Strengthening Public Key Authentication
against Key Theft
Short Paper

Martin Kleppmann! and Conrad Irwin?

! University of Cambridge Computer Laboratory, mk428@cl.cam.ac.uk
2 Superhuman Labs, San Francisco, conrad.irwin@gmail.com

Abstract. Authentication protocols based on an asymmetric keypair
provide strong authentication as long as the private key remains secret,
but may fail catastrophically if the private key is lost or stolen. Even
when encrypted with a password, stolen key material is susceptible to
offline brute-force attacks. In this paper we demonstrate a method for
rate-limiting password guesses on stolen key material, without requiring
special hardware or changes to servers. By slowing down offline attacks
and enabling easy key revocation our algorithm reduces the risk of key
compromise, even if a low-entropy password is used.

1 Introduction

Although passwords are the prevalent authentication mechanism on the internet
today, there are some niches in which public key authentication systems have
been successfully adopted. For example, SSH public key authentication [I1] is
widely used for remote login to servers, TLS client certificates [3] are used in
some countries for access to public services [8], and FIDO U2F [I0] provides
2-factor authentication for web applications.

In these protocols, a user account is associated with a public key, and a
client authenticates itself to a server by computing a digital signature using the
corresponding private key. The private key is stored on the client device (perhaps
using a cryptographic hardware module), so the signature implements a machine-
to-machine authentication protocol (a “something you have” factor). Since the
device may be lost or stolen, an additional human-to-machine authentication
step is employed to prevent an attacker using the key: for example, a password
or biometric information can be used to unlock or decrypt the private key.

However, passwords and biometric identifiers are typically low in entropy,
making them susceptible to offline attacks if a device is stolen. Our contribution
in this paper is a scheme for storing an RSA private key in a way that makes
it harder for an attacker to make use of stolen key material. We build upon the
mRSA key-splitting scheme [26], which provides instantaneous key revocation,
and extend it with a novel protocol for rate-limiting password guesses, which
has the effect of slowing down offline attacks against stolen key material. In this
work we limit our attention to RSA keys, but we hope to extend our approach
to support other public-key cryptosystems such as ECC in future.

1.1 Threat Model

In our scenario, a client stores an RSA private key encrypted with a password.
The client wishes to authenticate itself to a server as username r. We assume
the server already knows which RSA public key belongs to which username. We
require that all communication occurs over TLS, and that the client verifies the
identity of the server using its existing PKI certificate or a pinned public key.

Our adversary is an active network attacker, but we assume that our use of
TLS prevents the attacker from eavesdropping or tampering with messages. The
attacker can steal encrypted private key material from a client device (e.g. by
stealing the physical device or by compromising it remotely). We assume the
attacker can trick the user into accessing fake services, but cannot trick the user
into revealing the key encryption password to the attacker. We assume that the
user is aware when a device has been lost or compromised, and that they are
willing to take steps to revoke it.

In Sect. 2.2 we introduce a semi-trusted service called the mediator. We
assume that data stored at the mediator is not accessible to the adversary who
can steal private key material from clients. The mediator cannot authenticate
on the client’s behalf, and it need not be trusted as an authority.

2 Revocable Public Key Authentication

In this section we review an existing technique for instant revocation called
mediated RSA (mRSA) [26]. We demonstrate it by example, using a simplified
version of the FIDO protocols [10]. We build upon mRSA in Sect. [3| to explain
our algorithm for rate-limiting password guesses.

2.1 Basic RSA Authentication

A client has a username r and an RSA private key (n, d), where n is the modulus
and d the private exponent. The server knows the corresponding public key (n, ¢)
for r, where e is the public exponent. To authenticate, the client first requests a
fresh challenge ¢ from the server. It then constructs an RSA signature s:

s=H(c|cb|ulr)? modn , (1)

where u is the URL of the server, and cb is the TLS channel binding [I] or
Origin-Bound Certificate [4] of the connection between server and client. The
channel binding prevents MITM and replay attacks. H is shorthand for the
EMSA-PSS-ENCODE operation (hashing and padding) defined in PKCS#1 [5].

The client then uses TLS to send the authentication request (s,c,u,r,n,e)
to the server at URL w, which verifies that s is a valid PKCS#1 signature of
¢ || ¢b || w | r using the public key (n,e), that ¢ and u are valid for this server,
that the channel binding matches, and that (n,e) is a public key for user 7.

An adversary who steals the private exponent d can easily impersonate the
client. A common solution is to encrypt d with a key derived from a password
using a slow KDF such as scrypt [0]. However, password entropy is often low, so
this is not sufficient to stop an attacker with significant computing resources.

