reflects a signal from t to r, and by
symmetry the locus of P is then the intersection
of the spheroid with a plane which passes through
the origin of S'.



To describe this intersection, we define a fur-
ther co-ordinate system, S*, which has the same
origin as S', but with the z" direction normal to
the intersection plane, and the y" direction per-
pendicular to this, but within the vertical plane
containing both r and t (see Figure 4). We can
link the frames S’ and S” by a rotation matrix,
R/, such that

x" =R'x (8)

To set up the axes in practice, we calculate a
point of intersection (P in Figure 4) of the verti-
cal plane through r and t with the spheroid, and
with a horizontal normal. Then we calculate a
point on the spheroid with z’ = 0 and a horizon-
tal normal. Combined with the S’ origin, we then
have three non-co-linear points; sufficient to de-
rive the plane normal, n’. When n' is normalised,
(8) implies that

0
Rn'=| 0 )
1

We choose "' to point from the origin to the point
P, which implicitly defines the direction of x’ in
the Cartesian S’ frame. We can then relate the
frames S’ and S” by a rotation matrix R’ and
assert,

XIITRIAIRITXII — XIITAIIXII =1 (10)

which, referring back to (2), defines an elliptical
intersection in the 2" = 0 plane.

Once the ellipse parameters have been calcu-
lated, we can perform SRSV by transforming the
vertices of SRSV cells to that co-ordinate system,
and searching for interceptions of the faces with
the ellipse.

3.2 Using The Spheroid Normals

We can extend the basic premise of SRSV by
accounting for surface normals, vastly simplify-
ing any subsequent analysis. When a spheroid
intersects a cell, there is an associated average
normal to the spheroid within that cell. If there
is to be a reflecting surface giving rise to that
spheroid within that cell, it must have a normal
direction parallel to the spheroid normal. Thus,
we can associate each SRSV vote within a cell
with a particular three dimensional normal direc-
tion. In practice, we associate a series of angular
bins with each cell, and add votes to the angu-
lar bin that contains the average spheroid normal

within that cell. If a planar reflecting surface ex-
ists within that cell, the SRSV count for the an-
gular bin containing its normal direction should
vastly exceed the counts in the remaining angular
bins.

When considering vertical walls, we need only
associate cells with angular bins in the horizon-
tal plane. We calculate the average normal to the
ellipse within each cell it intersects, project that
direction into the horizontal plane and increment
the relevant angular bin for the cell. This is a par-
ticularly useful representation when searching for
walls, since we are really searching for contigu-
ous, vertical, planar surfaces that extend across
multiple cells, all with high SRSV counts in the
angular bin corresponding to the surface normal.

4 Implementation and Results

Experimental validation was performed by
post-processing real reflections collected from
the Bat system. We have logged the reflections,
caught in a communal coffee area, for Bats worn
by personnel for a period of two days, producing
a distribution of sightings and reflections typical
for an area in daily use. Figure 5 illustrates the
shape of the area and any fixed objects (hatched)
and identifies three key Regions within it (la-
belled 1,2,3). Region 1 is used as a through-way,
with people rarely stopping. Consequently, we
see a low number of sightings here. Region 2
is a general communal area, where people tend
to congregate and remain for extended periods of
time, building up large numbers of sightings. Re-
gion 3 is an area with a low density of Bat re-
ceivers in the ceiling, and a high density of ceil-
ing obstructions. Relative to Regions 1 and 2,
sightings are rare here.

Figure 5(b) shows the actual distribution of
sightings collected during the test period. This
data was processed using an SRSV cell size of
0.2m, using 6897 collected reflections. The ini-
tial result is shown in Figure 6; the SRSV counts
shown are the sums of each vertical column of
SRSV cells. This ‘collapsed column’ representa-
tion helps to capture the fact that the walls are
vertical and thus all cells in a vertical column
provide evidence for a wall at that position. The
highly non-uniform usage of the area by person-
nel is reflected in the results. We see a high den-
sity of intersections in Region 2, a direct result
of users remaining in roughly the same place for
many sightings, building up intersections in that
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(b) The distribution of sightings collected during testing
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(c) A representation of the room walls using the same collapsed

column grid as (b). The arrows show door positions.

