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Abstract

Context-aware computing systems demand an accurate
and up-to-date world model which computationally repre-
sents the environment they oversee. Systems to date tend to
have small-scale implementations with hand-programmed
world models.

In real environments, manual creation and maintenance
of such models is infeasible. This paper presents a novel
method of using signals propagating in a multilateration
positioning system to assist in creating and maintaining
models of a dynamic world. It builds on a previous method
for discovering objects in static environments.

The methods are implemented and evaluated using a
real positioning system. They are shown to build three-
dimensional occupancy grids of indoor volumes, and have
the capability of modifying those grids as time proceeds and
the environment is reconfigured.

1. Introduction

Context-aware computing [29] is the combination of live
sensor data with a computational model of the environ-
ment. Its goal is the production of contextual information
that computer systems embedded around the environment
can use to react to the current situation. It is an emerging
research area in the field of Ubiquitous Computing. Much
of the current research has centred on location information
since this provides a rich source of context. Sensing who is
standing before a particular machine allows automatic re-
configuration to suit preferences; tracking people allows for
new security measures; tracking objects permits for a more
controlled and efficient working environment.

Whilst both location technologies and context-aware
middleware continue to advance [11, 16, 24, 25, 28, 30, 33,
35], context-aware implementations suffer currently from
difficulties with the world model - the computational rep-
resentation of the environment from which any context is

derived. The more accurately and completely an environ-
ment is modelled the richer the ultimate contextual infor-
mation. Accurate modelling is, however, a difficult goal
to achieve. Todays context-aware implementations span
small-scale areas and world models can be created man-
ually by making extensive measurements. This approach
does not scale well with area size nor account for the inher-
ently dynamic nature of the world. Changes to the model
must again be input manually.

These problems have inspired an interest in methods to
create and maintain world models with minimal human ex-
ertion. The authors have previously detailed a series of ap-
proaches to building useful world model information us-
ing a high precision ubiquitous positioning system [12–14].
These and other methods have been shown to assist in cre-
ating a world model of a static environment, given a suffi-
ciently dense and spatially diverse set of positioning events.
However, experience with context-aware systems [3,22] has
shown that the generation of an accurate model for a static
environment is only part of the problem. Maintaining it on
a daily basis is a necessity. Whilst many of the discovery
techniques for static environments can be applied, modifi-
cation is required to cope autonomously with dynamic en-
vironments. This paper introduces a significant extension to
the ray-tracing technique described in [14] (summarised in
Section 3). The extension moves the method into the realm
of dynamic environments.

The rest of this paper is organised as follows. Section 2
reviews related work in context-aware computing and dy-
namic environment modelling. Section 3 summarises the
usage of ray-tracing for static object discovery. Section 4
examines the requirements for a dynamic system and the
modifications necessary to the ray-tracing methods. Section
5 details the implementation of the methods using the Bat
ultrasonic positioning system and documents the results of
doing so.



2. Related Work

2.1. Context-aware computing

Context-aware computing is a subset of the Ubiquitous
Computing vision [9, 20]. Context-aware systems use sen-
sor inputs to derive contextual information to better interact
with users.

The applications of context-aware computing have been
previously described by Schilit [29] and seminal advances
have been made by research labs in the last decade [2, 3, 7,
15, 22].

2.2. Fine-Grained Location systems

The Constellation system [10] is a positioning system
designed for accurate tracking in augmented reality sys-
tems. It uses a series of ultrasonic sensors worn on the belt
and head of a user. Ultrasonic transmitters are installed in
the environment and periodically emit signals which can be
measured by the mobile sensors. Multilateration is used to
calculate position to a precision of approximately 0.005m.

The Bat system [33] provides accurate positioning for
powered tags by multilateration of the time-of-flights of ul-
trasonic signals. An active mobile transmitter is worn by
personnel or affixed to objects. Radio signals are used to
synchronise the emission of ultrasonic pulses, which are de-
tected by a matrix of receivers installed at known locations
in the ceiling. The system is designed for tracking person-
nel and has a precision of approximately 0.03m.