2.2 The Mediator Service

To prevent theft of the private exponent d, we split it into key fragments using
the mRSA method [26]. It is based on the identity:

d

s=md=mdeTd =

aymdb

mod n . (2)

The private exponent d is split into d,, which is an integer drawn from the
uniform random distribution U(0, d), and dy, = d — d,. Fragment d, is encrypted
with the user’s password and stored on the client device a, while fragment dy is
stored on a remote server called the mediator. If the same user has multiple client
devices, d can be split in a different way for each device, with the counterpart of
each device’s fragment stored on the mediator. It would be easy to split d into
three or more summands, but we focus on the two-fragment case.

After the key has been split, a client device must work together with the
mediator in order to construct a valid signature of the form in . When device
a wants to generate a signature, it sends a message m to the mediator:

m=H(c[[cb[[ullr) . 3)

The request is sent over TLS and authenticated as described in Sect. The
mediator uses its key fragment d; to calculate a response:

resp=m® = H(c|| c¢b| w||r)® modn (4)

and returns resp to client device a. Now, a can calculate the RSA signature s:

d

s=H(c| cb||ulr)% - resp = mPam® =m? modn , (5)

and thus authenticate with the server at URL w.

If a device’s key fragment is stolen, it can instantly be revoked by deleting the
counterpart fragment from the mediator, rendering the stolen fragment useless.
This deletion request can be authenticated by another device owned by the same
user, as discussed in Sect. [3:2] This implies that a user must enrol at least two
physical devices with the mediator, so that the remaining device can revoke a
lost device. A paper print-out of the key can serve as last resort in case all devices
are lost or destroyed.

The mediator need only be partially trusted. It cannot authenticate as the
user without the cooperation of one of the user’s physical devices. The user only
needs to trust the mediator to be always online, to keep key fragments safe from
attackers who steal devices, and to correctly delete key fragments when the user
requires key revocation. The user’s privacy is protected by hashing the message
c|| eb || w || r before sending it to the mediator, so the mediator does not learn
which services the user is logging in to, or which usernames they are using.

From the point of view of a server that uses public key authentication, the
mediator does not even exist: a server simply verifies the RSA signature, and
does not care how that signature was constructed. This is in contrast to federated
login systems such as OpenlD, where the relying party must trust the identity
provider.

3 Rate Limiting Password Guesses

In the original proposal of mRSA [2], requests to the mediator are not authenti-
cated. In this section we show that by adding authentication, we can strengthen
mRSA to prevent offline attacks against stolen private key material.

Consider an attacker who has stolen a client device on which key fragment
d, is stored, encrypted with password pass. The attacker reads the encrypted
fragment FE(d,, pass) from the device, and mounts an offline attack by repeat-
edly trying a password guess pass’ (based on a dictionary or brute force) and
computing D(E(d,, pass), pass’) until the correct d,, is found.

However, an offline attack on the password requires the attacker to be able to
determine whether a decryption attempt has indeed yielded the correct d,. The
following protocol ensures that an attacker must make a request to the mediator
for every decryption attempt in order to determine whether it is correct. This
allows the mediator to limit the rate of decryption attempts, giving the user
more time to revoke the stolen device, even if the password is fairly weak.

3.1 Key Fragment Encryption

Let k& be the RSA key length. A key fragment d, can be encoded as a k-bit
string, using zero padding for the most significant bits, since d, < d < n < 2F.
This k-bit string can then be encrypted into a k-bit ciphertext efrag, using a
stream cipher and a key derived from a password. For example, we can use the
scrypt KDF [9] and AES-128 in CTR mode [7] as stream cipher:

efrag = AESCTR(ctr,scrypt(pass))o..k—1} © da (6)

where ctr is a random nonce that is stored in plaintext and incremented by
AESCTR for each block of key stream. An attacker who has stolen efrag and
ctr may guess a password pass’, and compute a guess d], of the key fragment:

d,, = AESCTR(ctr,scrypt(pass’)){o..k—13 ® efrag . (7)

If the password guess pass’ is incorrect, d/, is a uniformly distributed pseudo-
random number between 0 and 2*. We deliberately choose not to use authenti-
cated encryption, because the MAC would tell the attacker whether the password
guess was correct, making an offline attack easy.

Note that d, is drawn from a uniform distribution U(0,d), whereas d, is
drawn from U/(0,2%). Since d < 2*, the distributions are different, which leaks
some information: smaller values of d/, are more likely to be correct than larger
ones. Apart from this bias, there are no particular features that distinguish the
correct d, from a random bit string.

To quantify this assertion, we generated 50,000 RSA keys (k = 2048 bits)
using OpenSSL, and drew a uniformly distributed random d, with 0 < d, < d
for each private exponent d. Table [I] shows the bias in the most significant bits
of d, when encoded in k bits. The key fragments had an entropy of 2047.05 bits,
implying that 0.95 bits of information are leaked by the bias. This can be used
by an attacker to prioritize guesses that are more likely to be correct, but an
attacker cannot rule out password guesses from examining d/, alone.