Figure 5: The testing area
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Figure 6: The column-collapsed SRSV grid for the coffee area from a series of viewing angles
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(a) Correct representation of the test area
(grey cells represent doors).

(b) Results of SRSV (grey cells show the
eroded sighting distribution)

Figure 8: SRSV Results

Region. There are strong maxima in the SRSV
counts in Region 2, which correctly trace out the
walls on either side. Note that the SRSV count in-
side this Region is non-zero, increasing with the
number of sightings, despite the fact that there
can be no wall there. This potentially misleading
situation illustrates the need to store the SRSV
normal directions in angular bins. Figure 7 shows
the same data, but for a specific angular bin of
width 20° containing the wall normal direction.
We see that the SRSV counts within Region 2 are
drastically reduced, since the high counts in Fig-
ure 6 are distributed across the angular bins in the
SRSV cell.

We can further improve each angular view by
excluding cells in a column that has seen a sight-
ing of a Bat (thereby implying no wall can be
there). In practice, to account for positioning in-
accuracies and the small possibility of a wall and
a Bat coexisting within a cell of finite size, we
have found it best to erode the area of sightings
by one cell in every direction. This leaves us with
a core shape of sightings that we are confident
covers cells that do not contain walls. To encap-
sulate this fact, we zero the SRSV count for any
column within which a Bat was sighted.

To extract the wall positions, we applied the

following simple algorithm for the four normal
directions that follow the axes of the SRSV grid:

1. Create the SRSV grid for the angular bin
containing the normal (e.g. Figure 7) of in-
terest.

2. Set SRSV counts to zero for cells contained
in the eroded region of sightings

3. Scan the grid perpendicular to the normal di-
rection, amalgamating cells with non-zero
SRSV counts into single *walls’, allowing
a maximum gap of two cells (0.4m) within
each. This gap allows for wall continuity
across regions of low or no occupancy.

4. Calculate the average SRSV count for each
wall, and assign the value to each cell within
the wall.

5. Scan the grid parallel to the normal direc-
tion, taking the cell with the maximum aver-
age SRSV count as containing a wall.

The results of applying this algorithm are pre-
sented in Figure 8, and are encouraging.

The position and orientation of the longer side
walls has been correctly extracted, with the over-
all room shape being determined to a good ap-
proximation. Despite the vastly different uses of
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(a) A graphical representation of the room and its
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(b) Correct Representation of the room on the (c) Results of SRSV (grey cells show eroded
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Figure 9: The results of applying SRSV to another room.



Regions 1 and 2, we are still able to extract the
wall positions with good accuracy. The door po-
sitions, shown in Figure 8(a), are clearly present,
with the exception of the top-most door. This
door leads to an office that was not in use dur-
ing testing, and hence the door remained closed,
completing the wall.

Importantly, the method is clearly superior to
simply using the sighting distribution to deter-
mine the room shape, as shown by the shaded
region of Figure 8(b). The SRSV method is ca-
pable of inferring wall positions in areas pene-
trated by ultrasonic signals, but where Bats are
not sighted. This is a useful feature in office
environments, where desks and machines typi-
cally obstruct users from entering areas adjacent
to walls.

The extraction algorithm used works well
when we specify the normal axes to examine.
However, the vast majority of office buildings
contain rectangular rooms, so such a scenario is
not contrived. The principal axes may be entered
by hand, or we may make the assumption that
once the orientation of one room or wall is de-
termined, we give precedence to the same normal
direction (and those parallel and perpendicular to
it) throughout the building. Determination of a
single wall orientation is possible by simply look-
ing for a long sequence of cells with locally high
SRSV counts in angular bins consistent with the
sequence normal, or by using more complex im-
age techniques such as a Hough Transform [8].

For comparison, Figure 9 gives a representa-
tion of another room within our Laboratory, and
the results of applying SRSV analysis to sight-
ings recorded within it over a period of three
days. Here, we find the results to be similarly en-
couraging. The absence of a colleague who sits
in the top left corner of 9(a) during the testing
period resulted in poor determination of walls in
that area, as expected. However, the remaining
wall positions were correctly determined. In par-
ticular, it is interesting to note that the filing cab-
inets marked in 9(a) were treated as an extension
of the wall nearby due to the large, smooth and
vertical surface they presented.