The Cricket system [24, 26] uses a decentralised ap-
proach with a low density of combined ultrasonic and ra-
dio beacons distributed around the environment. Mobile re-
ceivers detect the beacon signals and compute their own lo-
cation, thereby protecting user privacy. The positional accu-
racy exhibits a high variance.

The HiBall system [34] uses an array of LEDs installed
in the ceiling. Users wear a device augmented with infrared
photo-diodes and the LEDs are flashed in such a manner as
to permit positioning.

The EasyLiving project at Microsoft uses video cameras
to track a small number of users around an environment [7].
Microsoft also developed the RADAR system [5, 6] which
uses radio propagation in environments equipped with wire-
less LAN systems to track mobile devices. RADAR has
since inspired a number of location systems based on wire-
less LAN [1, 31, 36], but none exhibit the same accuracy
properties of current ultrasonic systems.

Other positioning systems are on the horizon. In partic-
ular, ultra-wideband radio systems show promise but the
technology remains in its infancy and few positioning re-
sults are available for a typical indoor environment [19].

The best indoor positioning systems to date are based on
the multilateration of signal times-of-flight.

2.3. Autonomous Navigation

The construction and maintenance of a world model has
traditionally been the interest of autonomous vehicles - mo-
bile robots must learn about their environment in order to
navigate around it. They typically use a variety of sensors,
but the most common approach is to use ranging sensors
mounted on the robot to form occupancy grids or equiva-
lent [21, 23]. These divide the area of the environment into
a regular grid, and associate a binary state (or potentially
a floating probability) to each cell according to whether
they are penetrable or not [8, 32]. Other approaches avoid
this metric division of space and favour topological map-
ping [17, 32] but this is ill-suited to the methods presented
herein.

Since navigation is the primary goal, the accurate shape
of objects, or even their identification and classification, is
not important. Similarly, a certain level of error is tolera-
ble, since encountering an unexpected obstacle is no more
serious than to cause delay to the journey of the robot.

In many senses, the aims of robotic exploration are to
discover areas where objects do not exist and to plot path-
ways through them. In context-aware computing environ-
ments, however, the interest lies in the position and type of
the objects themselves.

3. Ray-tracing in Static Worlds

The authors have previously developed and demon-
strated a method for using rays within positioning sys-
tems to discover and characterise static objects [14], which
will be briefly summarised here.

A ray is established between a mobile transmitter and
a receiver when the ranging measurement (time-of-flight
or equivalent) for a signal propagating between them is
not rejected by the positioning algorithm. Rays describe
straight pathways which are unobstructed to the positioning
medium. Given a diverse series of transmitter locations over
time, and a similarly diverse distribution of receivers, rays
penetrate into the environment and obstructions become ap-
parent from low densities of rays. This is the premise for us-
ing ray-tracing to create and maintain the world model.

Large numbers of rays are best stored within an accumu-
lation grid. This segments the volume of the environment
into a regular three-dimensional grid, each cell having an
associated voting count (initially zero). A new ray is quan-
tised onto the grid by incrementing the voting count of each
and every cell it intercepts. After a period of time, the vot-
ing grid can be converted to a binary occupancy grid via
thresholding. By introducing the voting stage it is possible



to account for any noise in the system. More complex ap-
proaches using probabilistic beams are possible, but can in-
volve greater processing requirements and are not necessary
to demonstrate the underlying methodology (a brief discus-
sion of the probabilistic approach is given in [14]).

Once an occupancy grid is established analysis is nec-
essary to autonomously identify the presence of objects.
Three-dimensional region growing can be used to extract
containment volumes and shapes. It is also possible to use
techniques specialised to the particular object. For exam-
ple, the shape and height of horizontal surfaces has been
extracted using profile plots. These plot the ratio of perime-
ter and area against vertical height, and are described in de-
tail in [14].

This approach works well in mapping new regions with
static objects. A static environment allows an accumulation
of a large number of sightings without fear that the eldest re-
sults are no longer applicable. Real environments are more
dynamic, however, with objects continually shifting. In the
form described, accumulation grids offer no temporal de-
pendence and cannot adapt easily to dynamic environments.

