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Abstract. This paper introduces Lighthouse, a scalable location mech-
anism for wide-area networks. Unlike existing vector-based systems such
as GNP, we show how network-location can be established without using
a fixed set of reference points. This lets us avoid the communication bot-
tlenecks and single-points-of-failure that otherwise limit the practicality
of such systems.

1 Introduction

Recent years have seen prolific research into large-scale distributed Internet ap-
plications drawing on the foundations laid by file-sharing systems, such as Nap-
ster, and other unstructured peer-to-peer systems such as Gnutella and Freenet
(see [11]). This research has developed self-organising content addressable stor-
age based on distributed hash tables (DHT) [15, 12, 7, 2] and distributed trees
(DT) [1, 10].

However, the efficiency metrics considered in original versions of these pro-
tocols have simply been the number of overlay hops taken while routing a mes-
sage [13]. This might be appropriate for some very constrained scenarios, but is
rarely suitable for realistic deployments. This inflexibility leads to perverse rout-
ing policies; a message might be routed in the overlay network via the Europe-US
transatlantic link when the two nodes willing to communicate are nearby with
a fast local connection, for example, one in London and other in Cambridge.

Distributed network games are another large-scale example which has re-
cently engaged the research community. Among the multiuser games, First per-
son shooters (FPS) are one of the most popular types [17]. In FPS games, net-
work proximity information about the players and servers is an important system
requirement. With suitable information, the game discovery mechanism can re-
turn a list of servers that are close to a prospective player (e.g. a ‘k-Nearest
Neighbours’ query).

Motivated by the current lack of network proximity information in these
systems, we started from the following questions: could we characterise network
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proximity in a scalable model? Could this model help the systems in selecting
appropriate close peers?

Network proximity, in the context of this paper, refers to how close node
A is to node B in respect to the underlying IP topology. We characterise it with
measures of IP network performance. The propagation delay, for instance, can
indicate whether or not two nodes are close neighbours.

To capture the proximity between nodes, we can compute their location in
the Internet using a set of coordinates. How we calculate such locations is the
main idea of this paper.

We shall now make two definitions before we introduce the the problem
of interest. First, a general space M is defined by the pair (X,d) where X
represents the set of valid objects and d is a function, either metric or non-metric,
that represents the distance between these objects such that d : X x X — R.
In contrast, a vector space is a set V that is closed under appropriate vector
addition and scalar multiplication operations.

These definitions have a broad scope. A general space represents objects
and their mutual distances; whereas a vector space represents objects, their
distances and locations. In the Internet case, the space M may be a set of network
nodes (objects) spaced according to a particular network performance metric
(distance). For instance, properties such as propagation delay and bandwidth can
define two types of distance measures; consequently under certain assumptions,
they create two metric spaces.

The problem then is defined as follows. We refer to it as the mapping problem
and it consists of:

— finding a scalable mapping method to transform objects {x1, ..., z,}, in our
case, network nodes, of the original space M onto points {v1, ..., v, } in a tar-
get vector space VK (k is the dimensionality) in such a way that the distance
measures (i.e. delay) are preserved, i.e. d(xi,x;) ~ D(vi,v;) for 4,5 > 0;
where D is another distance function.

— constraint: we only know a few distance measures between these objects.
This is because we want the system to scale and having a full distance
matrix | X| x |X] is impractical.

The constraint above leads us to use pivoting techniques to map the location
of an object in a general space onto a vector-space location. These techniques
consider the distance from a given object to a number of pre-selected pivots
{p1,..,pn} € X. Pivoting is the common framework for a large class of nearest
neighbour algorithms [4, 16].

In this paper we study two distinct techniques that employ pivoting to solve
the ‘mapping’ problem. First, we introduce absolute or global coordinates-based
approaches that always use the same set of well-known pivots. Because of this,
such techniques create potential bottlenecks. This is not to mention the conse-
quences when a pivot node becomes unavailable (e.g. pivot failure). The GNP
framework [18] is included in this category.

To overcome the issue of well known pivots, we then introduce Lighthouse,
an alternative technique that uses relative or multiple local coordinates-systems.
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Lighthouse is (a) scalable: by relying on any arbitrary set of pivots, it avoids
a single set of reference points (pivots) forming bottlenecks; (b) accurate: by
solving the mapping problem, it devises accurate coordinates for a node.

In what follows, we give an overview of the GNP framework in Section 2,
describe the Lighthouse design in more detail in Section 3. We then discuss our
initial results and raise a list of questions in Section 4.