Table 1. Probability that bit ¢ of d, is 1, when encoded in k = 2048 bits

z‘ 2047 2046 2045 2044 2043 2042 2041 2040 2039

Probability‘0.0?O 0.240 0.340 0.406 0.446 0.469 0.482 0.493 0.499

3.2 Authenticating Requests to the Mediator

Furthermore, to prevent offline attacks on encrypted key fragments, requests to
the mediator must be authenticated. To see why this is the case, consider an
unauthenticated mediator that accepts any message m and returns m® mod n
as in . An attacker could use this response to test whether a password guess
pass’ is correct, by using to compute d], and checking whether mdamde
mod n is a valid RSA signature.

To prevent this, a client must prove to the mediator that it knows the correct
password pass without revealing the password or the decrypted key fragment d.
This is accomplished by the following protocol:

1. When the client requests the mediator to compute a partial signature on a
message m, it must also include a partial signature s, using d,:

m=H(c| b ulr) (8)
$m = H(m| cbp)% modn (9)

where ¢by, is a channel binding [I] of the TLS connection between the client
and the mediator. Note that c¢b is between client and server, whereas cb,, is
between client and mediator.

2. The mediator uses its own channel binding cb!, of the connection from the
client to compute:

S - H(m || ¢b!,)% = H(m || cbm)dg “H(m]|| ¢bl,)® mod n (10)

and checks whether the result is a valid signature of m || ¢b!,, for the user’s
public key (n,e). This check succeeds if d, = d, (i.e. the user’s password
was correct), and if ¢b!,, = cb,, (preventing MITM and replay attacks).

3. If the signature is valid, the mediator computes

resp =m® = H(c|| ¢b || u | r)® modn (11)

as before, and returns it to the client. If the signature is not valid, the
mediator returns “bad signature”.

When a password-guessing attacker receives a “bad signature” response, it
learns that the password guess pass’ was incorrect, but it does not gain any ad-
ditional information that would help it determine whether any other password
guess pass” is correct or not. Thus, the attacker must make a request to the me-
diator for every guess. If the mediator receives too many requests for a signature
with a particular fragment within a short time, it returns an error.

The same mechanism can be used to authenticate key revocation: the me-
diator only processes a revocation request for a device if it is authenticated by
another device of the same user. This avoids relying on a central authority.

4 Conclusion

The security of key-based authentication is only as good as the protection of
the private key material. In this paper we extend mRSA, an existing method for
revocation of private keys, by authenticating requests to the mediator.

Our algorithm ensures that an attacker who has stolen a password-encrypted
key, and wants to guess the password, must make a request to a mediator for
every attempt. This gives the mediator the opportunity to limit the rate at which
passwords can be tested, giving the user more time to revoke the lost device’s
key. No special hardware is required, and the server just performs standard RSA
signature verification, making our approach compatible with existing systems.

Acknowledgements

We thank Alastair R. Beresford and the reviewers for their helpful feedback.

References

1. Altman, J., Williams, N., Zhu, L.: Channel bindings for TLS. IETF RFC 5929 (Jul
2010

2. Bone)h7 D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of
public key certificates and security capabilities. Proceedings of the 10th USENIX
Security Symposium pp. 297-308 (Aug 2001)

3. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) protocol version 1.2.
Network Working Group RFC 5246 (Aug 2008)

4. Dietz, M., Czeskis, A., Balfanz, D., Wallach, D.S.: Origin-Bound Certificates: A
fresh approach to strong client authentication for the web. In: 21st USENIX Secu-
rity Symposium. pp. 317-332 (Aug 2012)

5. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA
cryptography specifications version 2.1. Network Working Group RFC 3447 (Feb
2003

6. Kuty)lowski, M., Kubiak, P., Tabor, M., Wachnik, D.: Mediated RSA cryptography
specification for additive private key splitting (mRSAA). IETF Internet Draft (Nov
2012

7. Liprrzaa, H., Rogaway, P., Wagner, D.: Comments to NIST concerning AES modes
of operations: CTR-mode encryption (Sep 2000)

8. Parsovs, A.: Practical issues with TLS client certificate authentication. In: Network
and Distributed System Security Symposium (NDSS) (Feb 2014)

9. Percival, C.: Stronger key derivation via sequential memory-hard functions. BSD-
Can ’09 (May 2009)

10. Srinivas, S., Balfanz, D., Tiffany, E., Czeskis, A.: Universal 2nd factor (U2F)
overview. FIDO Alliance Proposed Standard (May 2015)

11. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) authentication protocol. Network
Working Group RFC 4252 (Jan 2006)

	Strengthening Public Key Authentication against Key Theft