4. Dynamic Environments

There are two major tasks that a context-aware sys-
tem must perform to maintain synchronisation of the world
model with the real world:

1. Observing and reacting to the disappearance of ob-
jects.

2. Observing and reacting to the appearance of objects.

4.1. Disappearing Objects

Observation of the disappearance of modelled objects
can be achieved using ray-tracing techniques. Removal of
an object permits the passage of rays through the volume
it previously occupied. A system must therefore search for
the passage of rays through space that the world model as-
serts to be occupied. A system can model an object’s spa-
tial extents in a series of ways, the most important of which
are listed below.

Point modelling. The object is modelled as a three-
dimensional point in space.

Exact or boundary modelling. The exact three-
dimensional shape of the object is known and
stored as a set of vertices, faces, or edges.

Primitive or generic modelling A generic model for a
class of objects is created. Each instance of the model
can vary in scale and dimension.

Constructive solid geometry. Geometric primitives
(cubes, spheres, etc.) are combine in a series of geo-
metric translations and boolean operations to create
a shape that closely approximates that of the ob-
ject.

Spatial enumeration. Essentially a three-dimensional oc-
cupancy grid. Grid voxels are assigned a state corre-
sponding to whether or not they contain (part of) the
object.

Extent modelling The overall extents of the object are
stored, ignoring intricacies in the specific contours.
This is essentially a bounding box for the exact model.

Today’s systems tend to employ primitive or ex-
tent modelling, or a combination thereof. This necessitates
allowance for error when asserting that a ray/object inter-
section has occurred. In particular, intersections near the
edge of an object model are rarely sufficient evidence to as-
sert disappearance. Such intersections can easily result
from inaccuracies in the model or in the calculated posi-
tion of the tracked object.

To deal with error it is instructive to examine how close
an intersecting ray passes to the centre point of the object
model whilst remaining within its bounds. Here, ‘centre’ is
defined as the centre-of-mass of an object of uniform den-
sity with the specific shape of the model. This is consis-
tent with the intuitive idea of the centre. Such an approach
makes the assumption that the object is sufficiently convex
that its centre-of-mass lies within its volumetric bounds.
If this is not the case, the object can be subdivided into
smaller, convex sub-objects. Once the point of nearest ap-
proach is determined the distance between it and the centre
point is calculated. This value is compared with the distance
from the centre point to the model edge or face along a line
extending from the centre point toward the point of nearest
approach (Figure 1). When small, the ratio of these two dis-
tances implies a ray passing deep within the object, rather
than glancing it. High values of this distance ratio have am-
biguous interpretations due to the errors inherent in both the
ray and the model.

4.2. Appearing Objects

The appearance of an object results in a lack of rays pen-
etrating the associated volume. Dynamic environments re-
quire an extension to the occupancy grid approach described
in Section 3, which will allow temporal evolution of the ini-
tial occupancy grid. This evolution can be based on one of
two ideologies:

Temporal. New results are stored in a temporary accumu-
lation grid. At regular time intervals this grid is anal-
ysed and the base occupancy grid updated if necessary.



Figure 1. Intersection of a ray with a cubic ob-
ject. The centre is at C, the point of nearest
approach at N. The distance ratio is a:b

This gives a synchronous update of cell state across the
coverage area.

Spatial. New results are again stored in a temporary vot-
ing grid. Updates to the base occupancy grid are per-
formed at times derived from the new sightings in the
area and only for that specific area. This produces an
asynchronous update of cell state.

If a region receives no new data during an update pe-
riod of the temporal approach, it is not possible to determine
whether this is due to the appearance of an object or simply
because no sightings were made in the vicinity. Hence the
temporal approach is useful only in a system which guaran-
tees near-uniform sighting densities between such updates.
This is not applicable to a personnel tracking system since
people do not move to uniformly cover the area they in-
habit.

The spatial approach does not necessarily suffer from
this problem. Its implementation uses two accumulation
grids; one to collect the ray information as before, and one
to collect the rays that are expected given the sightings and
the system characteristics. We term these rays pseudo-rays
and the corresponding grid the pseudo-grid.