2 GNP

The GNP (Global Network Positioning) framework [18] for predicting Internet
network distances is based on absolute coordinates computed by modelling the
Internet as a real vector space. In outline, the GNP architecture is formed from
two parts. First, a small set of well known hosts (pivots) called landmarks locate
themselves into a real vector space by measuring their mutual distances (delay).
These coordinates are taken by hosts that wish to join the system as a global,
and therefore unique, basis of the vector space. The landmarks’ coordinates are
calculated through the solution of a relative error minimization problem:

Ei,j Error(d,;, ciw) where d;; and cil-j are the measured and estimated distances
between the landmarks ¢, j.

The second part of the architecture relates to how an arbitrary host calcu-
lates its own absolute coordinates based on the landmarks’ own coordinates.
The joining host measures its round-trip delay to the landmarks and then casts
the computation as an overall error minimization problem: Zi)j Error(d;j, ciw)

where now d;; and cil-j are the measured and estimated distances respectively
from host ¢ to the landmark j; Error() is an error measurement function.

3 Lighthouse

We start by introducing Figure la. The basis G of this 3-D vector space com-
prises vectors {l1,12,13}. The second observation is that G must be formed by
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Fig. 2. Lighthouse Overview

well-known pivot nodes, i.e., the same nodes must be contacted by every joining
node. In fact, this is a characteristic of GNP, ‘binning’ [14] and ’beaconing’ [9]
frameworks in terms of how they manage reference points. It turns out that
this characteristic has the disadvantage that it makes the system not fully self-
organised. What happens if the pivot nodes (e.g. landmarks/beacons) are not
available at a given instant of time? Who should a joining node contact instead
to locate itself in the system?

To overcome the above issue of well-known pivots, we present Lighthouse!,
a technique that explores two concepts: multiple local bases together with a tran-
sition matrix in vector spaces. Lighthouse allows the flexibility for any host to
determine its coordinates relative to any set of pivot nodes provided it main-
tains a transition matrix. Such a matrix does what the maritime chart does for
navigation. It gives a basic instrument for gauging a global position when this
is deemed necessary. With the idea of local positioning, better scalability of the
system can be achieved. Figure 1b shows a follow-up configuration of the global
basis scenario achieved with the Lighthouse framework. Now nodes ni, ns, ns, ng
are located in different local basis, L and L/, in a decentralised manner.

Figure 2 presents an example of our technique applied to a 3-D real vector
space. Points at the left side plot network nodes as they might be observed in
the TP network (metric space M). The right side shows the same points mapped
onto a vector space V. With pivoting, we choose arbitrary k + 1 local reference
points, which we call lighthouses. Unlike GNP, our framework relies on a set of
nodes from which different joining hosts may select differently. However, each of
these hosts has to preserve the invariant: a transition matrix P, which is only
applicable to calculating a global position, has to be correctly maintained.

We shall now introduce details of the four step procedure followed by a joining
host.

! Historically, lighthouses played a vital role to navigation. The first and most no-
torious lighthouse, Pharos of Alexandria (Egypt), was built about 270 B.C. When
looking at this unique tower with a bright light at the top, a ship’s crew can com-
pute their local position relative to it (local reference). Eventually, the position can
be transformed into a global one by using maritime charts and the like. Nowadays,
GPS (Global Positioning System) with its replicated service has made this method
redundant.
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Fig.3. 2-D Example

3.1 Finding Lighthouses
The bootstrap of the system occurs as follows:

— Joining Node: a new node n; finds an entry point node nj, i.e. any node
that is already in the system. Node n; provides to n; a list of nodes that
can potentially act as n; lighthouses. The joining node selects k + 1 nodes
among those in this list. It then constructs a local basis L = {14, 12, ..., 1k},
where each vector 1 is a pair of lighthouses. This basis spans the VX.

— First Nodes: when nj is the m-th node such that m < k+1, n; is considered
as one of the first nodes. As n; cannot have other k + 1 lighthouses, it
constructs a local basis with the lighthouses that already joined. The idea is
to build the first basis after £ + 1 nodes have joined in the system.

Once the joining node n; has been given a list of nodes that can act as its
lighthouses, it then measures a set of network performance metrics between itself
and the lighthouses. The technique by which these measurements are undertaken
will vary according to the context. The IDMAPS project [5] found that the
propagation delay can be triangulated, so the delay between points (a,c) can be
estimated based on the delay between (a,b) and (b,c). As a result, the round-
trip time (RTT) measured through ICMP ECHO packets may be a practical
tool to incorporate delay as a metric. Additionally, techniques that measure the
available bandwidth look promising. However, we have only explored the network
delay metric in this paper.