5 Data Evolution

To demonstrate the evolution of SRSV data as
sightings are collected, a further dataset was col-
lected from within a long, straight corridor. This
gave a further opportunity to test the method, and

a very strong feature to examine, in the form of
one of the walls.

A total of 4000 sightings were analysed, col-
lected over a period of one day. Figure 10 shows
a series of views of the collapsed grid count for a
normal direction perpendicular to one of the walls
after different numbers of sightings, n. The cor-
rect wall position lies within the bin labelled 10
in the graphs. The evolution of a peak within this
bin is clearly evident.

It is important to realise that we cannot accu-
rately define the number of sightings required to
extract a feature. There is no guaranteed number
of single reflections associated with each sight-
ing, and furthermore no guarantee that the sight-
ings are distributed in such a way as to produce
reflections along the entire length of the feature.
This can be observed in Figure 10 by the apparent
lack in difference between 10(f) and 10(g). Nev-
ertheless, the graphs shown in Figure 10 serve to
illustrate a typical evolution.

6 Further Applications of SRSV

SRSV offers the opportunity to detect static
and dynamic details of great use to the perva-
sive computing community. Whilst in this paper
we have applied SRSV analysis in the context
of static vertical walls, the concept is not lim-
ited to them. We can also detect other vertical
features, such as dynamic walls (temporary parti-
tions), door positions and states (open or closed),
and positions and orientations of monitors (par-
ticularly useful in the context of hot-desking).

Note that the analysis algorithm for the SRSV
grid may need to be tailored to extract features of
limited extent, such as monitors. The algorithm
presented above searches for long, contiguous
lines within the collapsed grid, which we would
not expect to observe for monitors. Instead, we
would search for well-defined, bounded planes of
normals at heights useful for displays.

It is possible to apply the same ideas to non-
vertical surfaces by a straightforward coordinate
rotation. In the specific case of the Bat system,
however, there is little information to be gained
about non-vertical surfaces. This is due to the
directional nature of the ultrasonic emission from
a Bat.

Since the Bat receivers are designed to be ceil-
ing mounted, the ultrasonic emission from Bats is
designed to be directed primarily upward, toward
the ceiling. Furthermore, for most of time Bats
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are worn by personnel at heights consistent with
the characteristic standing and sitting heights of
those people. Non-vertical surfaces, such as ta-
bles, are consequently below the usual height of
the Bat, and it is unlikely that a signal from the
Bat will reflect from them and reach the receivers.

Use of the method to find only vertical surfaces
with Bat system data does not imply any limita-
tion of its use with other positioning systems. For
example, signals in proposed UWB positioning
systems would be expected to reflect extensively
from surfaces of all orientations within the envi-
ronment.

7 Conclusions and Further Work

We have presented a novel method for sur-
face discovery using reflections. Our results in-
dicate that it can potentially provide a rich source
of world information. Our implementation has
centred around wall detection, which we have
demonstrated with good results based on a rel-
atively small data set. The method in general,
however, is easily extended to search for non-
vertical reflecting surfaces, by using intersection
of prolate spheroids and SRSV cells which record
intersection normals in three dimensions.

We envisage this data source being combined
with other sources (many of which are discarded
by today’s positioning systems) to provide robust
information about the environment. In particu-
lar, we hope to use these, and related, techniques
to determine the position and orientation of large
flat-screen displays - a common source of prob-
lems for ultrasonic positioning which we intend
to compensate for. Furthermore, the usage of
archived personnel positions can be used to de-
rive complementary environmental information,
such as region connectivity and the position of
large scale objects [9].

Whilst the results presented here are for
an ultrasound-based system, the theory applies
equally to any system that can resolve multi-
pathed effects. In particular, the methods pre-
sented here should transfer directly to Ultra-
Wideband (UWB) radio positioning systems,
which have the intrinsic capability of resolving
and timing multipathed signals [7].

Beyond the niche of pervasive computing, the
method can be applied to autonomous navigation
and map building. In these fields, we typically
use a variety of ranging and signal bouncing tech-
niques to permit a robot to ‘learn’ its environment

using probabilistic methods [15]. SRSV here
could provide a useful extra information source
that improves the probability calculations. Fur-
thermore, such a robot can be programmed to
adopt a motion pattern that targeted specific ar-
eas of uncertainty within an environment.
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