When a cell within the pseudo-grid reaches a certain vote
threshold, the pseudo-threshold, its occupancy state is re-
evaluated based on the corresponding ray count in the vot-
ing grid. This decision can be based on the ratio of the
number of intersecting rays and the number of intersecting
pseudo-rays, the intersection ratio. This ratio should be less
than or equal to 1.0 since each ray should correspond to ex-
actly one pseudo-ray. For an occupied cell, a very low ratio
(below 0.5) is expected whilst unoccupied cells should ex-
hibit larger values.

Having allocated an occupancy state to a cell we com-
pare the state to the corresponding base occupancy grid state
and update this as appropriate. Following this, the corre-

Figure 2. Evolving the occupancy grid

sponding cell is zeroed in both accumulation grids. Figure
2 illustrates the process in two dimensions. Here, cells with
a pseudo-grid count of three or greater are updated, result-
ing in a total of five cells being compared.

The spatial approach is superior to the temporal ap-
proach. Since it updates specific cells only when they are
likely to have useful state information, it is more efficient
and less prone to error.

4.2.1. Parameter Selection and Responsiveness The
pseudo-threshold for the spatial approach must be cho-
sen to balance the conflicting desires for high update rate,
reliability, and coverage. A small value for this parame-
ter creates a more responsive system but leaves it more sus-
ceptible to statistical anomalies which could be smoothed
out with increased data. Practically, then, it is neces-
sary to trade-off between response time and error in the
world model. The ideal value for a given system will be
strongly related to the update rate and error characteris-
tics of that system, and is best determined on a per-system
basis.

The response speed of a dynamic system implementing
the spatial approach is dependent on three major factors.
The first is the update rate of the positioning system itself.
Faster update rates result in a faster accumulation of rays
and thus a more responsive system in general.

A second factor is the sighting distribution. In a typical
installation the system has little or no input as to where the
transmitters go. Rather, they are attached to personnel who
move with motives inconsistent with creating a uniform dis-
tribution of sightings. If no transmitter visits a particular re-
gion, no updates can be made. This is generally acceptable,



however, since a lack of sightings implies that the region
has not been visited, and is unlikely to have been reconfig-
ured.

As previously mentioned, the final factor is the pseudo-
threshold parameter which dictates when a cell is to be up-
dated.

4.3. Dealing with Translations

Translation of an object can be seen as a combination of
detecting the disappearance and appearance of two objects,
followed by the recognition that the objects are the same.

Recognition can be achieved using the profile plot de-
scribed in [14]. A Hidden Markov Model [27], or simi-
lar, can use the plot to classify and label the objects after
a training period. Alternatively, complementary sensor sys-
tems may be available to identify objects.

5. Implementation and Results

The ideas presented above were implemented us-
ing the ultrasonic Bat system. This system uses multilat-
eration techniques to determine the position of a mobile
transmitter to within 0.03m. Ultrasonic signals propa-
gate from transmitters to a series of static, ceiling-mounted
receivers.

Successful ray-tracing requires that rays penetrate into
all areas of interest. Ceiling-mounted positioning systems
thus require that the mobile transmitter be positioned be-
low any object, in order that rays might intersect it.

Bat transmitters are worn by personnel, usually at chest
height. Thus rays propagate from chest height to ceiling and
do not typically intercept objects. As such, the Bat system
has been optimised as a personnel positioning system, and
is not ideally suited to ray-tracing in its current incarnation.
Nonetheless, it provides sufficient information to act as a
testbed for the methods herein.

5.1. Tracing Rays for Disappearances

Computer monitors provided objects with which to ex-
amine the usage of rays when searching for disappear-
ances. The SPIRIT system [3] models the position and rota-
tion of computer monitors within the Laboratory for Com-
munication Engineering (LCE). The modelling is purely
primitive: no specifics are stored for individual monitors.
Rather, each monitor was treated as a cube of dimensions
0.5m � 0.5m � 0.5m (in the case of the LCE, this was a good
approximation since all monitors were similarly sized and
styled).