With ak x k matrix of network performance metric values, the joining node
computes the coordinates of a local basis L.

Figure 3 introduces a 2-D example. We assume that there are six nodes al-
ready in the system: {n1, no, n3, n4, ns,ng} (Figure 3a). Suppose a new node, nr,
wants to join in. As the first step, it contacts a node in the system, say ny4, in
order to get a list of lighthouses. In this example, n4 sends a list of three nodes to
act as ny lighthouses: {n4, ns, neg}. At this time, ny start measuring the distance,
propagation delay, between itself and the three lighthouses.
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The following sections describe the method that calculates a local basis L
using the lighthouses.

3.2 Local Basis Coordinates

Any node that wants to take part in the system has to compute its own coordi-
nates relative to a local basis. However, it must first determine the coordinates
of the basis that it will be using. To do this, node n; calculates L = {14, ..., 1k}
where 1; is a pair of lighthouse nodes m,m;. It applies the Gram-Schmidt pro-
cess [3] described as follows.

i = projuw,di + projj;oll;
la = projuw,la + projilh;

(1)
Ix = proju, Ik + projﬂ;ki]lk_l.

Where proj,, ,li is the projection of I; along the finite-dimensional subspace
W;_1 of V¥: whereas the vector projj;oll is called the the component of I
orthogonal to Wj_q.

We shall explain the Gram-Schmidt process, with a 3-D basis construction
example. In the first step (Figure 4a), 1; is projected into subspace Wq. Vector
1; now spans the one dimensional subspace Wy. In the second step (Figure 4b),
vector 1z is projected along and orthogonal to Wy. Over the last step (Figure 4c),
vector 13 is calculated as the sum of its component along the subspace Wy,
spanned by 1; and lz, and by its component orthogonal to Wa.

The joining node, n7, uses the Gram-Schmidt process to compute a local
basis L = {mam5,Tiang } (Figure 3b).

3.3 Host Coordinates

At this stage, node n; has fresh coordinates of its local basis. It may now calculate
its own set of coordinates. However, as a side-effect of choosing arbitrary k + 1
lighthouse nodes to span the vector space VX, it is probable that these vectors
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will form an alternate basis, not necessarily an orthogonal one. Chances are that
the computed basis will be oblique. In that case, we have to be able to use any
type of basis (oblique/orthogonal), so that node n; coordinate vectors will be
a linear combination of the local basis L:

ng = c1ly + els + -+ 4+ el (2)

By taking the inner product <, > of both sides of Eq.2 with every vector in
L ={14,13,..., 1}, we are left with the following system of equations:

<ngly >=<cly,ly >+ <cplg, 11 >
<ngls>=<cily,lo >+ < cplg, 12 >

(3)
<nglx >=<cly,lx >+ + < cplyk, Ik >

Solving the system 3, we obtain the scalars c;. As the only given input to our
technique is the distance measures (e.g. delay) from the joining node to a set of
lighthouses, an expansion of the system above is essential. Thus, two formulae
of the Algebra are required.

<u,v > = [[ul| [v] cos(u,V) (4)

<u,u>= Hu||2 (5)

Formula 4 gives the cosine of the angle between two vectors u and v; whereas
formula 5 is a derivation of the first since the angle 6 between identical vectors
is 0. Substituting these two formulae in the system 3 yields:

cr|[Lal| + - + exl|i]l cos(ly, L) = [[ng]| cos(n, 1)
: (6)

e1|la| cos(ly, Tig) + - - + cx L]l = [|ni]] cos(ny, L)

In synthesis, the node’s coordinates are calculated by solving the system of
linear equations (6). Geometrically, this represents the projections of the node
distance measures along the vectors of the local basis L.

In our 2-D example (Figure 3c), node n; solves a simple linear system in
two variables: ¢; and co. As a result, the coordinates of ny become ¢;.17 + ¢2.12,
where 1, = g5 and 1o = Tigng.

3.4 Transition Matrix

We allow nodes to arbitrarily choose their lighthouse nodes (local basis) provided
they preserve the invariant of rightly maintaining a transition matrix P. The
question is how a joining node knows about the global basis G without measuring
any property between itself and the nodes that form such a basis. To answer this
question, we bring the idea of basis changing into our technique.