As an initial test, a tracked user was allowed to work
in front of a particular monitor for 3 minutes. The moni-
tor was then removed, and the experiment repeated. In each
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Figure 3. Distance ratio variation

case, the rays that intersected the model of the monitor were
recorded. Figure 3 shows the distance ratio variation for the
two situations.

With the monitor in place, a high density of intersections
with a ratio greater than 0.9 was observed. The minimum
observed ratio was 0.556, the average was 0.975, and the
standard deviation of the ratio was 0.0426.

However, once the monitor was removed the ratio was
seen to vary more dramatically, with a minimum of 0.0850,
an average of 0.921, and a standard deviation of 0.170. The
most revealing characteristic is the frequency with which
the distance ratio was less than 0.8 (0.9% of readings with
the monitor in place, 11.8% of readings with the monitor re-
moved).

Based on this information, three fake monitors, labelled
A, B, and C, were added to the world model. The aim was to
autonomously highlight the fake monitors based on signals
travelling through the Bat system. Each new positioning re-
sult was evaluated for an intersection with nearby monitors.
If the distance ratio was below 0.5, the data for the follow-
ing 100 intersections of the monitor were recorded and the
proportion with distance ratio less than 0.5 was determined.

Results were collected over a period of two days. In-
cluding the three fake monitors, 49 monitors were modelled
across the laboratory. Note that not all laboratory mem-
bers were present during the test period and consequently
no sightings were made in the vicinity of their associated
desks.

In total, 32 monitors were flagged for monitoring. Eight
had a non-zero proportion of distance ratios less than 0.5.
The remaining 24 either saw no distance ratios less than
0.5, or never built up 100 intersections within the two days.

Monitor A was found to have a 54% proportion of dis-
tance ratios less than 0.5, and monitor B 52%. Insufficient
data was available for monitor 3 due to a sparse sighting dis-
tribution in its vicinity. In addition, two further monitors, X
and Y, were found to have proportions of 15% and 14% re-



spectively. On investigation, X was found to have moved
significantly, and Y had been removed altogether. The high-
est recorded proportion for a correctly modelled monitor
was 5%.

These results are successes, despite the fact that only
a primitive model was used to crudely model varieties of
monitor.

5.2. Spatial Approach for Appearances

To use the spatial approach, the Bat system was char-
acterised using a straightforward model. Ultrasonic sig-
nals were assumed to have a maximum propagation dis-
tance of 5.0m from the transmitter, derived empirically from
archived positioning data. For each sighting, the receivers
within this distance were determined and the pseudo-rays
(propagating from the cell containing the sighting to the
cells containing these receivers) quantised onto the pseudo-
grid.

It was necessary to add a filtering level to the occu-
pancy grid to produce more robust results given the rela-
tively small amount of data. The final occupancy grid was
filtered by removing all cells marked as occupied but with
all neighbouring cells unoccupied. This effectively asserted
that all objects of interest extend over at least two cells. This
is a reasonable assertion for an office environment and a cell
size of the order of 0.2m.

5.2.1. Dynamic Parameter Values A large cardboard
box was suspended in air and used to evaluate the cre-
ation of an occupancy grid using the pseudo-grid method.
A Bat transmitter was moved randomly by a human
around the area of the box to build up the necessary sight-
ings.

Figure 4 illustrates the occupied cells resulting from the
collection of 5 153 sightings (50 843 rays) near the large
cardboard box (shown in outline) for different values of the
pseudo-threshold and the intersection ratio threshold.

Figures 4(a)-(c) demonstrate the need to correctly set the
intersection ratio threshold. When too large (Figure 4(a)),
the threshold results in premature assignment of the occu-
pied state to some cells. A small ratio of the order of 0.1
will ensure a reliable state assignment (4(c)).

The pseudo-threshold is similarly important. When too
small, cell states are evaluated very regularly but evalua-
tions are necessarily made on a low volume of data, result-
ing in large errors (Figure (4(d)). Care must also be taken
to ensure that the threshold is not excessively large. The re-
sult shown in Figure 4(f) is due to very few cells reaching
the threshold using the data from the 5 153 sightings. Thus,
all cells lie in an undetermined state.

Figure 5 shows the evolution of the occupied cells as
more rays are analysed. The precise evolution is dependent
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Figure 4. Effect of pseudo-threshold (
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) and
intersection ratio threshold ( � )

on many factors, including the sighting distribution, the ob-
ject size, and the cell size.

5.2.2. Variation of Intersection Ratio The Bat system
was used to evaluate the dynamic ray-tracing methods by
attaching a Bat transmitter to a small autonomous vehicle.
The vehicle was programmed to move forward until an im-
pact was registered on its front bump sensors and then re-
verse a small distance and rotate by a random amount, be-
fore repeating the process. This algorithm results in an un-
predictable distribution of sightings that is not optimised for
ray-tracing (and therefore approximating real personnel po-
sitions).

Two large tables, A and B, were positioned at random
within a room (Figure 6(a)). The autonomous vehicle was
allowed to collect results freely for approximately 30 min-
utes, creating data set I. Table B was then shifted to a new
position (Figure 6(b)), and the experiment repeated to cre-
ate data set II.

Four cells at the table height of 0.7m were selected at
random such that two were occupied by a table surface
(Cells (7,18) and (7,19)) and the other two unoccupied (cells
(5,10) and (14,18)). Figure 7 shows the variation of the in-
tersection ratio with each update of the relevant cell, using
data set I. Figure 7(b) shows solely the occupied cell varia-
tions for clarity.

The occupied cell (7,18) initially exhibits an intersection
ratio of 0.0 where the pseudo-vote is non-zero but the ray
vote is zero. After approximately 850 pseudo-votes, a ray



(a) 25,000 rays (b) 30,000 rays

(c) 35,000 rays (d) 40,000 rays

(e) 50,000 rays

Figure 5. Evolution of the occupancy grid for
a pseudo-threshold of 60 and an intersection
ratio threshold of 0.1

(a) Initial setup (b) Final setup

Figure 6. Room, table, and grid setups (2D
projections)
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Figure 7. Variation of intersection ratio with
cell update

is erroneously established that passes through this cell. This
is attributable to noise in the system. Thereafter, updates do
not involve votes for rays, only pseudo-rays, and the inter-
section ratio follows an inverse linear law. This pattern is
characteristic of an occupied cell. The cell (7,19) did not
erroneously establish a ray and maintained a ratio of 0.0
throughout.

The unoccupied cells do not show a definite pattern.
Here, a much higher proportion of the pseudo-rays should
be accompanied by rays, resulting in a highly variable in-
tersection ratio. The ratio variation appears essentially ran-
dom, and has a significantly larger value than the corre-
sponding occupied ratio. This is the basis of the spatial
method.

These Figures assume an infinite pseudo-threshold. As
described above, we use the threshold to segment the grids
over time and update the corresponding occupancy grid ac-
cordingly. Figure 8 shows the variation of the intersection
ratio with a pseudo-threshold of 200 for both an occupied
cell (cell (7,18)) and an unoccupied cell (cell (5,10)). The
dynamic approach re-evaluates the cell occupancy state at
every multiple of 200. The correct states in this case can be
derived using an intersection ratio no greater than 0.2.

5.2.3. World Model Creation Data set I was used to con-
struct an occupancy grid from an initially empty state. A
pseudo-threshold of 200 and a intersection ratio threshold
of 0.05 were used. Figure 9 illustrates the occupancy of cells
at the table height (0.7m).

Even with the relatively small amount of data, the
method can correctly derive features given no initial data.
The signal to noise ratio can be increased with a larger vol-
ume of data.

5.2.4. Dynamics Demonstration of the dynamic method
in a realistic scenario was possible using both data sets I
and II, respectively collected before and after table B was
moved. The aim was to observe an adaptation of an estab-
lished occupancy grid as new data was input.
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Figure 9. An experimental occupancy grid.
Crossed cells are occupied

An occupancy grid was initially established using the en-
tirety of the data set I. This created an accurate occupancy
grid to approximate the grid expected to exist after a large
number of small updates. Figure 10 illustrates the occu-
pancy grid after this setup phase. The two tables of Figure 5
are visible in the centre of the grid, whilst further occupied
cells are shown around the room outskirts. These cells are
due both to genuine objects stacked against the walls, and
the known limitations of ultrasonic ray-tracing (see [14]).
The area of primary interest is central within the grid.