Lighthouses for Scalable Distributed Location 285

If we change the basis for a vector space VX from some old basis
B = {uy,...,ux} to some new basis B’ = {uj, ..., u; }, then the old coordinate
matrix [v]p of a vector v is related to the new coordinate matrix [v]p/ of the
same vector by the equation:

Vg = P7' [vls (7)

where the columns of P are the coordinate matrices of the new basis vectors
relative to the old basis, that is, the column vectors of P are:

p=|... (8)

As a result, node n; computes a transition matrix P between its local basis
L and the global basis G. This does not require any additional distance mea-
surements. The only requirement is that the entry point node nj supplies either
the coordinates of G or its own P transition matrix.

The transition matrix P calculated by n7 (Figure 3c) contains the coordinates
of the local basis L = {13,152} relative to the global basis G. This in fact the
coordinates of the lighthouses that compose L, i.e., {n4,ns,ng}. Therefore, ny
devises P with nothing more than the information it already has.

We expect nodes to re-calculate their coordinates from time to time due to
frequent network topology changes (i.e. an optical link was shut down). Such
changes are captured by the network performance metrics used such as the
propagation delay. In this case, a participating node re-computes its coordinates
following the four steps above. If for some reason, a lighthouse node becomes un-
available during this re-calculation process, the participating node then chooses
an alternate lighthouse to devise the transition matrix.

4 Experimental Evaluation

In this section, we present an initial analysis of our technique. We compared the
accuracy of Lighthouse delay estimates against the GNP estimates. Accuracy,
in this context, is how close the distance predicted by our technique is to the
real distance measured. If we achieve high level of accuracy that means we can
compute accurate node locations.

The data used in this experiment was the global data set collected by the
GNP project?. It consists of two matrices with delay measures. The probe matriz
holds the mutual distance measures between 19 probes. The second matrix, called
target matriz, contains the delay measures between 869 target hosts and the 19
probes. The delay was measured by ICMP ECHO packets.

2 Measurement data available at
http://www-2.cs.cmu.edu/ eugeneng/research/gnp
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Table 1. Key Parameters

Dimensions Distance Probes Tolerance
3 L> (Euclidean)] 4 [107° (GNP only)

Table 1 shows the key parameters used in both implementation of these two
techniques. The tolerance parameter was the convergence error of the minimiza-
tion method used by the GNP code.

The strength of Lighthouse, as explored in the previous sections, is its capa-
bility of working with multiple local bases through oblique projections. To fairly
compare our technique to GNP, we limited the experiment to a single and global
basis.

We chose four arbitrary probes among the nineteen to serve as the light-
houses and landmarks nodes. With distance between four probes, Lighthouse
code computed a local basis for a 3-D vector space; whereas the GNP code
calculated a global solution for the distance error minimization problem.

Moreover, a common framework was required to compare both techniques.
Hence, we divided the evaluation in two sub-processes. The first one, called
calibration, relates to how accurate a technique is when computing the local
basis (Lighthouse) or the global basis (GNP). Distances measures between the
four chosen probes were required for this sub-process. The extrapolation, the
second sub-process, tells how accurate a technique is to predicting/extrapolating
distance measures between arbitrary nodes. In order to help the comparison two
accuracy metrics were used.
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Fig.5. Accuracy of Lighthouse: Calibration
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|[Measured — Estimated|

RelativeE = 9

elativeError Monsured (9)
Estimated

Ratio = —— 10

ano Measured (10)

Formula 10 gives the ratio of an estimated to a measured distance. Ideally,
a curve resulting from this metric is a vertical line at x=1. On the other hand,
the relative error metric (formula 9) results in zero when the estimated matches
the measured distance by 100%.

In Figure 5, we plot the CDFs of the relative error of Lighthouse and GNP
for the calibration sub-process.

As we expected, both techniques achieved high levels of accuracy measured
by their relative errors. We should point out that the measured distances between
the four probes should match the distances computed by each technique. This
property determines how well the technique can extrapolate distance measures.
Lighthouse presented almost the same average accuracy of GNP. Both techniques
could estimate 99% of the distances within a relative error of 0.5 or less.

Figure 6 compares the CDFs of the ratios of Lighthouse and GNP delay
estimates to those measured. Despite the fact that the two techniques presented
equivalent results, Lighthouse was slightly better than GNP for ratios less than
1. On the other hand, 70.34% of GNP estimates were within a 25% error margin
as opposed to 69.61% of Lighthouse estimates. As much as 41% of Lighthouse
and GNP estimates were within an error of 10%.

Finally, we offer some back-of-the-envelope numerical support for why Light-
house should scale better than GNP. We used in our experiments 869+19 hosts.
Lighthouse could have used any local basis from a combination of 888 hosts
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taken 4 at a time, i.e. C(888,4). This yields a selection of 25733706090 bases
that a joining node can choose as opposed to only one global basis offered by
GNP.