Data set II was added using the dynamic method with a
pseudo-threshold of 200 votes, an intersection ratio thresh-
old of 0.05, and a cell size of 0.2m. Figure 11 shows the re-
sultant evolution of the occupancy grid with sightings at the
table height. A gradual shift of occupied cell density, con-
sistent with the movement of table B, is apparent.

6. From Grids to Models

Whilst an occupancy grid is a sufficient world model for
autonomous navigation purposes it is generally insufficient

Figure 10. An experimental occupancy grid
(three-dimensional)

for context-aware applications. Such applications must have
a higher level understanding of the grid, which can be diffi-
cult to supply autonomously.

The trade-off made between update rate and accuracy
means that the occupancy grids produced by a useful dy-
namic system typically contain too much noise for robust
object recognition based on shape or volume. Instead, the
method is very useful for verifying the current model and
highlighting inconsistencies. It is envisaged that users of
the environment will continually provide spatially diverse
positioning data with which to perform a ray-tracing anal-
ysis and determine local (in)consistencies between the real
world and the world model. Application of the methods de-
scribed allows for specific areas of inconsistency to be pin-
pointed. For example, the appearance of a group of cells
in a room believed to be empty of objects provides con-
straints that can be used by other sensor systems. A robot
could be directed to investigate the area when the room is
empty, video cameras could be directed at the area for vision
analysis, or RFID readers could be energised in the vicinity
to search for new RFID tags. Most important is the poten-
tial to spot disappearances. An object in the real world that
does not have a representation in the world model leads to
a failure to derive context; an object in the model that is no
longer in the real world leads to an incorrect context which
can have worse consequences.

As an example, consider a context-aware system which
automatically unlocks and starts the engine of a car when
the owner approaches. If the car is unknown to the model,
no context is inferred and the car does nothing as the user
approaches. Now consider the car having moved to another
car park on the other side of the building, and the world
model not having been updated. When the owner walks past
the first car park, her car unlocks and the engine starts in the
other car park. The first scenario (failure to spot appearance)
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(c) n=60,000 (d) n=120,000

(e) n=180,000 (f) n=220,000

(g) n=260,000 (h) n=280,000

Figure 11. Occupancy evolution for number
of rays, n. Both table positions are shown

is frustrating for the owner, whilst the second (failure to spot
disappearance) has the potential to be far more than frustrat-
ing. When other sensor systems are not available to perform
a detailed spatial analysis of a region, the inconsistency in-
formation can be used to reduce trust in the region. The sys-
tem may choose not to unlock and start a car if some min-
utes earlier another user apparently walked through the out-
skirts of the space believed to be occupied by the car.

7. Conclusions and Further Work

This paper has presented an extension to the idea of trac-
ing ray pathways through an environment in order to spot
the appearance, disappearance, and movement of objects.
The method uses existing infrastructure in an environment
augmented with an accurate positioning system. Experi-
mental results using the Bat system have shown that the
method is viable and can respond to changes in dynamic
environments. Such a response is necessary for a context-
aware computing platform, since an accurate world model
is required for accurate context determination using posi-
tion. Once an accurate occupancy grid is formed using the
method, it can be integrated with further sensor inputs to
identify or classify objects and update the live world model.

The methods presented here are relevant for any posi-
tioning system based on the propagation of signals that can
be obstructed by physical objects. If such systems are to
be ceiling-based, it is necessary to design the system such
that direct signals propagate into the areas of interest. This
can be achieved by ensuring the transmitter remains below
the height of the objects of interest, or by moving some re-
ceivers to lower heights, away from the ceiling. It is hoped
that future work will examine ways to integrate sensor in-
formation into a robust world model that can cope with the
appearance, disappearance and reconfiguration of objects.
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