4.1 Discussion

GNP represents the first step to modelling Internet distances with a single co-
ordinate system. Lighthouse furthers this by proposing a system that can use
multiple coordinate systems. Despite their dissimilarities for solving the same
problem, it seems that both methods face similar questions. Some of them are
connected to ongoing mathematical refinements in both models. Others are as-
sociated with the problem of choosing the right network performance metrics.
In this section we raise some questions. Our intention is not to cover the full
spectrum of these issues but to ask researchers to look at different perspectives
at this problem space.

Network Performance Metrics. So far we have only experimented with In-
ternet delay as it can be triangulated [5]. What are the additional metrics that
could be used? How could these metrics be practically measured? Is ‘available
bandwidth’ a feasible metric? If so, could we characterise it as we did with
network delay?

Distance Function. In our experiments we tested the L, family of functions

1

with L, = (Zle |x; — yi|p) /p. When p = 2 we have the Ly, which is the
Euclidean distance. In contrast, for p = 1, we have the ‘Manhattan’ or block
distance. Additionally, p < 1 results in a non-metric distance function used
where the distances do not obey the triangle inequality [8]. We varied p from
0.0 to 6.0 in our experiments and found that the Lo function has given better
delay estimates than any other derivation of L,. However, the question is: could
the Lo distance function be applied to other network performance metrics such
as the available bandwidth?

The Curse of Dimensionality. Network performance metrics may suffer from
large differences between their representational dimensions k in a vector space
and their intrinsic dimensionality. This is related to the real number of dimen-
sions that have to be used while maintaining the original distance and it is called
the curse of dimensionality. To match the intrinsic dimensionality of Internet
delay distances about 5 to 7 dimensions were required [18] . This prompts the
question: do we need to experimentally find out the intrinsic dimensionality of
other network performance metrics such as the available bandwidth? Or, could
we assume that a vector space with 5 to 7 dimensions can model any network
performance metric?
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Complex versus Real Scalars. We are investigating the benefits of using
complex numbers rather than real scalars. Therefore, a C? complex vector space
may suit the intrinsic dimensionality of Internet delay. But why should we use
complex vector spaces? As Lighthouse relies on projections, usually oblique, it
uses the cosine of angles between the projected segments. With a non-metric
distance function, we may also be able to model distances that do not obey the
triangle inequality. In doing so we turn the metric space into a non-metric space.

On-Line versus Off-Line Measurements. On-demand measures of network
distances might be too costly to be carried out. This has motivated our work. In
contrast, King [(], a latency measurement tool based on the DNS infrastructure,
measures on-line latency. What are the trade-offs of using an off-line or on-line
measurement tool? A comparison of King to Lighthouse may give some clues of
which type of technique we can apply in different contexts.

Choosing Lighthouse Nodes. Lighthouse nodes form a local basis L which
spans a vector space V. To be sure that L is a proper basis, we need to show that
the vectors of L are linear independent, i.e. every vector in V is expressible as
a linear combination of the vectors in L. There might be cases where the chosen
Lighthouse nodes do not form a linear independent basis, therefore, yielding
multiple solutions to the system (6). For example, suppose we want to span a 2-
D vector space but the three chosen points lie on the same line. They are linear
dependent vectors that can only span a 1-D space. To address this issue, the
joining node can check locally, during the second step of our algorithm, whether
or not the selected Lighthouse nodes form a vector space basis. Such a test
consists of making sure that the following matrix L has a nonzero determinant:

[14]
det(L) = |--- | £0 (11)
(L]

where the columns of L are the coordinate matrices of the basis vectors.

In contrast, GNP requires a similar test as it encounters the same problem.
Unlike Lighthouse, this checking cannot be done locally by the joining node but
it should be implemented while selecting the GNP global landmarks.

5 Conclusions

In this paper we have presented a technique, called Lighthouse, that maps ob-
jects, i.e. nodes and their distance measures such as delay, onto points in a k-
dimensional vector space. Our framework avoids the scalability problem of sys-
tems that employ ‘well-known’ pivots as their reference points. Hence, it gives
enough flexibility to a joining host in choosing its set of lighthouses. We believe
that Lighthouse is accurate as shown by our initial results. With the same infor-
mation, a 4x4 matrix of distance delay measures, we were able to achieve similar
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levels of accuracy as GNP with a 3-D vector space. As for future work, we will
be investigating the issues raised in the previous section.
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